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Abstract The solving of the derivative nonlinear
Schrodinger equation (DNLS) has attracted consider-
able attention in theoretical analysis and physical appli-
cations. Based on the physics-informed neural network
(PINN) which has been put forward to uncover dynam-
ical behaviors of nonlinear partial different equation
from spatiotemporal data directly, an improved PINN
method with neuron-wise locally adaptive activation
function is presented to derive localized wave solu-
tions of the DNLS in complex space. In order to com-
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pare the performance of above two methods, we reveal
the dynamical behaviors and error analysis for local-
ized wave solutions which include one-rational soliton
solution, genuine rational soliton solutions and rogue
wave solution of the DNLS by employing two meth-
ods, and also exhibit vivid diagrams and detailed anal-
ysis. The numerical results demonstrate the improved
method has faster convergence and better simulation
effect. On the basis of the improved method, the effects
for different numbers of initial points sampled, resid-
ual collocation points sampled, network layers, neurons
per hidden layer on the second-order genuine rational
soliton solution dynamics of the DNLS are considered,
and the relevant analysis when the locally adaptive acti-
vation function chooses different initial values of scal-
able parameters is also exhibited in the simulation of
the two-order rogue wave solution.

Keywords Derivative nonlinear Schrodinger equa-
tion - Improved PINN method - Locally adaptive
activation function - Rogue wave solution - Gen-
uine rational soliton solutions - One-rational soliton
solution

1 Introduction

The derivative nonlinear Schrédinger equation (DNLS)

iqr + dxx +i(47¢")x =0, (1)
plays a significant role in both the integrable system
theory and many physical applications, especially in
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space plasma physics and nonlinear optics [1,2]. Here,
qg = q(x,t) are complex-valued solutions, the super-
script “+” denotes complex conjugation, and the sub-
scripts x and t denote the partial derivatives with respect
to x and ¢, respectively. In recent decades, many schol-
ars have invested a lot of time and energy to study vari-
ous mathematical and physical problems of the DNLS.
In 1976, Mio et al. derived the DNLS of Alfven waves
in plasma for the first time, and it well describes the
propagation of small amplitude nonlinear Alfven waves
in low-g plasma [3]. In nonlinear optics, the modified
nonlinear Schrodinger equation, which is gauge equiv-
alent to the DNLS, is derived in the theory of ultrashort
femtosecond nonlinear pulse in optical fiber [4]. In
addition, the filamentation of lower-hybrid waves can
be simulated by the DNLS which governs the asymp-
totic state of the filamentation, and it admits moving
solitary envelope solutions for the electric field [5].
Ichikawa and co-workers obtained the peculiar struc-
ture of spiky modulation of amplitude and phase, which
is arisen from the derivative nonlinear coupling term
[6]. For decades, some classical solutions and impor-
tant results of the DNLS have been derived with the help
of different approaches. Kaup and Newell proved the
integrability of the DNLS in the sense of inverse scat-
tering method in 1978 [1]. Nakamura and Chen con-
structed the first N-soliton formula of the DNLS with
the help of the Hirota bilinear transformation method
[7]. Furthermore, based on Darboux transform tech-
nique, Huang and Chen established the determinant
form of N-soliton formula [8]. Kamchatnov and coop-
erators not only proposed a method for finding periodic
solutions of several integrable evolution equations and
applied it to the DNLS, but also dealt with the for-
mation of solitons on the sharp front of optical pulse
in an optical fiber according to the DNLS [9,10]. The
Cauchy problem of the DNLS has been discussed by
Hayashi and Ozawa [11]. The compact N-soliton for-
mulae with both asymptotically vanishing and nonva-
nishing amplitudes were obtained by iterating Bick-
lund transformation of the DNLS [12]. Recently, more
abundant solutions and new physical phenomena of the
DNLS are revealed by various methods [13—19].

In recent years, due to the explosive growth of
available data and computing resources, neural net-
works(NNs) have been successfully applied in diverse
fields, such as recommendation system, speech recog-
nition, mathematical physics, computer vision and pat-
tern recognition [20-24]. Particularly, a PINN has been
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proved to be particularly suitable for solving and invers-
ing equations which have been controlled mathematical
physical systems on the basis of NNs, and found that
the high-dimensional network tasks can be completed
with less datasets [25,26]. The PINN method can not
only accurately solve both forward problems, where
the approximate solutions of governing equations are
obtained, but also precisely deal with the highly ill-
posed inverse problems, where parameters involved in
the governing equation are inferred from the training
data. Based on the abundant solutions and integrabil-
ity of the integrable systems [27-29], we have sim-
ulated the one- and two-order rogue wave solutions
of the integrable nonlinear Schrodinger equation by
employing the deep learning method with physical con-
straints [30]. The slow convergence performance leads
to the increase of training time and higher performance
requirements of experimental equipment, so it is essen-
tial to accelerate the convergence of the network with-
out sacrificing the performance. Meanwhile, the origi-
nal PINN method could not accurately reconstruct the
complex solutions in some complicated equations. It
is crucial to design a higher efficient and more adapt-
able deep learning algorithm to not only improve the
accuracy of the simulated solution but also reduce the
training cost.

