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Lax pairs are one of the most important features of integrable system. In this work, we propose 
the Lax pairs informed neural networks (LPNNs) tailored for the integrable systems with Lax 
pairs by designing novel network architectures and loss functions, comprising LPNN-v1 and 
LPNN-v2. The most noteworthy advantage of LPNN-v1 is that it can transform the solving 
of complex integrable systems into the solving of relatively simple Lax pairs, and it not only 
efficiently solves data-driven localized wave solutions, but also obtains spectral parameter and 
corresponding spectral function in spectral problems of the integrable systems. On the basis of 
LPNN-v1, we additionally incorporate the compatibility condition/zero curvature equation of 
Lax pairs in LPNN-v2, its major advantage is the ability to solve and explore high-accuracy data-

driven localized wave solutions and associated spectral problems for integrable systems with Lax 
pairs. The numerical experiments focus on studying abundant localized wave solutions for very 
important and representative integrable systems with Lax pairs, including the soliton solution 
of the Korteweg-de Vries (KdV) equation and modified KdV equation, rogue wave solution of 
the nonlinear Schrödinger equation, kink solution of the sine-Gordon equation, non-smooth 
peakon solution of the Camassa-Holm equation and pulse solution of the short pulse equation, 
as well as the line-soliton solution of Kadomtsev-Petviashvili equation and lump solution of 
high-dimensional KdV equation. The innovation of this work lies in the pioneering integration 
of Lax pairs informed of integrable systems into deep neural networks, thereby presenting a fresh 
methodology and pathway for investigating data-driven localized wave solutions and spectral 
problems.

1. Introduction

As a unique category of nonlinear systems, integrable systems exhibit rich mathematical structures and distinctive properties, 
including Lax pairs, multiple soliton solutions, and infinite conservation laws, setting them apart from general nonlinear systems [1]. 
The exploration of integrable systems holds significant importance with wide-ranging applications in fields such as mathematics, 
physics, engineering, and various interdisciplinary fields, as a crucial research branch in nonlinear science, its advancements are also 
intricately tied to the progress in computer science. In recent years, amid the various revolutions in computer hardware and software 
technology, deep learning methods have emerged as a formidable approach for solving partial differential equations (PDEs). The 
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idea is to optimize by constructing appropriate loss functions and use deep neural network (NN) to approximate unknown functions. 
Various neural network methods have been proposed, such as the physics-informed neural network (PINN) [2] and the deep Galerkin 
method [3] with the loss established on the 𝐿2-residual of the PDEs, and the deep Ritz method [4] with the loss based on the Ritz 
formulation, and the asymptotic-preserving neural network [5] with the loss satisfied the asymptotic preserving scheme, and so on. 
For other methods, we refer the reader to [6–11].

For decades, benefiting from the rapid development of integrable system theory, a wealth of integrable models endowed with 
excellent properties has been accumulated, and numerous localized wave solutions as well as graceful program algorithms have been 
obtained, their provide a continuous stream of data samples and prior information for studying integrable systems using deep learning 
technology. Recent years, a series of significant research achievement have been achieved on the data-driven forward and inverse 
problems of integrable systems [or nearly integrable systems] by applying PINN and its improved algorithms. Chen’s research group 
introduced deep learning methods to study integrable systems, and they have been dedicated to establishing an efficient framework 
for integrable deep learning methods, resulting in rich research outcomes [12]. On the one hand, various data-driven localized 
wave solutions have been predicted from small amount of initial/boundary data, among which the most significant work is the first 
successful learning and extraction of rogue wave solutions [13]. Additionally, they also obtained higher-order rational solutions, 
periodic wave solutions and rogue waves on the periodic background wave, vector rogue waves and interaction solutions between 
rogue wave and soliton, as well as new kink-bell type solution [14–16]. Furthermore, various complex integrable models have been 
studied by employing PINN and its improved algorithms, including nonlocal integrable systems, coupled integrable systems, high-

dimensional integrable systems, and variable coefficients integrable systems [15,17]. On the other hand, various strategies have been 
utilized to make multiple improvements to deep NN algorithms, including adaptive activation functions, parameter regularization, 
time domain piecewise, and transfer learning [11,14,18]. Especially, the properties of integrable systems are used to design new 
deep NN models suitable for integrable systems with such properties, such as the two-stage PINN based on conserved quantities [19]

and the PINN based on Miura transformations [16]. Moreover, there are many important works using deep learning algorithms to 
study integrable systems, we refer the reader to [20–24].

