头像

陈勇

个人资料

  • 部门: 数学科学学院
  • 性别:
  • 专业技术职务: 教授
  • 毕业院校: 大连理工大学
  • 学位: 博士
  • 学历: 研究生
  • 联系电话:
  • 电子邮箱: ychen@sei.ecnu.edu.cn
  • 办公地址: 统计楼131
  • 通讯地址: 华东师范大学数学科学学院
  • 邮编:
  • 传真:

工作经历

教育经历

大连理工大学 计算数学 博士

上海交通大学 理论物理 博士后


个人简介

社会兼职

上海非线性科学副监事长、理事

研究方向


可积系统;

机器学习-可积深度学习算法;

非线性数学物理;


开授课程

科研项目

1. 国家自然科学基金面上项目:非线性局域波的生成、分类、转换及应用,1217050885,项目负责人.


2. 国家自然科学基金应急管理项目:非线性局域波科学问题研讨会,1174200061,项目负责人.

3. 国家自然科学基金面上项目:带边界条件的可积非线性方程理论和数值算法, 11675054,项目负责人.
4. 国家自然科学基金重点项目:非线性系统的对称性理论研究及其工程化应用, 11435005,第一参与人(华师项目负责人).
5. 国家自然科学基金面上项目:非线性波方程的可积离散、非局域对称和保可积数值法,11275072,项目负责人.
6  国家重大全球变化研究计划项目:北极海冰减退引起的北极放大机理与全球气候效应 2015CB953900,骨干科学家 PI.
7. 教育部博士点基金:非局域对称和保对称的离散可积算法, 20120076110024,项目负责人.
8. 国家自然科学基金创新群体:网络化信息物理计算基础研究, 61321064,骨干成员 PI.
9. 国家自然科学基金面上项目:非线性物理学中若干机械化算法的研究, 11075055,项目负责人.
10. 国家自然科学基金重点项目:灾害性天气和气候研究的数学物理问题,10735030,第一参与人.
11.长江学者和创新团队发展计划: 高效海水养殖与灾害响应机制,IRT0734,骨干成员.

学术成果

 2022年

1.Peng Weiqi and Chen Yong*. Double and triple poles solutions for the Gerdjikov-Ivanov type of derivative nonlinear Schr{o}dinger equation with zerononzero boundary conditions.pdf J. Math. Phys.(2022) 63: 033502.

2. Lin Shuning and Chen Yong*. A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions.pdf J. Comput. Phys. (2022) 457: 111053.

3. Peng Weiqi, Pu Juncai and Chen Yong*. PINN deep learning method for the Chen–Lee–Liu equation Rogue wave on the periodic background.pdf. Commun. Nonlinear Sci. Numer. Simul. (2022) 105: 106067.

4. Wen Lili, Fan Engui and Chen Yong*. Multiple-high-order pole solutions for the NLS equation with quartic terms.pdf. Appl. Math. Lett. (2022) 130: 108008.

5.Miao Zhengwu and Chen Yong*. Physics-informed neural networks method in high-dimensionalintegrable systems.pdf Mode. Phys. Lett. B (2022) 36: 2150531.

6. Pu Juncai and Chen Yong*. Data-driven vector localized waves and parameters discovery for Manakov system using deep learning approach.pdf. Chaos, Solitons and Fractals (2022) 160: 112182.

7. Peng Weiqi and Chen Yong*. N-double poles solutions for nonlocal Hirota boundary conditions using Riemann–Hilbert method and PINNequation with nonzero algorithm.pdf. Physica D (2022) 435: 133274.



 2021年

1. Wang Minmin and Chen Yong*.  Dynamic behaviors of general N-solitons for the nonlocal generalized nonlinear Schrödinger equation.pdfNonlinear Dyn.(2021)104:2621-2638.

2. Pu Juncai, Li Jun and Chen Yong*. Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method.pdf. Nonlinear Dyn. (2021) 105:1723–1739.

 3. Pu Juncai, Li Jun and Chen Yong*. Soliton, breather, and rogue wave solutions for solving the nonlinear Schrodinger equation using a deep learning method with physical constraints..pdf Chin. Phys. B (2021) 30: 06020

 4. Pu Juncai, Peng Weiqi, Chen Yong*. The data-driven localized wave solutions of the derivative nonlinear Schrödinger equation by using improved PINN approach.pdfWave Motion (2021) 107: 102823.

5. Li Jun and Chen Yong*, A physics-constrained deep residual network for solving the sine-Gordon equation.pdf. 2021. Commun. Theor. Phys. 73 015001.

6. Yue Yunfei, Lin Ji and Chen, Yong *. High-order rational solutions and resonance solutions for a (3+1)–dimensional Kudryashov-Sinelshchikov equation.pdfChin. Phys. B (2021) 30: 0102012.

7. Miao Zhengwu, Hu Xiaorui, Chen Yong*. Interaction phenomenon to (1+1)-dimensional Sharma–Tasso–Olver–Burgers equation.pdf.pdf   Appl Math Lett. 2021;112:106722.

8. Zhou Huijuan and Chen Yong*. High-order soliton matrix for an extended nonlinear Schrödinger equation.pdf[M]. Nonlinear Systems and their Remarkable Mathematical Structures  (2021) A7: 171-200.

9. Zhou Huijuan and Chen Yong*.  Breathers and rogue waves on the double-periodic background for the reverse-space-time derivative nonlinear Schrödinger equation.pdf. Nonlinear Dyn. (2021) 106: 3437-3451.

10. Peng Weiqi and Chen Yong*. Bound-state soliton and rogue wave solutions for the sixth-order nonlinear Schr\{o}dinger equation via inverse scattering transform method .pdf   arXiv:2103.14296v2.

11. Zhu Jinyan and Chen Yong*. A new form of general soliton solutions and multiple zeros solutions for a higher-order Kaup–Newell equation.pdf. J. Math. Phys. (2021) 62: 123501.

12. Zhu Jinyan and Chen Yong*. High-order soliton matrix for the third-order flow equation of the Gerdjikov-Ivanov hierarchy through the Riemann-Hilbert method.pdf. ArXiv: 2105.08412 .

13. Li-Li Wen , En-Gui Fan and Yong Chen*. The Sasa-Satsuma equation on a non-zero background Inverse scattering transform and multi-soliton solutions..pdf.arXiv:1911.11944.

14. Pu Juncai, Chen Yong*. Riemann-Hilbert Approach and Double-Pole Solutions for the Third-Order Flow Equation of the Kaup-Newell System with ZeroNonzero Boundary Conditions.pdf. (2021) arXiv: 2105.06098.

15. Pu Juncai, Chen Yong*. Data-driven forward-inverse problems and modulational instability for Yajima-Oikawa system using deep learning with parameter regularization.pdf. (2021) arXiv: 2112.04062.

16. Peng Weiqi, Chen Yong*. Soliton solutions for nonlocal Hirota equation with non-zero boundary conditions using Riemann-Hilbert method and PINN algorithm.pdf. (2021) arXiv: 2111.12424.

17. Zhou Huijuan, Chen Yong*. Higher-order hybrid-pattern solitons on the n-periodic background for the reverse-space-time derivative nonlinear Schr{o}dinger equation.pdf. (2021) arXiv: 2111.13843.




2020年

1. Yue Y, Huang L, Chen Y. Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrodinger equation.pdf.pdfCommun Nonlinear Sci Numer Simul. 2020;89:105284. 

2. Chen Y, Huang L, Liu Y. On the Modelling of Shallow-Water Waves with the Coriolis Effect.pdf  J Nonlinear Sci. 2020;30(1):93-135.

3. Pu JC, Chen Y, Chen Y. Nonlocal symmetries, B¨acklund transformation and interaction solutions for the integrable Boussinesq equation.pdf  Mod Phys Lett B. 2020;34(26):1-12.

4. Tang X, Chen Y.Lumps, breathers, rogue waves and interaction solutions  to a (3 + 1)-dimensional Kudryashov–Sinelshchikov equation.pdf  Mod Phys Lett B. 2020;34(12):1-13.

5.  Li J, Chen Y. A deep learning method for solving third-order nonlinear evolution equations.Commun Theor Phys. 2020;72(11).

6. Li J, Chen Y. Solving second-order nonlinear evolution partial differential equations using deep learning.pdfCommun Theor Phys. 2020;72(10):1-13.