As is known to all, a significant feature of NNs is
the activation function, which determines the activa-
tion of specific neurons and the stability of network
performance in the training process. There is just a rule
of thumb for the choice of activation function, which
depends entirely on the problem at hand. In the PINN
algorithm, many activation functions such as the sig-
moid function, tanh and sin are used to solve various
problems, refer to [25,31] for details. Recently, a vari-
ety of research methods for activation functions have
been proposed to optimize convergence performance
and raise the training speed. Dushkoff and Ptucha
proposed multiple activation functions of per neuron,
in which individual neuron chooses between multiple
activation functions [32]. Li et al. proposed a tunable
activation function while only one hidden layer is used
[33]. The authors focused on learning activation func-
tions in convolutional NNs by combining basic acti-
vation functions in a data-driven way [34]. Jagtap and
collaborators employed adaptive activation functions
for regression in PINN to approximate smooth and dis-
continuous functions as well as solutions of linear and
nonlinear partial differential equations, and introduced
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a scalable parameters in the activation function, which
can be optimized to achieve best performance of the
network as it changes dynamically the topology of the
loss function involved in the optimization process [35].
The adaptive activation function has better learning
capabilities than the traditional fixed activation as it
improves greatly the convergence rate, especially dur-
ing early training, as well as the solution accuracy.

In particular, Jagtap et al. presented two different
kinds of locally adaptive activation functions, namely
layer-wise and neuron-wise locally adaptive activation
functions [36]. Compared with global adaptive acti-
vation functions [35], the locally adaptive activation
functions further improve the training speed and perfor-
mance of NNs. Furthermore, in order to further speed
up the training process, a slope recovery term based on
activation slope has been added to the loss function of
layer-wise and neuron-wise locally adaptive activation
functions to improve the performance of NN. Recently,
we focus on studying abundant solutions of integrable
equations [22,26,30,31] due to they have better integra-
bility such as Painlevé integrability, Lax integrability
and Liouville integrability [37-39]. Significantly, the
DNLS has been pointed out that it satisfy important
integrability properties, and many types of localized
wave solutions have been obtained by various effective
methods [1-4,8]. We extend the PINN based on locally
adaptive activation function with slope recovery term
which proposed by Jagtap and cooperator [36] to solve
the nonlinear integrable equation in complex space, and
construct the localized wave solutions which consist of
the rational soliton solutions and rogue wave solution
of the integrable DNLS. Meanwhile, we also demon-
strate the relevant results that contain the rational soli-
ton solutions and rogue wave solution by exploiting the
PINN, which are convenient for comparative analysis.
The performance comparison between the improved
PINN method with locally adaptive activation func-
tions and the PINN method is made in detail.

This paper is organized as follows. In Sect. 2, we
introduce briefly discussions of the original PINN
method and improved PINN method with locally adap-
tive activation function, where also discuss about train-
ing data, loss function, optimization method and the
operating environment. In Sect. 3, the one-rational soli-
ton solution and the first-order genuine rational soli-
ton solution of the DNLS are obtained by two distinct
PINN approaches. Section 4 provides the second-order
genuine rational solution and two-order rogue wave

solution for the DNLS, and the relative IL, errors of
simulating the second-order genuine rational solution
of the DNLS with different numbers of initial points
sampled, residual collocation points sampled, network
layers and neurons per hidden layer are also given in
detail. Moreover, the effects of the initial values of scal-
able parameters on the two-order rogue wave solution
are shown. Conclusion is given in the last section.

2 Methodology

Here, we will consider the general (1+1)-dimensional
nonlinear time-dependent integrable equations in com-
plex space, where each contains a dissipative term as
well as other partial derivatives, such as nonlinear terms
or dispersive terms, as follows

QI+N(Q7QxanX7Qxxx,~-)=0a ()

where g are complex-valued solutions of x and ¢ to be
determined later, and V is a nonlinear functional of the
solution ¢ and its derivatives of arbitrary orders with
respect to x. Due to the complexity of the structure of
the solution g (x, t) of Eq. (2), we decompose g (x, t)
into the real part u(x, t) and the imaginary part v(x, t),
i.e.q = u+iv.Itis obvious thatu(x, t) and v(x, t) are
real-valued functions. Then substituting into Eq. (2),
we have

ut+Nu(u7 U, Uyx, Uyxy,...) =0, 3)
UI+NU(U7 Ux, Uxxs Uxxxs - --) =0, 4)

where A, and N, are nonlinear functionals of the
corresponding solution and its derivatives of arbitrary
orders with respect to x, respectively. In this section,
we will briefly introduce the original PINN method and
its improved version, respectively.

2.1 The PINN method

Here, we first construct a simple multilayer feedfor-
ward NN with depth D which contains an input layer,
D — 1 hidden layers and an output layer. Without loss of
generality, we assume that there are N; neurons in the
d'" hidden layer. Then, the 4" hidden layer receives the
post-activation output xY~! € RN¢-1 of the previous
layer as its input, and the specific affine transformation
is of the form

Lox'1) 2 Wix™! e, ©)
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where the network weight W¢ e RNe*Ni-1 and the
bias term b? € RM to be learned are initialized using
some special strategies, such as Xavier initialization or
He initialization [40,41].

The nonlinear activation function o (-) is applied
component-wise to the affine output £, of the present
layer. In addition, this nonlinear activation is not
applied in the output layer for some regression prob-
lems, or equivalently, we can say that the identity acti-
vation is used in the output layer. Therefore, the NN
can be represented as

qx;0)=(LpoogoLp_jo---o00L])(x), (6)

where the operator “o”

O = {Wd bd} 4—1 € P represents the learnable
parameters to be optimized later in the network, and
P is the parameter space, and ¢ and x’ = x are the
output and input of the network, respectively.