The inverse scattering method (IST) is one of the most important discoveries in modern mathematical physics [25], which was 
originally proposed by Gardner, Greene, Kruskal and Miura (GGKM) in 1967 to study the initial value problem of rapid decay 
of the Korteweg-de Vries (KdV) equation [26]. In 1968, inspired by GGKM’s work, Lax proposed the concept of Lax pairs and 
creatively proposed a general framework for using Lax pairs to represent integrable systems [27]. In 1972, Zakharov and Shabat 
presented Lax pairs in matrix form for the nonlinear Schrödinger (NLS) equation, and utilized IST to study the inverse scattering 
transformation and exact solutions of the NLS equation [28]. Later, Ablowitz, Kaup, Newell and Segur proposed a class of integrable 
systems with a unified Lax pairs form, known as AKNS systems, and established a universal framework for inverse scattering theory 
for the initial-value problem of AKNS systems in 1974 [29,30]. Subsequently, many classic integrable systems with Lax pairs were 
proven to be solvable via IST [31–33], which was also considered a milestone in the integrable system theory and established the 
important position of integrable systems in many fields of mathematics and physics. Therefore, Lax pairs provide the theoretical basis 
for constructing a general framework of inverse scattering theory for integrable systems, promoting the development of integrable 
system theory.

Lax pairs are the key characteristic and important tool in the integrable system theory, which are closely related to the integra-

bility, conservation laws, classification, and exact solution solving of integrable systems. Lax pairs were first introduced by Lax in 
1968, who stated that soliton equations can be represented by Lax pairs and Lax equations [27]. Given a linear operator 𝐿 involved 
space 𝐱 and potential, let it satisfies spectral equation

𝐿𝜙 = 𝜆𝜙, (1.1)

here 𝜙 is eigenfunction, 𝜆 is spectral parameter. Consider the isospectral problem of 𝜆 that is independent of time 𝑡, i.e. 𝜆𝑡 = 0. Given 
an operator 𝐴, 𝜙 satisfies the linear equation

𝜙𝑡 =𝐴𝜙. (1.2)

If 𝜙 is required to satisfy both Eqs. (1.1) and (1.2), then 𝐿 and 𝐴 satisfy the following operator equation

𝐿𝑡 − [𝐴,𝐿] = 0, (1.3)

where [𝐴, 𝐿] =𝐴𝐿 −𝐿𝐴. Then Eq. (1.3) is called the Lax equation, and the spectral problems (1.1) and (1.2) are called the Lax pairs. 
Once given specific operators 𝐿 and 𝐴, one can obtain the specific compatibility condition equation

𝑓cce ∶ 𝜙 𝐱⋯𝐱
⏟⏟⏟
∀𝑠, 𝑠≥1

𝑡 − 𝜙𝑡 𝐱⋯𝐱
⏟⏟⏟
∀𝑠, 𝑠≥1

= 0, (1.4)

in which 𝑠 is a finite positive integer, and the size of 𝑠 is determined by the dimensions of space 𝐱 and the form of Lax pairs spatial 
part, 𝜙𝐱⋯𝐱 indicates 𝜙 taking 𝑠-th partial derivative of space 𝐱, here 𝑠 ≥ 1. In fact, 𝜙𝐱⋯𝐱 𝑡 is obtained by taking partial derivatives 
of 𝑡 on both sides of Eq. (1.1), and 𝜙𝑡𝐱⋯𝐱 is obtained by taking the 𝑠-order partial derivative of 𝐱 on both sides of Eq. (1.2). 
Certainly, different integrable systems correspond to different compatibility condition equations, and here we only provide a unified 
representation Eq. (1.4). Generally, compatibility condition equation (1.4) is equivalent to Lax equation (1.3), both of which can 
2

derive the desired soliton equation. In addition to the above operator representations, Lax pairs can also be expressed in matrix form, 
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usually Lax pairs with operator form can be rewritten as Lax pairs with matrix form. Specially, as we consider the case where space 
𝐱 = 𝑥 is one-dimensional, then let a pair of spectral problems (1.1) and (1.2) be rewritten as

Φ𝑥 =𝑀Φ,

Φ𝑡 =𝑁Φ.
(1.5)

Where Φ is an 𝑛-dimensional column vector Φ = (Φ1, Φ2, ⋯ , Φ𝑛)𝑇 , 𝑀 and 𝑁 are 𝑛-order matrices that depend on the potential 
𝒒 = 𝒒(𝑥, 𝑡) and spectral parameter 𝜆. If requirements Eqs. (1.5) are compatible, that is Φ satisfies compatibility condition equation 
Φ𝑥𝑡 −Φ𝑡𝑥 = 0, then we can derive that 𝑀 and 𝑁 must be satisfied zero curvature equation

𝑓zce ∶𝑀𝑡 −𝑁𝑥 + [𝑀,𝑁] = 0. (1.6)