2019

1. Huang Lili and Chen Yong*, IMG_256Localized excitations and interactional solutions for the reduced Maxwell-Bloch equations.pdf Commun. Nonlinear Sci. Numer. Simulat. 67 (2019) 237-252.(ESI高被引)

2. Yang Bo and Chen Yong*, IMG_257High-order soliton matrices for Sasa–Satsuma equation via local Riemann–Hilbert problem.pdf Nonlinear Analysis: Real World Applications 45 (2019) 918-941.

3. Yang Bo and Chen Yong*, IMG_258Dynamics of Rogue Waves in the Partially PT-symmetric Nonlocal Davey-Stewartson Systems.pdf Commun Nonlinear Sci Numer Simulat 69 (2019) 287-303

4.Yue Yunfei , Huang Lili , Chen Yong .IMG_259Localized waves and interaction solutions to an extended (3+1)-dimensional Jimbo-Miwa equation. AML.pdf Applied Mathematics Letters, 89(2019):70-77.

5.YuQi Li∗ and Yong Chen,IMG_260The special class of second integrals of the KdV equation.pdf  Commun Nonlinear Sci Numer Simulat 70 (2019) 193–202.

6. Zhang Xiaoen and Chen Yong *Inverse scattering transformation for generalized nonlinear equation.pdf. Applied Mathematics Letters 98 (2019) 306–313.

7. Wang Minmin , Chen Yong* . Dynamic behaviors of mixed localized solutions for the three-component coupled Fokas–Lenells system.pdf[J]. Nonlinear Dynamics, 2019, 98(3):1781-1794.

8.Yue Yunfei, Chen Yong, Dynamics of localized waves in a (3+1)-dimensional nonlinear evolution equation. pdf.pdf. Mod. Phys. Lett. B (2019) 1950101.

9. Xu Tao, Chen Yong*, Qiao Zhijun. Multi-dark soliton solutions for the (2 + 1)-dimensional multi-component Maccari system.pdf.Mod. Phys. Lett. B 33 (2019) 1950390.

10. Xu Tao, Chen Yong*. Semirational solutions to the coupled Fokas–Lenells__equations.pdf. Nonlinear Dyn. 45 (2019) 87-99.

 


2018

1. Xu Tao and Chen Yong*, IMG_261Darboux transformation of the coupled nonisospectral Gross–Pitaevskii system and its multi-component generalization.pdf Commun. Nonlinear Sci. Numer. Simulat. 57 (2018) 276-289.(ESI高被引)

2. Huang Lili and Chen Yong*, IMG_262Nonlocal symmetry and similarity reductions for a (2+1)-dimensional Korteweg-de Vries equation.pdf  Nonlinear Dyn. 92 (2018) 221–234.

3. Huang Lili, Qiao Zhijun and Chen Yong*, IMG_263Soliton-cnoidal interactional wave solutions for the reduced Maxwell-Bloch equations.pdf  Chin. Phys. B  27 (2018) 020200.

4. Yue Yunfei, Huang Lili and Chen Yong*, IMG_264N-solitons, breathers, lumps and rogue wave solutions to a (3+1)-dimensional nonlinear evolution equation.pdf  Comput. Math. Appl. 75 (2018) 2538-2548. 

5. Yang Bo and Chen Yong*, IMG_265Reductions of Darboux Transformations for the PT-Symmetric Nonlocal Davey-Stewartson Equations.pdf Appl. Math. Lett. 82 (2018) 43–49 .

6. Yang Bo and Chen Yong*, IMG_266Several reverse-time integrable nonlocal nonlinear equations Rogue-wave solutions.pdf  Chaos 28  (2018)  053104.

7. Yang Bo and Chen Yong*, IMG_267Dynamics of high-order solitons in the nonlocal nonlinear Schrödinger equations.pdf Nonlinear Dyn. (2018) 94:489–502.

8. Zhang Lin, Han Zhong and Chen Yong*, IMG_268A Direct Algorithm Maple Package of One-Dimensional Optimal System for Group Invariant Solutions.pdf Commun. Theor. Phys.  69 (2018) 14-22.

9. Huang Lili, Yue Yunfei and Chen Yong*, IMG_269Localized waves and interaction solutions to a (3+1)-dimensional generalized KP equation.pdf Comput. Math. Appl. 76 (2018) 831-844 (ESI高被引)

10. Zhang Xiaoen and Chen Yong*, IMG_270General high-order rogue waves to nonlinear Schrodinger–Boussinesq equation with the dynamical analysis.pdf Nonliear Dyn. 93 (2018) 2169–2184. 

11. Zhang Xiaoen, Chen Yong *and Tang Xiaoyan, IMG_271Rogue wave and a pair of resonance stripe solitons to KP equation.pdf  Comput. Math. Appl. 76 (2018) 1938–1949 .

12. Xu Tao and Chen Yong*, IMG_272Mixed interactions of localized waves in the three-component coupled derivative nonlinear Schrodinger equations.pdf Nonliear Dyn. 92 (2018) 2133–2142. 

13. Xu Tao, Chan Wai-Hong and Chen Yong,* IMG_273Higher-Order Rogue Wave Pairs in the Coupled Cubic-Quintic Nonlinear Schrodinger Equations.pdf Commun. Theor. Phys. 70 (2018) 153–160.

14. Zhang Xiaoen, Xu Tao and Chen Yong*, IMG_275Hybrid solutions to Mel’nikov system.pdf  Nonliear Dyn.

2018,94(4):2841-2862.

15. Junchao Chen, Yong Chen*, Bao-Feng Feng, Ken-ichi Maruno, Yasuhiro Ohta.IMG_276General High-order Rogue Waves of the (1+1)-Dimensional Yajima–Oikawa System.pdfJ. Phys. Soc. Jpn. 87, 094007 (2018).

16. 韩众,陈勇,郎艳怀.IMG_277(2+1)维破裂孤子方程的群叶状方法和显式解.pdf数学年刊A(中文版),2018,39(04):377-390.

17. Zhang Xiaoen, Chen Yong* and Tang Xiaoyan. Rogue wave and a pair of resonance stripe solitons to KP__equation.pdf. Comput. Math. Appl. 76 (2018) 1938-1949.



2017

1. Huang Lili and Chen Yong*, IMG_278Nonlocal symmetry and similarity reductions for the Drinfeld–Sokolov–Satsuma–Hirota system.pdf  Appl. Math. Lett. 64 (2017) 177-184.(ESI高被引)

2. Han Zhong and Chen Yong*, IMG_279Symmetry Analysis and Exact Solutions of the 2D Unsteady Incompressible Boundary-Layer Equations.pdf  Commun. Theor. Phys. 67 (2017) 1-8.

3. Zhong Lanhua, Li Yuqi, Chen Yong, Hong Weiyi, Hu Wei and Guo Qi, IMG_280Chaoticons described by nonlocal nonlinear Schrödinger equation.pdf  Scientific Report (2017) 41438.

4. Chen Junchao, Feng Baofeng, Chen Yong and Ma Zhengyi, IMG_281General bright–dark soliton solution to (2+1)-dimensional multi-component long-wave–short-wave resonance interaction system.pdf  Nonlinear Dyn.  88 (2017) 1273–1288.

5. Huang Lili and Chen Yong, IMG_282Lump Solutions and Interaction Phenomenon for (2+1)-Dimensional Sawada-Kotera Equation.pdf  Commun. Theor. Phys.  67 (2017) 473-478.

6. Zhang Xiaoen and Chen Yong, IMG_283Rogue wave and a pair of resonance stripe solitons to a reduced (3+1)-dimensional Jimbo–Miwa equation.pdf Commun. Nonlinear Sci. Numer. Simulat. 52 (2017) 24-31.(ESI高被引)

7. Zhang Xiaoen and Chen Yong,IMG_285Deformation rogue wave to the (2+1)-dimensional KdV equation.pdf  Nonliear Dyn. 90 (2017) 755–763.

8. Zhang Xiaoen, Chen Yong and Zhang Yong,IMG_286Breather, lump and X soliton solutions to nonlocal KP equation.pdf   Comput. Math. Appl. 74 (2017) 2341–2347.(ESI高被引)

9. Han Zhong and Chen Yong, IMG_287Bright-Dark Mixed N-Soliton Solution of Two Dimensional Multicomponent Maccari System.pdf  Z. Naturforsch. A  (2017). 

10. Han Zhong and Chen Yong, IMG_288Bright-Dark Mixed N-Soliton Solution of the Two-Dimensional Maccari System.pdf  Chin. Phys. Lett.  7 (2017)  070202.