The universal approximation property of the NN and
the idea of physical constraints play key roles in the
PINN method. Thus, based on the PINN method [25],
we can approximate the potential complex-valued solu-
tion g(x, t) of nonlinear integrable equations using a
NN. Then, the underlying laws of physics described
by the governing equations are embedded into the net-
work. By the aid of automatic differentiation (AD)
mechanism in deep learning [42], we can automatically
and conveniently obtain the derivatives of the solution
with respect to its inputs, i.e., the time and space coordi-
nates. Compared with the traditional numerical differ-
entiation methods, AD is a mesh-free method and does
not suffer from some common errors, such as the trun-
cation errors and round-off errors. To a certain extent,
this AD technique enables us to open the black box
of the NN. In addition, the physics constraints can be
regarded as a regularization mechanism that allows us
to accurately recover the solution using a relatively sim-
ple feedforward network and remarkably few amounts
of data. Moreover, the underlying physical laws intro-
duce part interpretability into the NN.

Specifically, we define the residual networks f;, (x, t)
and fy(x, t), which are given by the left-hand side of
Egs. (3) and (4), respectively

fu = ut+Nu(u,uxauxx’uxxx,-'-)’ (7)
foi= UI+NU(U» Uxy Uxxs Uxxxs -+ +)- 3)
Then the solution g (x, f) will be trained to satisfy

these two physical constraint conditions (7) and (8),
which play a vital role of regularization and have been

is the composition operator,
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embedded into the mean-squared objective function,
that is, the loss function

Lossg = Loss, + Loss, + Lossz, + Lossy,, )
where
Loss, = —Z|u(xu, M) —u |2 Loss,
i=1
Ny
= —Dv(x,,, D= (10)
and
Ny
Loss, =—Z|fu(xf rf)| Loss,
Nf
= —va(xf P (1)

Here {x}, 7\, u }Nz"1 and {xI, 1}, v }lN:"1 denote the
initial and boundary value data of ¢ (x, ¢). Similarly, the
collocatlon points for f;, (x t)and fy(x, t) are specified
by {x7, J’;u }N and {x7 , t';'-v }j . The loss function
(9) consists of the initial boundary value data and the
structure imposed by Egs. (7) and (8) at a finite set
of collocation points. Specifically, the first and second
terms on the right-hand side of Eq. (9) attempt to fit
the solution data, and the third and fourth terms on the
right-hand side learn to discover the real solution space.

2.2 The improved PINN method

The original PINN method could not accurately recon-
struct complex solutions in some complicated nonlin-
ear integrable equations. Thus, we present an improved
PINN method (IPINN) where a locally adaptive acti-
vation function technique is introduced into the orig-
inal PINN method. It changes the slope of the acti-
vation function adaptively, resulting in nonvanishing
gradients and faster training of the network. There are
several kinds of locally adaptive activation functions,
for example, layer-wise and neuron-wise. In this paper,
we only consider the neuron-wise version due to some
accuracy and performance requirements. Specifically,
we first define such activation function as

o (naf (£a (x1)) ).

d=12,...,D—-1, i=1,2,...,Ng,
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where n > 1 is a scaling factor and {aid} are additional
) f:_ll N, parameters to be optimized. Note that, there
is a critical scaling factor n, above which the optimiza-
tion algorithm will become sensitive in each problem
set. The neuron activation function acts as a vector acti-
vation function in each hidden layer, and each neuron
has its own slope of activation function.

Based on Eq. (6), the new NN with neuron-wise
locally adaptive activation function can be represented
as

q(x; 0) = (ED oo onal’!

(Lp-1); 000 onal (L1);) ®), (12)

where the set of trainable parameters @ € P consists
o_f{Wd,bd}fl):l and {a?}” ' Vi = 1,2, ..., Ny, and
P is the parameter space. In this method, the initializa-
tion of scalable parameters is carried out in the case of
naid =1,Vn > 1.

The resulting optimization algorithm will attempt to
find the optimized parameters including the weights,
biases, and additional coefficients in the activation to
minimize the new loss function defined as

Lossg = Loss, + Loss, + Loss s, + Loss s, + Los{43)

where Loss,, Loss,, Loss s, and Loss 7, are defined by
Egs. (10)—(11). The last slope recovery term Lossg in
the loss function (13) is defined as

1
Na a4
oty o e (25

This term Lossg forces the NN to increase the acti-
vation slope value quickly, which ensures the nonvan-
ishing of the gradient of the loss function and improves
the network’s training speed. Compared with the PINN
method in Sect. 2.1, the improved method induces a
new gradient dynamics, which results in better conver-
gence points and faster convergence rate. Jagtap et al.
stated that a gradient descent algorithm such as stochas-
tic gradient descent (SGD) minimizing the loss func-
tion (13) does not converge to a sub-optimal critical
point or a sub-optimal local minimum, for the neuron-
wise locally adaptive activation function, given certain
appropriate initialization and learning rates [36].

In both methods, all loss functions are simply opti-
mized by employing the L-BFGS algorithm, which is
a full-batch gradient descent optimization algorithm
based on a quasi-Newton method [43]. In particular,

Lossg = . (14)

the scalable parameters in the adaptive activation func-
tion are initialized generally as n = 10, al.d = 0.1,
unless otherwise specified. In addition, we select rela-
tively simple multilayer perceptrons (i.e., feedforward
NNs) with the Xavier initialization and the tanh acti-
vation function. All the codes in this article is based
on Python 3.8 and Tensorflow 1.15, and all numerical
experiments reported here are run on a DELL Precision
7920 Tower computer with 2.10 GHz 8-core Xeon Sil-
ver 4110 processor and 64 GB memory.

3 One-rational soliton solution and first-order
genuine rational soliton solution of the DNLS

In this section, two different NN methods mentioned in
the previous section are used to obtain the simulation
solution of the DNLS, and the dynamic behavior, error
analysis and related plots of the one-rational soliton
solution and first-order genuine rational soliton solu-
tion for the DNLS are listed out in detail. We consider
the DNLS along with Dirichlet boundary conditions
given by

iq + qxx +i(g%q")x = 0,x € [x0, x11,1 € [10, 111,
q(x, 19) = qo(x), (15)
q(x0. 1) = q(x1,1),

where x( and x| represent the lower and upper bound-
aries of x, respectively. Similarly, fy and #; represent
the initial and final times of ¢, respectively. The initial
condition go(x) is an arbitrary complex-valued func-
tion. The rational soliton solutions of the DNLS have
been obtained by generalized Darboux transformations
[13]. In this part, we will employ two different types
of approaches which contain the PINN and IPINN to
simulate two different forms of rational soliton solu-
tions. Compared with the known exact solutions of
the DNLS, so as to prove that the numerical solutions
q(x, t) obtained by NN models is effective. From Ref.
[13], we can derived the form about one-rational soliton
solution and first-order genuine rational soliton solu-
tion of the DNLS. The one-rational soliton solution
formulation shown as follows

2i(a2)C72T+a2c)
 4a3[4i(a®x — 41 + a%c) — atle A

1) = [4i(a%x — 4t + a?c) + a*]? - (16)

where a, ¢ are arbitrary constants, i2 = —1. There-
fore, the velocity for this one-rational soliton solution

@ Springer
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is a® /4, the center is along the line a’x — 4t 4-a’*c = 0,
and the altitude for |g(x, £)| is 16/a?.

On the other hand, the first-order genuine rational
soliton solution of the DNLS can be represented as
follows
(=2x + 6t —i)(—2x + 61 + 3i)

(—2x + 61 +1)2
which is nothing but the rational traveling wave solu-
tion with nonvanishing background. In the next two sec-
tions, we use the PINN method and the improved PINN
method to simulate the above two solutions, respec-
tively. Some necessary comparisons and analyses are
exhibited in detail.

q(x,1) = — . A7

3.1 One-rational soliton solution

In this section, based on the NN structure which con-
tains nine hidden layers, each layer has 40 neurons, and
we numerically construct one-rational soliton solution
of the DNLS via the PINN method and improved PINN
method. One can obtain the exact one-rational soliton
solution of Eq. (15) after taking a = 1, ¢ = 1 into Eq.
(16) as follows

4[4i(1 — 4t + x) — 1]e? (172140

[4i(1 — 4t 4+ x) + 117

Then we take [xo, x1] and [fp, 1] in Eq. (15) as
[—2.0,0.0] and [—0.1, 0.1], respectively. The corre-
sponding initial condition gg(x) is obtained by substi-
tuting a specific initial value into (18)
4[4i (1.4 + x) — 1] (1240

[4i(1.4 +x) + 1]?

We employ the traditional finite difference scheme
on even grids in MATLAB to simulate Eq. (15) with
the initial data (18) to acquire the training data. In
particular, the initialization of scalable parameters is
n =35, a" =0.2.Specifically, divide space [-2.0, 0.0]
into 513 points and time [—0.1, 0.1] into 401 points,
one-rational soliton solution ¢ (x, t) is discretized into
401 snapshots accordingly. We generate a smaller train-
ing dataset that containing initial boundary data by
randomly extracting N, = 100 from original dataset
and Ny = 10000 collocation points which are gen-
erated by the Latin hypercube sampling method [44].
After giving a dataset of initial and boundary points,
the latent one-rational soliton solution g (x, ¢) has been
successfully learned by tuning all learnable parame-
ters of the NN and regulating the loss function (9) and

q(x, 1) = (18)

qo(x) = (19)
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(13). The model of PINN achieves a relative L, error
of 4.345103e—02 in about 1314.1089 s, and the num-
ber of iterations is 15395. Nevertheless, the network of
IPINN achieves a relative Ly error of 1.998304e—02
in about 1358.9031 s, and the number of iterations is
10966.

InFigs. 1 and 2, the density plots, the sectional draw-
ing of the latent one-rational soliton solution g (x, t)
and the iteration number curve plots under PINN and
IPINN structures are plotted, respectively. The pictures
(a) in Figs. 1 and 2 clearly compare the exact solution
and the predicted spatiotemporal solution of the two
different methods, respectively. We particularly present
a comparison between the exact solution and the pre-
dicted solution at different times ¢+ = —0.05, 0, 0.05
in the bottom panel of (a) in Figs. 1 and 2. Obviously,
the bottom panel of picture (a) in Fig. 2 shows that
the predicted solution of DNLS equation is more con-
sistent with the exact solution than the bottom panel
of picture (a) in Fig. 1. In other words, the simulation
effect of IPINN is better than PINN. It is not hard to
see that the training loss curve of picture (b) in Fig. 2,
which revealing the relation between iteration number
and loss function, is more smooth and stable than the
curve of picture (b) in Fig. 1. In this test case, the IPINN
with slope recovery term perform better than PINN in
terms of convergence speed and accuracy of the solu-
tion.