11. Han Zhong, Chen Yong and Chen Junchao, IMG_289General N-Dark Soliton Solutions of the Multi-Component Mel’nikov System.pdf  J. Phys. Soc. Jpn. 86 (2017)  074005.

12. Han Zhong, Chen Yong and Chen Junchao, IMG_290Bright-Dark Mixed N-Soliton Solutions of the Multi-Component Melnikov System.pdf  J. Phys. Soc. Jpn. 86 (2017)  104008.

13. Xu Tao, Chen Yong and Lin Ji,IMG_291Localized waves of the coupled cubic–quintic nonlinear Schrodinger equations in nonlinear optics.pdf Chin. Phys. B  26 (2017) 120200.

14. Xiong Na, Lou Senyue, Li Biao and Chen Yong, IMG_292Classification of Dark Modified KdV Equation.pdf Commun. Theor. Phys.  68 (2017) 13-20.

15. Xu Tao and Chen Yong, IMG_293Localised Nonlinear Waves in the Three-Component Coupled Hirota Equations.pdf  Z. Naturforsch. A  (2017).

16. Chen Junchao, Feng Baofeng and Chen Yong, IMG_294Bilinear Backlund transformation, Lax pair and multi-soliton solution for a vector Ramani equation.pdf  Modern Physics Letters B 31 (2017) 1750133.


2016

1. Chen Junchao, Chen Yong, Feng Baofeng, Ken-ichi Maruno and Yasuhiro Ohta, IMG_295An integrable semi-discretization of the coupled Yajima–Oikawa system.pdf J. Phys. A 49 (2016) 165201.

2. Hu Xiaorui, Li Yuqi and Chen Yong, IMG_296Constructing two-dimensional optimal system of the group invariant solutions.pdf J. Math. Phys. 57 (2016) 023518.

3. Huang Lili and Chen Yong,IMG_297Nonlocal symmetry and exact solutions of the (2+1)-dimensional modified Bogoyavlenskii–Schiff equation.pdf   Chin. Phys. B  25 (2016) 060200.

4. Xiong Na, Li Yuqi, Chen Junchao and Chen Yong, IMG_298One-Dimensional Optimal System and Similarity Reductions of Wu–Zhang Equation.pdf  Commun. Theor. Phys.  66 (2016) 1-11.

5. Wang Yunhu and Chen Yong, IMG_299Bell polynomials approach for two higher-order KdV-type equations in fluids.pdf Nonlinear Analysis: Real World Applications 31 (2016) 533–551.

6.  Huang Lili, Chen Yong and Ma Zhengyi, IMG_300Nonlocal Symmetry and Interaction Solutions of a Generalized Kadomtsev– Petviashvili Equation.pdf  Commun. Theor. Phys.  66 (2016) 189-195.

7. Luo Xingyu and Chen Yong, IMG_301Darboux Transformation and Darboux Transformation and N-soliton Solution for Extended Form of Modified Kadomtsev–Petviashvili Equation with Variable-Coefficient.pdf  Commun. Theor. Phys.  66 (2016) 179-188.

8. Xu Tao and Chen Yong, IMG_302Localized waves in three-component coupled nonlinear Schrodinger equation.pdf  Chin. Phys. B  25 (2016) 090201.

9. Han Zhong and Chen Yong,IMG_303Differential Invariants of the (2 + 1)-Dimensional Breaking Soliton Equation.pdf  Z. Naturforsch. A 71 (2016) 855-862.


2015

1. Hu Xiaorui, Li Yuqi and Chen Yong, IMG_304A direct algorithm of one-dimensional optimal system for the group invariant solutions.pdf J. Math. Phys. 56 (2015) 053504.

2. Chen Junchao, Chen Yong, Feng Baofeng and Ken-ichi Maruno, IMG_305Rational solutions to two- and one-dimensional multicomponent Yajima–Oikawa systems.pdf. Phys. Lett. A 379 (2015) 1510-1519.

3. Chen Junchao, Chen Yong, Feng Baofeng and Ken-ichi Maruno, IMG_306Multi-Dark Soliton Solutions of the Two-Dimensional Multi-Component Yajima–Oikawa Systems.pdf J. Phys. Soc, Jpn. 84 (2015) 034002.

4. Chen Junchao, Chen Yong, Feng Baofeng and Ken-ichi Maruno, IMG_307General Mixed Multi-Soliton Solutions to One-Dimensional Multicomponent Yajima–Oikawa System.pdf. J. Phys. Soc, Jpn 84 (2015) 074001.

5. Wang Xin, Li Yuqi, Huang Fei and Chen Yong, IMG_308Rogue wave solutions of AB system.pdf. Commun. Nonlinear Sci. Numer. Simulat. 20 (2015) 434-442.

6. Wang Xin, Cao Jianli and Chen Yong, IMG_309Higher-order rogue wave solutions of the three-wave resonant interaction equation via the generalized Darboux transformation.pdf Phys. Scr. 90 (2015) 105201.

 7. Li Hongmin, Li Yuqi and Chen Yong, IMG_310Dual Hierarchies of a Multi-Component Camassa-Holm 

System.pdf.  Commun. Theor. Phys. 64 (2015) 372-378.

 8. Li Hongmin, Li Yuqi and Chen Yong, IMG_311Bi-Hamiltonian Structure of Multi-Component Yajima-Oikawa 

Hierarchy.pdf Z. Naturforsch. A 70 (2015) 929-934.

9.  Li Hongmin, Li Yuqi and Chen Yong, IMG_312Reciprocal transformations of two Camassa-Holm type 

equations.pdf Commun. Theor. Phys. 64 (2015) 619-622.
 10. Hu Xiaorui and Chen Yong, 
IMG_313Nonlocal symmetries and negative hierarchies related to bilinear Backlund 

transformation.pdf Chin. Phys. B 24 (2015)  030201.

11. Hu Xiaorui and Chen Yong, IMG_314Nonlocal symmetries, consistent Riccati expansion integrability, and their 

applications of the (2+1)-dimensional Broer–Kaup–Kupershmidt system.pdf Chin. Phys. B 24 (2015) 090203. 

12. Cheng Wenguang, Li Biao and Chen Yong,  Nonlocal symmetry and exact solutions of the (2+1)-dimensional breaking soliton equation.pdf. Commun. Nonlinear Sci. Numer. Simulat. 29 (2015) 198–207.

13. Hu Xiaorui, Chen Junchao and Chen Yong, IMG_315Groups Analysis and Localized Solutions of the (2+1)-

Dimensional Ito Equation.pdf Chin. Phys. Lett. 32 (2015) 070201.

14. Cheng Wenguang, Li Biao and Chen Yong, IMG_316Construction of Soliton-Cnoidal Wave Interaction Solution 

for the (2+1)-Dimensional Breaking Soliton Equation.pdf  Commun. Theor. Phys. 63 (2015) 549–553 .

15. Hu Xiaorui and Chen Yong, Nonlocal Symmetry, CRE Solvability and Exact Interaction Solutions of the 

Asymmetric Nizhnik–Novikov–Veselov System. Z. Naturforsch. A 70 (2015) 729-737.

16. Feng Baofeng, Chen Junchao, Chen Yong, Ken-ichi Maruno and Yasuhiro Ohta, IMG_317Integrable 

discretizations and self-adaptive moving mesh method for a coupled short pulse equation.pdf J. Phys. A 48 (2015) 385202.


2014

1. Chen Junchao, Xin Xiangpeng and Chen Yong, IMG_318Nonlocal symmetries of the Hirota-Satsuma coupled Korteweg-de Vries and their applications Exact interaction solutions and integrable hierarchy system.pdf J. Math. Phys.55 (2014) 053508.

2. Miao Qian, Wang Yunhu, Chen Yong and Yang Yunqing, IMG_319PDEBellII A Maple package for finding bilinear forms, bilinear Bäcklund transformations, Lax pairs and conservation laws of the KdV-type equations.pdf Comput. Phys. Commun.185 (2014) 357-367.

3. Wang Xin, Li Yuqi and Chen Yong, IMG_320Generalized Darboux transformation and localized waves in coupled Hirota equations.pdf Wave Motion 51 (2014) 1149-1160.

4. Li Hongmin, Li Yuqi and Chen Yong, IMG_321Bi-Hamiltonian structure of multi-component Novikov equation.pdfJ. Nonlinear Math. Phys. 21 (2014) 509-520.

5.  Chen Junchao, Chen Yong, Feng Baofeng and Zhu Hanmin, IMG_322Pfaffian-Type Soliton Solution to a Multi-Component Coupled Ito Equation.pdf Chin. Phys. Lett. 31 (2014) 110502. 

6. Li Hongmin, Li Yuqi and Chen Yong, IMG_323An Integrable Discrete Generalized Nonlinear SchrÄodinger Equation and Its Reductions.pdf Commun. Theor. Phys. 62 (2014) 641-648.

7Chen Junchao and Chen Yong, IMG_324Nonlocal symmetry constraints and exact interaction solutions of the (2+1) dimensional modified generalized long dispersive wave equation.pdf J. Nonlinear Math. Phys. 21 (2014) 454-472.

8. Wang Xin, Yang Bo, Chen Yong and Yang Yunqing, IMG_325Higher-order rogue wave solutions of the Kundu–Eckhaus equation.pdf. Phys. Scr. 89 (2014) 095210.

9. Wang Xin, Yang Bo, Chen Yong and Yang Yunqing, IMG_326Higher-Order Localized Waves in Coupled Nonlinear Schrödinger Equations.pdf Chin. Phys. Lett. 31 (2014) 090201.

10. Chen Junchao, Xin Xiangpeng and Chen Yong, IMG_327symmetry Analysis and Conservation Laws to the (2+1)-Dimensional Coupled Nonlinear Extension of the Reaction-Diffusion Equation.pdf. Commun. Theor. Phys. 62  (2014) 173.

11. Chen Junchao, Chen Yong, Feng Baofeng and Zhu Hanmin, IMG_328Multi-component generalizations of the Hirota–Satsuma coupled KdV equation.pdf Appl. Math. Lett. 37 (2014) 15-21.

12. Miao Qian, Xin Xiangpeng and Chen Yong,, IMG_329Nonlocal symmetries and explicit solutions of the AKNS system.pdf Appl. Math. Lett. 28 (2014) 7-13.

13. Xin Xiangpeng, Miao Qian and Chen Yong, IMG_330Nonlocal symmetry, optimal systems, and explicit solutions of the mKdV equation.pdf  Chin. Phys. B, 23 (2014) 010203.

14. Wang Xin, Chen Yong and Dong  Zhongzhou, IMG_331Symmetries and conservation laws of one Blaszak–Marciniak four-field lattice equation.pdf  Chin. Phys. B 23 (2014)  010201.

15. Li Yuqi, Chen Junchao, Chen Yong and Lou Senyue,IMG_332Darboux Transformations via Lie Point Symmetries-

KdV Equation.pdf  Chin. Phys. Lett. 31 (2014) 010201.

16. Miao Qian, Hu Xiaorui and Chen Yong,, IMG_333ONEOptimal A Maple Package for Generating One-Dimensional Optimal System of Finite Dimensional Lie Algebra.pdf Commun. Theor. Phys, 61 (2014) 160-170 .                

17. Wang Xin and Chen Yong, IMG_334Darboux Transformations and N-soliton Solutions of Two (2+1)-Dimensional Nonlinear Equations.pdf Commun. Theor. Phys. 61 (2014) 423-430.

18. Wang Xin and Chen Yong, IMG_335Rogue-wave pair and dark-bright-rogue wave solutions of the coupled Hirota equations.pdf Chin. Phys. B 23 (2014) 070203.

19. Xin Xiangpeng, Chen Junchao  and Chen Yong, IMG_336Nonlocal Symmetries and Explicit Solutions of the Boussinesq Equation.pdf Chin. Ann. Math. B 35B (2014)  841-856.

20. Zhu Haixing, An Hongli and Chen Yong, IMG_337A Laplace Decomposition Method for Nonlinear Partial Differential Equations with Nonlinear Term of Any Order.pdf Commun. Theor. Phys. 61 (2014) 23-31.


2013

1. Wang Yunhu and Chen Yong, IMG_338The integrability of an extended fifth-order KdV equation.pdf Pramana 81 (2013) 737-746.

2. Xin Xiangpeng and Chen Yong, IMG_339A Method to Construct the Nonlocal Symmetries of Nonlinear Evolution Equations.pdf, Chin. Phys. Lett. 30 (2013) 100202.

  3. Chen Junchao, Li Biao and Chen Yong, IMG_340Novel exact solutions of coupled nonlinear Schodinger equations with time–space modulation.pdf, 22 (2013) 110306.

4. Xu Jian, Fan Engui and Chen Yong. IMG_341Long-time Asymptotic for the Derivative Nonlinear Schrödinger Equation

with Step-like Initial Value.pdf, Analysis and Geometry, 2013: 1-36.

5.  Xin Xiangpeng and Chen Yong ,IMG_342The Using of Conservation Laws in Symmetry-Preserving Difference Scheme.pdf,  Commun. Theor. Phys.59 (2013) 573-578.

6. Xin Xiangpeng, Chen Yong and Wang Yunhu ,IMG_343A symmetry-preserving difference scheme for high dimensional nonlinear evolution equations.pdf,Chin. Phys. B 22(6) (2013) 060201.

7. Wang Yunhu and Chen Yong,IMG_344Integrability of extended (2+1)-dimensional shallow water wave equation with Bell polynomials.pdf, Chin. Phys. B 22(5) (2013) 050509.

8.Wang Yunhu and Chen Yong,IMG_345Binary Bell polynomial manipulations on the integrability of a generalized (2+1)-dimensional Korteweg-de Vries equation.pdf, J. Math. Anal. Appl. 400 (2013) 624-634.


2012

1. Wang Yunhu and Chen Yong, IMG_346Integrability of the modified generalised Vakhnenko equation.pdf, J. Math. Phys. 53 (2012) 123504.

2.  Xin Xiangpeng, Miao Qian and Chen Yong, IMG_347Nonlocal symmetries and exact solutions for PIB Equation.pdf, Commun. Theor. Phys. 58(2012) 331–337.

3.   Hu Xiaorui‚ Lou Senyue and Chen Yong‚ IMG_348Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation.pdf‚ Phys. Rev. E85, 056607(2012).(ESI高被引)

4.   Lou Senyue‚ Hu Xiaorui and Chen Yong‚IMG_349Nonlocal symmetries related to Backlund transformation and their applications.pdf‚J. Phys. A: Math. Theor. 45 (2012) 155209.(ESI高被引)

5.   Dong Zhongzhou‚ Chen Yong‚ Kong Dexing and Wang Zenggui‚IMG_350Symmetry reduction and exact solutions of a hyperbolic Monge-Ampere equation.pdf‚ Chin. Ann. Math. 33B(2) (2012) 309.

6.   Hu Xiaorui and Chen Yong‚ IMG_351A direct procedure on the integrability of nonisospectral and variable-coefficient MKdV equation.pdf‚ J. Nonlinear Math. Phys. 19(1) (2012) 1–11.

7.Wang Yunhu and Chen Yong‚ IMG_352Conservation laws and self-consistent sources for a super integrable equation hierarchy.pdf‚ Commun. Nonlinear Sci. Numer. Simulat. 17 (2012) 2292–2298.

8.Wang Yunhu and Chen Yong‚ IMG_353Backlund transformations and solutions of a generalized Kadomtsev-Petviashvili equation.pdf‚ Commun. Theor. Phys. 57 (2012) 217–222.


2011

1.Yang Yunqing and Chen Yong‚ IMG_354Pseudopotentials‚ Lax pairs and Bäcklund transformations for generalized fifth-order KdV equation.pdf‚ Commun. Theor. Phys. 55 (1) (2011) 25–28.

2.Yang Yunqing and Chen Yong‚IMG_355Prolongation structure of the equation studied by Qiao.pdf‚ Commun. Theor. Phys. 56(3) (2011) 463–466.

3.Yang Yunqing and Chen Yong‚ IMG_356Prolongation structure of the variable coefficient KdV equation.pdf‚ Chin. Phys. B 20(1) (2011) 010206.

4.Wang Yunhu and Chen Yong‚ IMG_357Binary bell polynomials‚ bilinear approach to exact periodic wave solutions of (2 +1)-dimensional nonlinear evolution equations.pdf‚ Commun. Theor. Phys. 56 (2011) 672–678.

5.Dong Zhongzhou‚ Huang Fei and Chen Yong‚ IMG_358Symmetry reductions and exact solutions of the two-Layer model in atmosphere.pdf‚ Z.Naturforsch. 66a (2011) 75-86.

6.Hu Xiaorui and Chen Yong‚ IMG_359Binary bell polynomials Approach to generalized Nizhnik–Novikov–Veselov equation‚ Commun.pdf. Theor. Phys. 56 (2011) 218–222.