3.2 First-order genuine rational soliton solution

In this section, we numerically construct the first-order
genuine rational soliton solution of Eq. (15) by using
the PINN and IPINN in which both contains nine hid-
den layers, each layer has 40 neurons. Now we take
[x0,x1] and [f9,#1] in Eq. (15) as [-5.0,5.0] and
[—0.8, 0.8], respectively. For instance, we consider the
initial condition of first-order genuine rational soliton
solution based on Eq. (17) is as follows

(—=2x —4.8 —i)(—2x — 4.8+ 3i)

(—2x —4.8+1i)?

With the same data generation and sampling method
in Sect. 3.1, we numerically simulate the first-order
genuine rational soliton solution of the DNLS (1) by
using the PINN and IPINN, respectively. The train-
ing dataset that composed of initial boundary data and
collocation points is produced via randomly subsam-
pling N, = 100 from the original dataset and selecting

qo(x) = — (20)
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Fig. 1 One-rational soliton solution ¢ (x, ¢) based on the PINN: a density plots and the sectional drawing; b loss curve figure
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Fig. 2 One-rational soliton solution ¢ (x, ¢) based on the IPINN: a density plots and the sectional drawing; b loss curve figure

Ny = 10000 configuration points which are generated
by LHS. After training the first-order genuine rational
soliton solution with the help of PINN, the NN achieves
arelative L error of 5.598548e—03 in about 349.5862
s, and the number of iterations is 3305. However, the
network model by using the improved PINN method
achieves a relative 1L, error of 4.969464e—03 in about
1103.1358 s, and the number of iterations is 10384.
Apparently, when simulating the first-order genuine
rational soliton solution, the IPINN has more itera-
tions, longer training time and smaller Ly error than
the PINN.

Figure 3 shows the density plots, profile and loss
curve plots of the first-order genuine rational soliton
solution by employing the PINN. Figure 4 illustrates
the density diagrams, profiles at different instants, error
dynamics diagrams, three-dimensional motion and loss
curve figure of the first-order genuine rational soliton
solution based on the IPINN. We can clearly see that
both methods can accurately simulate the first-order
genuine rational soliton solution from the (a) in Figs. 3
and 4. However, comparing the b-graph of Fig. 3 with
the d-graph of Fig. 4, we can clearly observe that the
loss function curve of the IPINN decreases faster and
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Fig. 3 First-order genuine rational soliton solution g (x, t) based on the PINN: a density plots and the sectional drawing; b loss curve

figure

smoother, while the loss function curve of PINN fluc-
tuates greatly when the number of iterations is about
1500, and the burr phenomenon is remarkable obvious
in the whole PINN training process. Furthermore, we
can also gain that the ideal effect has been achieved
when the IPINN is used for training after 2000 iter-
ations from the loss function curve in Fig. 4, so we
can artificially control the appropriate number of itera-
tions to save the training cost in some specific cases. At
t = —0.40, 0, 0.40, we reveal the profiles of the three
moments in bottom rows of (a) in Figs. 3 and 4, and find
the first-order genuine rational solution has the prop-
erty of soliton due to the amplitude does not change
with time. The (b) of Fig. 4 exhibits the error dynam-
ics of the difference value between the exact solution
and the predicted solution for the first-order genuine
rational soliton solution. In Fig. 4, the corresponding
plot of the first-order genuine rational soliton solution
is shown, and it is evident that the first-order genuine
rational soliton solution is similar to the single-soliton
solution with |g| = 1 plane wave.

4 Second-order genuine rational soliton solution
and two-order rogue wave solution of the DNLS
In this section, we will use two diverse methods

described in Sect. 2, which are consisted of PINN and
IPINN, to construct the second-order genuine rational
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soliton solution and two-order rogue wave solution of
the DNLS, respectively. The detailed results and anal-
ysis are given in the following two parts.

4.1 Second-order genuine rational soliton solution

In this section, based on the Dirichlet boundary condi-
tions Eq. (15), we will numerically predict the second-
order genuine rational soliton solution of the DNLS by
using the PINN method and improved PINN method,
separately. The second-order genuine rational soliton
solution of the DNLS has been derived in Ref. [13],
the form is as follows
LT Lo
L

qx,1) = ey

where
L1 =803t —x)> + 183t — x) + 481 + 12k +i[12(3t — x)% + 3],
Ly =83t —x)> — 3003t — x) + 48t + 12k +i[36(3t — x)* — 15],

and “x” denotes self-conjugate and k is an arbitrary
real number. The norm of solution (21) attains the maxi-

mum value five which locates at (x, t) = (— %k, — %k),

(7a—4o¢3—6k 15a—4o¢3—6k)
3 ) 24 ’

where @ = :I:\/% . The “ridge” of this soliton (21)
approximately lays on the line x = 3¢. When t —
400, above the second-order genuine rational soli-
ton solution (21) approaches to the first-order genuine

and vanishes Eq. (21) at
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Fig.4 First-order genuine rational soliton solution g (x, ) based on the IPINN: a density diagram and profiles at three different instants;
b error density diagram; ¢ three-dimensional motion; d loss curve figure

rational soliton solution represented by (17) along its L), =8(—1.2— x)3 —30(—=1.2—=x)—19.2+4+ 12

“ridge.” exp(1) 4+ i[36(—1.2 — x)* — 15].
Then we take [xg, x1] and [f9, #;] in Eq. (15) as ) o
[~3.0,3.0] and [—0.4, 0.4], respectively. The corre- Next, we obtain the initial and boundary value

dataset by the same data discretization method in Sect.

sponding initial condition is obtained by substituting )
3.1. By randomly subsampling N, = 200 from the

k = exp(1) and the specific initial value into (21), we

have original dataset and selecting Ny = 20, 000 config-
1L uration points, a training dataset composed of initial

go(x) = 1 = z (22) boundary data and collocation points is generated with
Lj the help of LHS. Then the dataset is substituted into

where two NN models which composed of two different NN

, 3 algorithms to simulate the second-order genuine ratio-
Ly =8(-12—-x)"+18(-1.2—x) — 192+ 12 nal soliton solution. After training, the NN model of
exp(l) +i[12(—1.2 — )c)2 + 3], PINN achieves a relative L error of 3.680510e—02 in
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Fig. S Second-order genuine rational soliton solution ¢ (x, ) based on PINN: a density plots and the sectional drawing; b loss curve

figure

about 705.3579 s, and the number of iterations is 6167.
However, the network structure of IPINN achieves a
relative Ly error of 4.295123e—02 in about 874.1350
s, and the number of iterations is 6142.