7.Hu Xiaorui‚ Chen Yong and Qian Longjiang‚IMG_360Full symmetry groups and similar reductions of a (2+1)-dimensional resonant Davey–Stewartson system.pdf‚ Commun. Theor. Phys. 55 (2011) 737–742.


2010

1.Zhang Huanping‚ Li Biao and Chen Yong‚ IMG_361Full symmetry groups‚ painlev integrability and exact solutions of the nonisospectral BKP equation.pdf‚ Appl. Math. Comput. 217 (2010) 1555–1560.

2.Zhang Huanping‚ Li Biao‚ Chen Yong and Huang Fei‚ IMG_362Three types of generalized Kadomtsev-Petviashvili equations arising from baroclinic potential vorticity equation.pdf‚ Chin. Phys. B 19(2) (2010) 020201.

3.Zhang Huanping‚ Li Biao and Chen Yong‚ IMG_363Kac-Moody-Virasoro symmetry algebra of (2+1)-dimensions dispersive long-wave equation with arbitrary order invariant.pdf‚ Commun. Theort. Phys. 53 (2010) 450–454.

4.Zhang Huanping‚ Li Biao and Chen Yong‚IMG_364Some exact solutions to the inhomogeneous higher-order nonlinear Schrodinger equation by a direct method.pdf‚ Chin. Phys. B 19(6) (2010) 060302.

5.Chen Yong and Yang Yunqing‚ IMG_365A new four-dimensional chaotic system.pdf‚ Chin. Phys. B 19 (2010) 120510.

6.Dong Zhongzhou‚Chen Yong and Lang Yanhuai‚ IMG_366Symmetry reduction and exact solutions of the (3+1)-dimensional Zakharov–Kuznetsov equation.pdf‚ Chin. Phys. B 19 (2010) 090205.

7.Dong Zhongzhou and Chen Yong‚ IMG_367Symmetry reductions and exact solutions of Blaszak–Marciniak four-field Lattice equation.pdf‚ Commun. Theor. Phys. 54 (2010) 389–392.

8.Hu Xiaorui and Chen Yong‚ IMG_368Backlund transformations and explicit solutions of the (2+1)-dimensional barotropic and quasi-geostrophic potential vorticity equation.pdf‚ Commun. Theor. Phys. 53 (2010) 803–808.

9.Hu Xiaorui‚ Chen Yong and Huang Fei‚ IMG_369Symmetry analysis and explicit solutions of the (3+1)-dimensional baroclinic potential vorticity equation.pdf‚ Chin. Phys. B 19 (2010) 080203.

10.Hu Xiaorui‚ Huang Fei and Chen Yong‚ IMG_370Symmetry reductions and exact solutions of the (2+1)-dimensional navier-stokes equations.pdf‚ Z. Naturforsch. 65a (2010) 1-7.

11. Yang Pei, Chen Yong and Li Zhibin, IMG_371Analytic Approximations for Soliton Solutions of Short-Wave Models for Camassa–Holm and.pdf Commun. Theor. Phys. 53 (2010) 1027-1034.

12. 杨沛,陈勇,李志斌,IMG_372离散修正KdV方程的解析近似解.pdf物理学报 59 (2010) 3668-3672.


2009

1.Hu Xiaorui and Chen Yong‚ IMG_373Two-dimensional symmetry reduction of (2+1)-dimensional nonlinear Klein–Gordon equation.pdf‚ Appl. Math. Comput. 215 (2009) 1141–1145.

2.Hu Xiaorui and Chen Yong‚ IMG_374Symmetry analysis of two types of (2+1)-dimensional nonlinear Klein–Gorden equation.pdf. Theor. Phys. 52 (2009) 997–1003.

3.Dong Zhongzhou and Chen Yong‚ IMG_375Symmetry reduction‚ exact solutions‚ and conservation laws of the (2+1)-dimensional dispersive long wave equation.pdf‚ Z. Naturforsch. 64a (2009) 579 -603.

4.Chen Yong and Dong Zhongzhou‚ IMG_376Symmetry reduction and exact solutions of the generalized Nizhnik-Novikov-Veselov equation.pdf‚ Nonlinear. Anal. 71 (2009) 810-817.

5. Chen Yong, Hu Xiaorui,  Lie Symmetry Group of the nonisospectral Kadomtsev-Petviashvili equation.pdf, Z.Naturforsch.A.  62a (2009), 8. 

6.Yang Yunqing and Chen Yong‚ IMG_377The generalized Q-S synchronization between the generalized Lorenz canonical form and the Rossler system.pdf‚ Chaos. Soliton. Fract. 39 (2009) 2378–2385.

7.Yang Yunqing and Chen Yong‚ IMG_378Chaos in the Fractional Order Generalized Lorenz Canonical Form.pdf‚ Chin. Phys. Lett. 26 (2009) 100501.

8. 张焕萍陈勇李彪‚ 2+1 维广义Calogero-Bogoyavlenskii-schiff方程的无穷多对称及其约化‚ 物理学报‚ 11 (2009) 58.

9.Zhang Huanping‚ Li Biao and Chen Yong‚ IMG_379Finite symmetry transformation groups and exact solutions of Konopelchenko–Dubrovsky equation.pdf‚ Commun. Theor. Phys. 52 (2009) 479-482.

10.Li Yin‚ Li Biao and Chen Yong‚IMG_380Anticipated function synchronization with unknown parameters of discrete-time chaotic systems.pdf‚ Int. J. Mod. Phys. C 20(4) (2009) 597-608.

11.Li Yin‚ Li Biao and Chen Yong‚ IMG_381Adaptive Function projective synchronization of discrete-time chaotic systems.pdf‚ Chin. Phys. Lett. 26(4) (2009) 040504.

12.Li Yin‚ Chen Yong and Li Biao‚ IMG_382Adaptive control and Function projective synchronization in 2D-discrete time chaotic systems.pdf‚ Commun. Theor. Phys. 51(02) (2009) 270-278.

13.An Hongli and ChenYong‚ IMG_383The Function cascade synchronization scheme for discrete-time hyperchaotic systems.pdf‚ Commun. Nonlinear. Sci. Numer. Simulat. 14 (2009) 1494–1501.

14.Chen Yong and Li Xin‚ IMG_384Function projective synchronization in discrete-time chaotic system with uncertain parameters.pdf‚ Commun. Theor. Phys. 51(2009) 470–474.

15.Li Biao‚ Li Yuqi and Chen Yong‚ IMG_385Finite symmetry transformation groups and some exact solutions to (2+1)-dimensional cubic nonlinear schrödinger equantion.pdf‚ Commun. Theor. Phys. 51 (2009) 773-776.

16.Liu Yanming and Chen Yong‚ IMG_386Adomian decomposition method and padé approximants for nonlinear differential-difference equations.pdf‚ Commun. Theor. Phys. 51 (2009) 581-587.

17.Li Xin and Chen Yong‚ IMG_387Stabilizing of two-dimensional discrete Lorenz chaotic system and three dimensional discrete rossler hyperchaotic system.pdf‚ Chin. Phys. Lett. 26 (2009) 090503.

18.Lü Changcheng and Chen Yong‚IMG_388Symmetry and exact solutions of (2+1)-dimensional generalized Sasa–Satsuma equation via a modified direct method.pdf‚ Commun. Theor. Phys. 51 (2009) 973-978.

19.Wan Wentao and Chen Yong‚ IMG_389A note on nonclassical symmetries of a class of nonlinear partial differential equations and compatibility.pdf‚ Commun. Theor. Phys. 52 (2009) 398-402.

20.Yang Pei‚ Chen Yong and Li Zhibin‚ IMG_390ADM-Padé technique for the nonlinear lattice equations.pdf‚ Appl. Math. Comp. 210 (2009) 362–375.


2008

1.    Chen Yong and An Hongli‚ IMG_391Numerical solutions of a new type of fractional coupled nonlinear equations.pdf‚ Commun. Theor. Phys. 49 (2008) 839-844.

2.    Chen Yong and An Hongli‚ IMG_392Homotopy perturbation method for a type of nonlinear coupled equations with parameters derivative.pdf‚ Appl. Math.Comput. 204 (2008) 764-772.

3.    Chen Yong and An Hongli‚ IMG_393Numerical solutions of coupled Burgers equations with time- and space-fractional derivatives.pdf‚ Appl. Math. Comput. 200 (2008) 87-95.