The PINN experiment results have been summa-
rized in Fig. 5, and we simulate the solution of g (x, ¢)
and obtain the density plots, profile, iterative curve
plots of the second-order genuine rational soliton solu-
tion. From (b) of Fig. 5, it can be clearly observed
that the curve of loss function declines very slowly,
and there have a particularly large fluctuation after
6500 iterations, which indicate that the PINN has slow
convergence and poor stability of loss function. Fig-
ure 6 displays the training outcome by choosing the
improved PINN method, and the density diagrams,
profiles at different instants, error dynamics diagrams,
three-dimensional motion and loss curve figure of the
second-order genuine rational soliton solution ¢ (x, ¢)
are illustrated. The top panel of (a) of Fig. 6 gives
the density map of hidden solution g (x, t), and when
combing (b) of Fig. 6 with the bottom panel of (a) in
Fig. 6, we can see that the relative IL; error is relatively
large at r > 0.20. From (d) of Fig. 6, in contrast to the
first-order genuine rational soliton solution by utilizing
the improved PINN method in Sect. 3.2, the loss func-
tion curve of the second-order genuine rational soliton
solution is relatively stable, and the whole iterative pro-
cess is relatively long, which is completely different
from the sharp drop of the loss function curve about
the first-order genuine rational soliton solution and the

@ Springer

less number of effective iterations in (d) of Fig. 4. In a
word, from the two NN methods, the results show that
both the PINN and IPINN can simulate the second-
order genuine rational soliton solution accurately, and
the training time, relative error and iteration number
are similar, but the iterative process of IPINN is more
stable and the training performance is better. There is
no doubt that the IPINN is more reliable in training
higher-order solutions of the DNLS.

In addition, according to the NN model of IPINN,
we obtain the following two tables specifically. Based
on the same initial and boundary values of the second-
order genuine rational soliton solution in the case of
Ny = 200 and Ny = 20, 000, we employ the control
variable method which is often used in physics to study
the effects of different levels of NNs and different num-
bers of single-layer neurons on the second-order gen-
uine rational soliton solution dynamics of the DNLS.
Moreover, the relative L, error of different layers of
NNs and different numbers of single-layer neurons are
given in Table 1. From the data in Table 1, we can
see that when the number of NN layers is fixed, the
more the number of single-layer neurons, the smaller
the relative 1L, error. Of course, due to the influence
of randomness, there are individual data results that do
not meet the previous conclusion, but on the whole the
conclusion is tenable. Similarly, when the number of
single-layer neurons is fixed, the deeper the layer is, the
smaller the relative error is. To sum up, we can draw
the conclusion that the number of layers of NN and the



Solving localized wave solutions 1733
Exact Dynamics Learned Dynamics
2 2 ErrorDynamics
0.4
8 0 8 0
D -
_2 —2
—0.4 0.4 —0.4 . 0'2
t t
t = —0.20 t =0.00 t=0.20 8 04
4 0.0
34 34 3
= 27 = 2 = 2 -2 -0.2
1 14 ]
! T T T
y y T —0.4 —0.2 0.0 0.2 0.4
—2.5 0.0 2.5 —2.5 0.0 2.5 —2.5 0.0 2.5
m— [xact == = Prediction (b)
(a)

(©

loss(log)

== Training loss

100 4

T T T T T T T
0 1000 2000 3000 4000 5000 6000

iterations

(d)
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plots; ¢ three-dimensional plots; d iterative curve plots

number of single-layer neurons jointly determine the
relative IL, error, and when the number of layers is not
less than 6 and the number of neurons in a single layer
is not less than 30, the overall relative error is small.
In the case of the same original dataset, Table 2 shows
the relative I error of nine-layer NN and single-layer
NN with 40 neurons when taking different number of
sampling points N, in the initial boundary data and
different number of collocation points Ny which are
generated by the Latin hypercube sampling method.
From Table 2, we can see that the influences of N, and
Ny on the relative Il error of NN are not so obvious.
After careful observation, when taking Ny = 20, 000,
regardless of the number of N, the overall relative L,

error is small, which also explain why the NN model
can simulate more accurate numerical solutions with
smaller initial dataset.