4.    An Hongli‚ Li Yongzhi and Chen Yong‚ IMG_394Numerical complexiton solutions of complex KdV equation.pdf. Commun. Theor. Phys. 50 (2008) 568-574.

5.    An Hongli and Chen Yong‚ IMG_395Numerical complexiton solutions for the complex KdV equation by the homotopy perturbation method.pdf‚ Appl. Math.Comput. 203 (2008) 125-133.

6.    Hu Xiaorui and Chen Yong‚ IMG_396Similarity Reductions of Nonisospectral KP Equation by a Direct Method.pdf‚ Commun. Theor. Phys. 50 (2008) 1055-1060.

7.    Hu Xiaorui and Chen Yong‚ IMG_397Binary Darboux transformation for the modified Kadomtse- Petviashvili equation.pdf‚ Chin. Phys. Lett. 25 (2008) 3840-3843.

8.  Dong Zhong-zhou‚ Chen Yong and Wang Ling‚ IMG_398Similarity reductions of (2+1)-dimensional multi-component Broer Kaup system.pdf‚ Commun. Theor. Phys. 50 (2008) 803-808.

9.    An Hongli and Chen Yong‚IMG_399A function cascade synchronization method with unknown parameters and applications.pdf‚ Chin. Phys. B 1 (2008) 1674-1056.

10.    An Hongli and Chen Yong‚ IMG_400Numerical solutions of a class of nonlinear evolution equations with nonlinear term of any order.pdf‚ Commun. Theor. Phys. 49 (2008) 579-584.

11.    Jin Yiliang‚ Li Xin and Chen Yong‚ IMG_401Function projective synchronization of discrete-time chaotic and hyperchaotic systems using backstepping method.pdf‚ Commun. Theor. Phys. 50 (2008) 111-116.

12.    Li Biao‚ Ye Wangchuan and Chen Yong‚ Symmetry, full symmetry groups, and some exact solutions to a generalized Davey–Stewartson system.pdf‚ J. Math. Phys. 49 (2008) 103503.

13.    Li Biao‚ Chen Yong and Li Yuqi‚ IMG_403A generalized sub-equation expansion method and some analytical solutions to the inhomogeneous higher-order nonlinear Schrodinger equation.pdf‚ Z. Naturforsch. 63a (2008) 763-777.

14.    Li Biao‚Zhang Xiaofei‚Li Yuqi‚Chen Yong and Liu Wu Min‚ IMG_404Solitons in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic and complex potential.pdf‚ Phys. Rev. A 78 (2008) 023608.

15. Yang Pei, Chen Yong and Li Zhibin, IMG_405An Approach for Solving Short-Wave Models for Camassa–Holm Equation and Degasperis–Procesi Equation.pdf Commun. Theor. Phys. 50 (2008) 583-586.

16. Yang Pei, Chen Yong and Li Zhibin,IMG_406Adomian decomposition method and Padé approximants for solving the Blaszak–Marciniak lattice.pdf Chin. Phys. B 17 (2008) 3953-12.


2007

1.Chen Yong and Fan Engui‚ IMG_407Complexiton solutions of (2+1)-dimentional dispersive long wave equation.pdf‚ Chin. Phys. 16(1) (2007) 6-10.

2.Chen Yong and Li Xin‚ IMG_408Function projective synchronization between two different chaotic systems.pdf‚ Z. Naturforsch. 62a (2007) 29-33.

3.Chen Yong and Li Xin‚ IMG_409Function projective synchronization between two identical chaotic systems.pdf‚ Int. J. Mod. Phys. C 18(5) (2007) 883-888.

4.Li Biao and Chen Yong‚ IMG_410Symbolic computation and solitons of the nonlinear Schrödinger equation in inhomogeneous optical fiber media.pdf‚ Chaos. Soliton. Fract. 33(2) (2007) 532-539.

5.Li Xin and Chen Yong‚ IMG_411Generalized projective Synchronization between Rossler system and new unified chaotic system.pdf‚ Commun. Thero. Phys. 48 (2007) 132-136.

6.Wang Qi and Chen Yong‚ IMG_412Symbolic computation of exact solutions expressible in rational formal hyperbolic and elliptic functions for nonlinear partial differential equations.pdf‚ Chaos. Soliton. Fract. 31(2) (2007) 500-513.

7.Li Yuqi‚ Chen Yong and Li Biao‚IMG_413Conservation laws of discrete Lax equations.pdf. J. Phys. A: Math. Thero. 40 (2007) 3425-3440.

8.Li Xin and Chen Yong‚  IMG_415Function projective synchronization of two identical new hyperchaotic systems.pdf‚ Commun. Theor. Phys. 48 (2007) 864–870.

9.Guo Weiming‚ Li Biao‚ Chen Yong‚IMG_416An extended subequation rational expansion method and solutions of (2+1)-dimensional cubic nonlinear schrodinger equation.pdf‚ Commun. Theor. Phys. 48 (2007) 987–992.

11.Li Xin and Chen Yong‚ IMG_417Function projective synchronization and its applications.pdf‚ J. Latex Class Files‚ 6(1) (2007) 1-4.

12.Chen Yong‚ Li Biao and Zheng Yu‚IMG_418Exact analytical solutions in bose einstein condensates with time-dependent atomic scattering length.pdf. Commun. Theor. Phys. 47 (2007) 143–148.


2006

1.Chen Yong and Yan Zhenya‚ IMG_419The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations .pdf‚ Chaos. Soliton. Fract. 29(4) (2006) 393-398.

2.Chen Yong and Wang Qi‚ IMG_420A new elliptic equation rational expansion method and its application to the shallow long wave approximate equations .pdf‚ Appl. Math. Comput. 173(2) (2006) 1163-1182.

3.Chen Yong and Yan Zhenya‚ IMG_421Weierstrass semi-rational expansion method and new doubly periodic solutions of the generalized Hirota–Satsuma coupled KdV system .pdf‚ Appl. Math. Comput. 177(1) (2006) 85-91.

4.Chen Yong and Wang Qi‚ IMG_422A unified rational expansion method to construct a series of explicit exact solutions to nonlinear evolution equations.pdf‚ Appl. Math. Comput. 177(1) (2006) 396-409.

5.Chen Yong and Wang Qi‚ IMG_423New Complexiton Solutions of (1+1)-Dimensional Dispersive Long Wave Equation.pdf‚ Commun. Theor. Phys. 45(2) (2006) 224-230.

6.Wang Qi and Chen Yong‚ IMG_424Generalized Q–S (lag, anticipated and complete) synchronization in modified Chua’s circuit and Hindmarsh–Rose systems .pdf‚ Appl. Math. Comput. 181(1) (2006) 48-56.

7.Wang Qi and Chen Yong‚ IMG_425A multiple Riccati equations rational expansion method and novel solutions of the Broer–Kaup–Kupershmidt system .pdf‚ Chaos. Soliton. Fract. 30(1) (2006) 197-203.

8.Wang Qi‚ Chen Yong and Zhang Hongqing‚ IMG_426Generalized algebraic method and new exact traveling wave solutions for (2 + 1)-dimensional dispersive long wave equation.pdf‚ Appl. Math. Comput. 181(1) (2006) 247-255.

9.Li Biao and Chen Yong‚ IMG_427Some Exact Analytical Solutions to the Inhomogeneous Higher-Order Nonlinear Schr0dinger Equation Using Symbolic Computation.pdf‚ Z. Naturforschung A 61a (2006) 509-518.

10. 陈秀东, 陈勇, On the conjecture of a.lins, W.de Melo and C.C. Pugh, 微分方程年刊, 22(2) (2006) 144-148.


2005

1.Chen Yong‚ General method and exact solutions to a generalized variable coefficient two-dimensional KdV equation‚ Il Nuovo Cimento 120(3) (2005) 295-302.

2.Chen Yong‚ Li Biao and Zhang Hongqing‚ IMG_428Exact solutions for two nonlinear wave equations with nonlinear terms of any order.pdf‚ Commun. Nonlinear Sci. Numer. Simulat. 10(2) (2005) 133-138

3.Wang Qi‚ Chen Yong‚ Li Biao and Zhang Hongqing‚ IMG_429New Families of Rational Form Solitary Wave Solutions to (2+1)-Dimensional Broer Kaup Kupershmidt System.pdf‚ Commun. Theor. Phys. 43 (2005)769–774.

4.Chen Yong and Li Biao‚ IMG_430The stochastic soliton-like solutions of stochastic mKdV equations.pdf‚ Czech. J. Phys. 55 (2005)1-8.