4.2 Two-order rogue wave solution

Recently, the study of rogue waves is one of the
hot topics in many areas including optics, plasma,
ocean dynamics, machine learning, Bose—Einstein con-
densate and even finance [30,45-50]. In addition to
the peak amplitude more than twice of the back-
ground wave, rogue waves also have the characteris-
tics of instability and unpredictability. Therefore, the
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Table 1 Second-order genuine rational soliton solution of the DNLS by using the IPINN: relative final prediction error measure in the
L, norm for different number of hidden layers and neurons in each layer

40

50

60

Layers Neurons
20 30
3 5.745666e—01 5.788318e—01
6 5.945028e—01 5.162760e—02
2.476185e—01 1.089718e—01
12 3.268944e—01 5.060934e—02

4.960168e—01
6.452197¢—02
4.295123e—02
6.087790e—02

1.596054e—01
1.540266e—01
1.045272e—01
5.869449¢—02

4.453853e—01
7.040157e—02
1.788330e—02
1.037406e—01

Table 2 Second-order genuine rational soliton solution of the DNLS by using the IPINN: relative final prediction error measure in the
IL> norm for different number of N, and Ny

20,000

22,000

24,000

Ny Ny

16,000 18,000
150 6.392143e—01 2.899009e—01
200 6.728854e—01 5.891113e—01
250 5.824423e—01 3.160742e—02

1.041697e—01
4.295123e—02
2.692156e—02

6.879006e—01
1.944170e—01
6.872238e—01

5.652572e—01
6.393751e—01
6.428133e—01

researches and applications of rogue waves play an
momentous role in real life, especially how to avoid
the damage to ships caused by ocean rogue waves is of
great practical significance. At present, Marcucci et al.
have investigated the computational machine in which
nonlinear waves replace the internal layers of NN,
discussed learning conditions and demonstrated func-
tional interpolation, data interpolation, datasets and
Boolean operations. When the nonlinear Schrédinger
equation is considered, the use of highly nonlinear
regions means that solitons, rogue waves and shock
waves play a leading role in the training and calcu-
lation [47]. Moreover, the dynamical behaviors and
error analysis about the one-order and two-order rogue
waves of the nonlinear Schrodinger equation have been
revealed by the deep learning NN with physical con-
straints for the first time [30]. The rogue wave solu-
tions of the DNLS were derived in via Darboux trans-
formation [51], and the high-order rogue wave solu-
tions are obtained by generalized Darboux transfor-
mation [13]. However, to the best of our knowledge,
the machine learning with NN model has not been
exploited to simulate the rogue wave solution of the
DNLS. In this section, we construct the two-order rogue
wave solution of the DNLS by employing the PINN
and IPINN, respectively. Some vital comparisons are
made to better describe the advantages of PINN and
IPINN.
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On the basis of the Dirichlet boundary conditions Eq.
(15), we will numerically training the two-order rogue
wave solution of the DNLS by employing the PINN
method and improved PINN method, separately. The
two-order rogue wave solution of the DNLS has been
derived in Ref. [13], and the form can be represented

as follows
RIR .
q(x,t) = e exp(—ix), 23)
1

where

Ry = 8x0 +24x*12 + 24x %% + 810 + 24ix> — 24ix*t
+48ix31% — 48ix%13 + 24ixt* — 24ir
—12x* + 48x3 — 216x%1% + 48x1> + 180r*
+48ix3 — 288ixt2 — 336i3 +90x2 — 72xt
+6661% + 54ix — 198it +9,

Ry = 8x0 4 24x*1% 4+ 24x21* + 8% — 24ix?
—72ix*t — 48ix31% — 144ix%13 — 24ixt* — 72i1
—60x* — 144x31 — 504x%1% — 144x13
—60* + 48ix3 + 288i x>t + 576ixt> — 528i17 —
198x% + 504xt — 4861% + 90ix + 414it + 45.

Then we take [xo, x1] and [fg, #1] in Eq. (15) as
[—2.5,2.5] and [—0.01, 0.01], respectively. The corre-
sponding initial condition is obtained after substituting
the specific initial value into (23); we have

% R/
qo(x) = ]1%2 2exp(—ix), (24)
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where

Ry =8x® —11.9976x* — 0.48x>
+89.97840024x2 + 0.719952x + 9.0666018
+i(24x° + 0.24x* + 48.0048x>

+0.000048x2 + 53.97120024x + 1.980336002),

R, =8x®—59.9976x* 4 1.44x°
—198.0503998x2 — 5.039856x + 44.9513994
+i(=24x> + 0.72x* + 47.9952x3

—2.879856x% + 90.05759976x — 4.139471993).

Similar to the discretization method in Sect. 3.1,
we randomly sample N, = 300 from the original
initial boundary value condition dataset and select
Ny = 20,000 configuration points which are gener-
ated by the LHS method. Thus, the training dataset of
initial boundary value data and configuration points are
formed. After training with two methods, the NN model
of PINN achieves a relative IL, error of 8.412217e¢—02
in about 1188.4475 s, and the number of iterations is
9470. Moreover, introducing the IPINN, the structure
attains a relative I, error of 7.262528e—02 in about
2924.0589 s, and the number of iterations is 18394.
It can be seen from the above results that under the
same experimental conditions, the relative L, error of
IPINN method is smaller than that of PINN for sim-
ulating rogue wave solution, but the improved PINN
method has longer training time and more iterations.

Next, we will give the specific numerical results and
correlation analysis.