5.Chen Yong and Yan Zhenya‚ IMG_431New Compacton-Like and Solitary Pattern-Like Solutions of (2+1)-Dimensional Generalization of Modified KdV Equation.pdf‚ Commun. Theor. Phys. 44 (2005) 789–792.

6.Chen Yong‚ IMG_432A new general algebraic method with symbolic computation to construct new traveling solution for the (1+1)-Dimensional dispersive long wave Equation.pdf‚ Int. J. Mod. Phys. C 16(7) (2005) 1107-1119.

7.Chen Yong and Wang Qi‚ IMG_433A new general algebraic method with symbolic computation to construct new doubly-periodic solutions of the (2 + 1)-dimensional dispersive long wave equation.pdf‚ Appl. Math. Comput. 167 (2005) 919-929.

8.Chen Yong and Wang Qi‚ IMG_434A series of new soliton-like solutions and double-like periodic solutions of a (2 + 1)-dimensional dispersive long wave equation.pdf‚ Chaos. Soliton. Fract. 23 (2005) 801-807.

9.Chen Yong‚ Wang Q and Li Biao‚ IMG_435The stochastic soliton-like solutions of stochastic KdV equations.pdf‚ Chaos. Soliton. Fract. 23 (2005) 1465-1473.

10.Chen Yong and Wang Qi‚ IMG_436A New Riccati Equation Rational Expansion Method and Its Application.pdf‚ Z. Naturforsch. 60a (2005) 1-6 .

11.Chen Yong and Wang Qi‚ IMG_437A new general algebraic method with symbolic computation to construct new traveling solution for the (1+1)-Dimensional dispersive long wave Equation.pdf‚ Inter. J. Mod. Phys. C 16(7) (2005) 1107-1119.

12.Chen Yong and Wang Qi‚ IMG_438Uniformly constructing a series of nonlinear wave and coefficient functions' soliton solutions and double periodic solutions for the (2 + 1)-dimensional Broer-Kaup-Kupershmidt equat.pdf‚ Z. Naturforsch. 60a (2005) 1-12.

13.Chen Yong and Li Biao‚ IMG_439The stochastic soliton-like solutions of stochastic mKdV equations.pdf‚ Czechoslovak J. Phys. 55 (2005) 1-10.

14.Li Biao‚ Chen Yong and Zhang Hongqing‚ IMG_440Soliton-like solutions and periodic form solutions for two variable-coefficient evolution equations using symbolic computation.pdf‚ Acta Mechanica. 174 (2005) 77-89.

15.Wang Qi‚ Chen Yong and Zhang Hongqing‚ IMG_441A new Jacobi elliptic function rational expansion method and its application to (1+ 1)-dimensional dispersive long wave equation.pdf‚ Chaos. Soliton. Fract. 23 (2005) 477-483.

16.Wang Qi‚ Chen Yong and Zhang Hongqing‚ IMG_442A new Riccati equation rational expansion method and its application to (2 + 1)-dimensional Burgers equation.pdf‚ Chaos. Soliton. Fract. 25 (2005) 1019-1028.

17.Wang Qi‚ Chen Yong‚ Li Biao and Zhang Hongqing‚ IMG_443New exact travelling wave solutions for the shallow long wave approximate equations.pdf‚ Appl. Math. Comput. 160 (2005) 77-88.

18.Wang Qi‚ Chen Yong and Zhang Hongqing‚IMG_444Rational form solitary wave solutions and doubly periodic wave solutions to (1+1)-dimensional dispersive long wave equation.pdf ‚ Commun. Theor. Phys. 43 (2005) 769-774..

19.Wang Qi‚ Chen Yong‚ Li Biao and Zhang Hongqing‚ IMG_445An extended Jacobi elliptic function rational expansion method and its application to (2+1)-dimensional dispersive long wave equation.pdf‚ Phys. Lett. A 340 (2005) 411-426

20..Li Biao and Chen Yong‚IMG_446A truncated Painlevé expansion and exact analytical solutions for the nonlinear schrödinger equation with variable coefficients.pdf‚ Z. Naturforsch. 60a (2005)768-774.

21.Chen Yong‚ Wang Qi and Li Biao‚ IMG_447Elliptic equation rational expansion method and new exact travelling solutions for Whitham–Broer–Kaup equations.pdf‚ Chaos. Soliton. Fract. 26 (1) (2005) 231-246.

22.Chen Yong and Wang Qi‚ IMG_448Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic function solutions to (1 + 1)-dimensional dispersive long wave equation.pdf‚ Chaos. Soliton. Fract. 24 (3) (2005) 745-757.


2004

1.Chen Yong‚ Zheng Yu and Zhang Hongqing‚ IMG_449The Hamiltonian equations in some mathematics and physics problems.pdf‚ Appl. Math. Mech. 24(1) (2004) 22-27.

2.Chen Yong and Li Biao‚ IMG_450General projective Riccati equation method and exact solutions for generalized KdV-type and KdV–Burgers-type equations with nonlinear terms of any order.pdf‚ Chaos. Soliton. Fracta. 19 (2004) 977-984.

3.Chen Yong‚ Wang Qi and Li Biao‚ IMG_451A generalized method and general form solutions to the Whitham–Broer–Kaup equation.pdf‚ Chaos. Soliton. Fract. 22(3) (2004) 675-682.

4.Chen Yong‚ Zheng Xue D‚ Li Biao and Zhang Hongqing‚ IMG_452New exact solutions for some nonlinear differential equations using symbolic computation.pdf‚ Appl. Math. Comput. 149(1) (2004) 277-298.

5.Chen Yong‚ Li Biao and Zhang Hongqing‚ IMG_453New exact solutions for modified nonlinear dispersive equations mK(m‚ n) in higher dimensions spaces.PDF‚ Math. Comput. Simulat. 64(5) (2004) 549-559.

6.Chen Yong and Li Biao‚ IMG_454Symbolic computation and construction of soliton-like solutions to the (2+1)-dimensional dispersive long-wave equations.PDF‚ Int. J. Eng. Sci. 42(7) (2004) 715-724.

7.Chen Yong and Li Biao‚ IMG_455Travelling wave solutions for generalized symmetric regularized long-wave equations with high-order nonlinear terms.pdf‚ Chin. Phys. 13(3) (2004) 302-306.

8.Chen Yong‚ Li Biao and Zhang Hongqing‚ IMG_456Extended Jacobi elliptic function method and its applications to (2+1)-dimensional dispeersive long-wave equation.pdf‚ Chin. Phys. 13(1) (2004) 5-10.

9.Chen Yong and Wang Qi‚ IMG_457A series of new double periodic solutions to a (2+1)-dimensional asymmetric Nizhnik–Novikov–Veselov equation.pdf. Chin. Phys. 13(11) (2004) 1796-1800.

10.Chen Yong and Li Biao‚ IMG_458New Exact Travelling Wave Solutions for Generalized Zakharov Kuzentsov Equations Using General Projective Riccati Equation Method.pdf‚ Commun. Theor. Phys. 41(1) (2004) 1-6.

11.Chen Yong and Wang Qi‚ IMG_459Constructing families of traveling wave solutions in terms of special function for the asymmetric Nizhnik-Novikov-Vesselov equation.pdf. Commun. Theor. Phys. 42 (2004) 329-334

12.Chen Yong‚ Wang Qi and Li Biao‚ IMG_460A Series of Soliton-like and Double-like Periodic Solutions of a (2+1)-Dimensional Asymmetric Nizhnik-Novikov-Vesselov Equation.pdf‚ Commun. Theor. Phys. 42(15)(2004)655-660

13.Chen Yong and Li Biao‚ Symbolic computation and new travelling wave solutions for fifth-order nonlinear dispersive fK(m‚ n) equations. IL Nuovo Cimento. B 119(03) (2004) 227-237.

14.Chen Yong‚ Li Biao and Zhang Hongqing‚ IMG_461Explicit exact solutions for a new generalized Hamiltonian amplitude equation with nonlinear terms of any order.pdf‚ Z. angew. Math. Phys. 55 (2004) 983–993.

15.Chen Yong and Wang Qi‚ IMG_462Constructing families of traveling wave solutions in terms of special function for the asymmetric Nizhnik-Novikov-Vesselov equation.pdf‚ Int. J. Mod. Phys. C. 15(4) (2004) 595-606.

16.Chen Yong‚ Wang Qi and Li Biao‚ Jacobi elliptic function Rational expansion method with symbolic computation to construct new doubly- periodic solutions of nonlinear evolution equations. Z. Naturforsch. A. 59a (2004) 529-536.