The density plots, the sectional drawing and the error
density plots of the two-order rogue wave solution are
exhibited by employing the PINN method in Fig. 7. In
bottom panel of (a) in Fig. 7, one can observe that the
wave peak of the two-order rogue wave is well sim-
ulated, but the simulation on both sides of the wave
peak is poor, which can also be verified from the error
diagram in figure (b) in Fig. 7. On the other hand, as
for the NN model which applying the improved PINN
method, its density plot, section drawing, error den-
sity plots, three-dimensional diagram and loss function
curve diagram are shown in detail in Fig. 8. Similarly,
we find that the wave peak simulation in (a) of Fig. 8 is
not as good as that in Fig. 7, but the simulation on both
sides of the wave peak is better, which is just opposite
to the situation simulated of the PINN. On the whole,
the simulation satisfaction of IPINN is higher, and it
has more research value. The chart (b) in Fig. 8 shows
that there is a little error at the middle peak, where the
error is the difference value between the accurate solu-
tion and the predicted solution. The 3D plots and the
loss function curve are shown in (c) and (d) of Fig. 8,
respectively. From figure (d) of Fig. 8, it can be seen
that the loss value fluctuates greatly when the number
of iterations is around 2500, and then decreases slowly
from 1 to 0.1.
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Fig. 8 Two-order rogue wave solution ¢ (x, ¢) based on the IPINN: a the density plots and the sectional drawing; b the error density

plots; ¢ the three-dimensional plots; d the iterative curve plots

Furthermore, initialization of the scaled parameters
can be done in various ways as long as such value
does not cause divergence of the loss. In this work, the
scaled parameters are initialized as nal.m =1,Vn > 1.
Although an increase in scaling factor speeds up the
convergence rate, at the same time the parameter a{”
becomes more sensitive. In order to better understand
the influence of initialization of scalable parameters on
the improved PINN algorithm model, we present four
different initialization conditions of scalable parame-
ters to obtain the two-order rogue wave solution by
employing the improved PINN method in Table 3.
From Table 3, we can drastically observe that when

@ Springer

amplify the scaled hyper-parameter n in the initializa-
tion conditions of scalable parameters, the number of
iterations and training time increase, but the relative
L, error does not blindly dwindle. When the hyper-
parameter n = 10, the relative L, error is minimum
and the training effect is better in Table 3. This also
reveals why we generally choose the initialization of
scalable parameters as n = 10, @ = 0.1 in the IPINN
with locally adaptive activation function in this paper.

The rogue wave is a kind of wave that comes and
goes without trace, and the research of seeking and
simulating solution can provide an significant theoret-
ical basis for the prediction and utilization of the rogue
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Table 3 Two-order rogue wave solution of the DNLS by utilizing the IPINN: relative L, norm error, training time and iterations for

different initialization conditions of scalable parameters(ICSP)

Type ICSP

Variable a, (n = 1)

Variable a, (n = 5)

Variable a, (n = 10) Variable a, (n = 20)

1.309705e—01
Training time 1499.7196 2203.6984
Iterations 9194 14385

Relative error

8.760463e—02

7.262528¢—02 1.191116e—01
2924.0589 3983.7843
18394 24043

waves. Compared with the nonlinear Schrédinger equa-
tion, the form of rogue wave solution of the DNLS is
more complex. We have successfully utilized the PINN
to simulate the rogue wave solutions of the nonlinear
Schrodinger equation in Ref. [30]. In this section, a
large number of experiments and analysis have been
carried out, and finally, the two-order rogue wave solu-
tion of the DNLS has been imitated. In term of the same
experimental conditions and environment, the PINN
is better at simulating the wave crest, and the IPINN
has better comprehensive effect on wave crest and both
sides of wave crest. Apparently, the IPINN has more
advantages about the overall effect, especially in sim-
ulation of the more complex rogue wave solutions.

5 Conclusion

Compared with traditional numerical methods, the
PINN method has no mesh size limits and gives full
play to the advantages of computer science. Moreover,
due to the physical constraints, the NN is trained with
remarkably few data and fast convergence rate, and
has a better physical interpretability. These numerical
methods showcase a series of results of various prob-
lems in the interdisciplinary field of applied mathe-
matics and computational science which open a new
path for using machine learning to simulate unknown
solutions and correspondingly discover the paramet-
ric equations in scientific computing. It also provides
a theoretical and practical basis for dealing with some
high-dimensional scientific problems that can not be
solved before.

In this paper, based on the PINN method, an
improved PINN method which contains the locally
adaptive activation function with scalable parameters
is introduced to solve the classical integrable DNLS.
The improved PINN method achieves a better perfor-
mance of the NN through such learnable parameters

in the activation function. Specifically, applying two
data-driven algorithms including the PINN and IPINN
to deduce the localized wave solutions which consist of
the one-rational soliton, genuine rational soliton solu-
tions and rogue wave solution for the DNLS. In all these
cases, compared with the original PINN method, it is
shown that the decay of loss function is faster in the
case of the improved PINN method, and correspond-
ingly, the relative L, error in the simulation of solution
is shown to be similar or even smaller in the proposed
approach. We outline how different types of localized
wave solutions are generated due to different choices
of initial and boundary value data. Remarkably, these
numerical results show that the improved PINN method
with locally adaptive activation function is more pow-
erful than the PINN method in exactly recovering the
different dynamic behaviors of the DNLS.

The improved PINN approach is a promising and
powerful method to increase the efficiency, robust-
ness and accuracy of the NN-based approximation
of nonlinear functions as well as abundant localized
wave solutions of integrable equations. Furthermore,
more general nonlinear integrable equation, such as
the Hirota equation which has been widely concerned
in integrable systems, is not investigated in our work.
Due to the ability of the improved PINN to acceler-
ate the convergence rate and improve the network per-
formance, more complex integrable equations could
also be considered, such as the Kaup—Newell systems,
Sasa—Satsuma equation and Camassa—Holm equation.
How to combine machine learning with integrable sys-
tem theory more deeply and build significant integrable
deep learning algorithm is an urgent problem to be
solved in the future. These new problems and chal-
lenges will be considered in the future research.
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