17.Li Biao and Chen Yong‚ IMG_463On exact solutions of the nonlinear Schrodinger equations in optical fiber.pdf‚ Chaos. Soliton. Fract. 21(1) (2004) 241-247.

18.Li Biao‚ Chen Yong and Zhang Hongqing‚ IMG_464Auto-Backlund transformations and exact solutions for some nonlinear partial differential equations with nonlinear terms of any order.pdf‚Czech. J. Phys. 54(2) (2004) 167-176.

19.Li Biao and Chen Yong‚ IMG_465Exact analytical solutions of the generalized Calogero-Bogoyavlenskii-Schiff equation using symbolic computation.pdf‚ Czech. J. Phys. 54 (5) (2004) 517-528.

20.Li Biao‚ Chen Yong‚ Xuan Hengnong and Zhang Hongqing‚ IMG_466Generalized Riccati equation expansion method and its application to the (3 + 1)-dimensional Jumbo–Miwa equation.pdf‚ Appl. Math. Comput. 152(2) (2004) 581-595.

21.Wang Qi‚ Chen Yong and Zhang Hongqing‚ IMG_467New exact traveling wave solutions to Hirota equation and (1+1)-dimensional dispersive long wave equation.pdf‚ Commun. Theor. Phys. 41(16) (2004) 821-828.

22.Chen Yong and Wang Qi‚ An algebraic method for constructing the solitary wave solutions of the (2+1)-dimensional Burgers equation‚ Il Nuovo Cimento‚ Sect. B 119 (10) (2004) 989-999.


2003

1.Chen Yong‚ Li Biao and Zhang Hongqing‚ Backlund transformation and exact solutions for a new generalized Zakhorov-Kuznetsov equation‚ Commun. Theor. Phys. 39 (2003) 135-140.

2. ChenYong, Yan Zhenya and Zhang Hongqing, IMG_468Applications of fractional exteri or differential in three dimensional space.pdf, Appl. Math. Mech. 24 (3) (2003) 256-260.

3.ChenYong, Li Biao and Zhang Hongqing, IMG_469Exact travelling solutions for some nonlinear evolution equations with nonlinear terms of any order.pdf, Inter. J. Mod. Phys. C14 (1) (2003) 99-112.

4.ChenYong, Li Biao and Zhang Hongqing, Generalized Riccati equation expansion method and its application to the (2+1)-dimensional Boussinesq equation, Inter. J. Mod. Phys. C14 (4) (2003) 471-482.

5.Chen Yong and Zheng Yu, IMG_470Generalized extended Tanh-function method to construct new explicit exact solutions for the approximate equations for long water waves.pdf, Inter. J. Mod. Phys. C14 (5) (2003) 601-611.

6.Chen Yong, Yan Zhenya, Li Biao and Zhang Hongqing,IMG_471New explicit exact solutions for a generalized Hirota-Satsuma coupled KdV system and a coupled mKdV Equation.pdf, Chin. Phys. 12 (1) (2003) 1-10.

7.Chen Yong, Li Biao and Zhang Hongqing, IMG_472Generalized Riccati equation expansion method and its application to the Bogoyavlenskiis generalized breaking soliton equation.pdf, Chin. Phys. 12 (9) (2003) 940-945.

8.Chen Yong, Li Biao and Zhang Hongqing, IMG_473Exact solutions for a new class of nonlinear evolution equations with nonlinear term of any order.pdf, Chaos. Soliton. Fracta. 17 (2003) 675-682.

9.Chen Yong, Li Biao and Zhang Hongqing, IMG_474Auto-Backlund transformation and exact solutions for modified nonlinear dispersive mK(m,n) equations.pdf, Chaos. Soliton. Fracta. 17 (2003) 693-698.

10.Chen Yong, Yan Zhenya and Zhang Hongqing, IMG_475New explicit solitary wave solutions for (2+1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation.pdf, Phys. Lett. A 307 (2003) 107-113.

11.Li Biao, Chen Yong and Zhang Hongqing, Explicit exact solutions for compound KdV-type and compoud KdV-Burgers-type equations with nonlinear terms of any order, Chaos. Soliton. Fracta. 15 (2003) 647-654.

12.Li Biao, Chen Yong and Zhang Hongqing, IMG_476Explicit exact solutions for some nonlinear partial differential equations with nonlinear terms of any order.pdf, Czech. J. Phys. 53(4) (2003) 283-295.

13.Li Biao, Chen Yong, Xuan Hengnong and Zhang Hongqing, IMG_477Symbolic computation and construction of soliton-like solutions for a breaking soliton equation.pdf, Chaos. Soliton. Fracta. 17(5) (2003) 885-893.

14.Li Biao, Chen Yong and Zhang Hongqing, IMG_478Auto-Backlund transformations and exact solutions for the generalized two-dimensional Korteweg-de Vries Burgers type equations and Burgers-type equations.pdf, Z. Naturforsch. A 58 (2003) 464-472.

15.Li Biao and Chen Yong, IMG_479Nonlinear partial differential equations solved by projective Riccati equations ansatz.pdf, Z. Naturforsch. A 58 (2003) 511-519.

16.Li Biao, Chen Yong and Zhang Hongqing, Exact traveling wave solutions for a generalized Zakharov-Kuznetsov equation, Appl. Math. Comput.146(2-3) (2003) 653-666.

17.Zheng Xuedong, Chen Yong and Zhang Hongqing, IMG_480Generalized extended tanh-function methods and its application to (1+1)-dimensional dispersive long wave equation.pdf, Phys. Lett. A 311 (2003) 145-157.

18.Zheng Xuedong, Chen Yong , Li Biao and Zhang Hongqing, IMG_481A new generalization of extended tanh-function method for solving nonlinear evolution equations.pdf, Commun. Theor. Phys. 39 (2003) 647-652.

19.Xie Fuding and Chen Yong, IMG_482An algorithmic method in Painleve analysis of PDE.pdf,Comput. Phys. Commun. 154 (2003) 197–204 .

20.Chen Yong and Li Biao, Soliton-like solutions for a (2+1)-dimensional nonintegrable KdV equation and a variable-coefficient KdV equation. IL Nuovo Cimento. B 118 (08) (2003) 767-776.

21.Chen Yong, Li Biao and Zhang Hongqing, Symbolic computation and construction of soliton-like Solutions to the (2+1)-dimensional breaking soliton equation, Commun. Theor. Phys. 40 (2003) 137–142.

22.陈秀东,陈勇,Lienard方程至多存在n个极限环的充分条件,数学研究与评论, 23(2) (2003) 333-338.


2002.

1.Chen Yong, Yan Zhenya and Zhang Hongqing, IMG_483Exact solutions for a family of variable-coefficient Reaction-Duffing equations via the Backlund transformation.pdf, Theor. Math. Phys. 132(1) (2002) 970-975.

2.Chen Yong, Yan Zhenya, Li Biao and Zhang Hongqing, IMG_484New explicit solitary wave solutions and periodic wave solutions for the generalized coupled Hirota-Satsuma KdV System.pdf, Commun. Theor. Phys. 38 (2002) 261-262.

3.Li Biao, Chen Yong and Zhang Hongqing, IMG_485Explicit exact solutions for new general two-dimensional KdV-type and two-dimensional KdV-Burgers-type equations with nonlinear terms of any order.pdf, J. Phys. A: Math. Gen. 35 (2002) 8253-8265.

4.Li Biao, Chen Yong and Zhang Hongqing, IMG_486Auto-Backlund transformation and exact solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order.pdf, Phys. Lett. A 305(6) (2002) 377-382.

5.Li Biao, Chen Yong and Zhang Hongqing, IMG_487Travelling wave solutions for generalized Pochhammer-Chree equations.pdf, Z. Naturforsch. A 57 (2002) 874-882.

6.Zheng Yu and Chen Yong, IMG_488Ordered analytic representation of PDEs by Hamiltonian canonical system.pdf, Appl. Math. J. Chin. Univ. Ser. B 17(2) (2002) 177-182.

7.Chen Yong, Chen Xiudong, On Lins, A., W. de Melo and Pugh C.C.’s Conjecture (Part II), J. Math. Research & Exposition, 22(3) (2002) 368-370.

8.  陈勇, 陈秀东IMG_489关于Lins_A._W.de+MeloPugh+C.C.的猜想(Ⅱ)(英文).pdf数学研究与评论, 22(3)  (2002 )368-370. 


























荣誉及奖励