Usually, we refer to Eqs. (1.5) as Lax pairs, thus the compatibility condition equation (1.4) is equivalent to the zero curvature 
equation (1.6). The corresponding integrable systems can be derived from both the compatibility condition equation (1.4) and zero 
curvature equation (1.6). If a PDE can be generated via the compatibility condition (1.4) for operator Lax pairs (1.1)-(1.2) or zero 
curvature equation (1.6) for matrix Lax pairs (1.5), then this PDE is said to be Lax integrable. Lax pairs are a prominent feature in 
the integrable systems theory, which can simplify the dynamic equations of integrable systems, thereby helping researchers study the 
integrability, construct conserved quantities, and classify integrable families. Furthermore, some methods for solving exact solutions 
of integrable systems also rely on the Lax pairs of integrable systems, such as the Darboux transformation method [34]. In summary, 
the proposal of Lax pairs greatly promoted the development of exactly solving methods of integrable systems and established its 
important position in integrable system theory, mathematical physics, and other related fields. Hence, the successful application of 
Lax pairs in aforementioned fields reminds us whether Lax pairs can be successfully applied to the deep NN for studying data-driven 
problems of integrable systems?

We introduce Lax pairs and their compatibility conditions/zero curvature equation into deep NNs, and propose Lax pairs informed 
neural networks (LPNNs), the novel algorithm exhibits remarkable efficiency or high-accuracy in solving integrable systems. In order 
to fully demonstrate the high efficiency and high precision of LPNNs in solving integrable systems with Lax pairs, we utilized LPNNs 
to solve several important integrable systems and their spectral problems. The KdV equation is the first PDE to describe solitary wave 
and the first integrable model studied by applying the IST [26,35], and the KdV equation is closely related to the origin of soliton and 
the flourishing development of integrable system theory, which has had a significant impact on the fields of nonlinear science and 
mathematical physics [36], it is the most iconic model in the soliton and integrable system theory. The Camassa-Holm (CH) equation 
is the earliest integrable model discovered to both possess non-smooth solutions and Lax pairs, which can describe the unidirectional 
water wave motion in shallow water waves and has important physical significance [37]. The Kadomtsev-Petviashvili (KP) equation 
is a high-dimensional extension of the KdV equation, which describes the motion of two-dimensional water waves and has widely 
applied in the fields of fluid mechanics and theoretical physics [38]. The term “breather” arose from studies of the sine-Gordon (SG) 
equation, which is one of the most fundamental equations of integrable systems and has important applications in fields such as 
nonlinear optics, crystal dislocation, and superconductivity [39]. The modified KdV (mKdV) equation is a KdV equation with cubic 
nonlinear term, and its transformation relationship with the solution of the KdV equation has opened up a research boom of Miura 
transformations [40]. The NLS equation has important applications in various fields such as quantum mechanics, optics, plasmas, 
and Bose-Einstein condensates, and it is also the most fundamental equation for describing rogue wave phenomena [28]. Unlike the 
KdV, mKdV, SG and NLS equations in the AKNS hierarchy, the short pulse (SP) equation is the most classical integrable model in 
Wadati-Konno-Ichikawa (WKI) equations [41], and possess WKI-type Lax pairs, which has important applications in many physical 
fields such as nonlinear optics [42]. These integrable models are the most significant, foundational and classic models in the realm 
of integrable systems, and many integrable models can be derived from the deformation and generalization of these basic integrable 
models. Hence, the successful application of LPNNs in solving these significant, classic and representative integrable systems serves 
as a compelling demonstration of the efficacy of the LPNNs algorithm.

The main highlights of this article are as follows:

1. We cleverly transform complex integrable systems into relatively simple equations set [Lax pairs] to improve the training efficiency 
of the network. LPNN-v1 relies exclusively on the Lax pairs of integrable systems to extract information, significantly simplifying the 
solving of complex integrable systems. LPNN-v1 can not only effectively solve data-driven localized wave solutions in such systems, 
but also conveniently learn the spectral parameter and their corresponding spectral function in spectral problems. The numerical 
results indicate that LPNN-v1 is applicable to both low-dimensional and high-dimensional integrable systems, and exhibits efficient 
training performance in solving smooth and non-smooth solutions. Specifically, for localized wave solution of certain integrable 
systems, LPNN-v1 can reduce training time by more than 5 times than standard PINN. Moreover, owing to the fact that the Lax pairs 
representation of high-dimensional integrable systems is frequently considerably simpler than the equations themselves, LPNN-v1 
enjoys substantial advantages in solving high-dimensional integrable systems.

2. In the case of certain simple integrable systems or intricate localized wave solutions, LPNN-v1 tends to lose its efficiency. Therefore, 
building upon LPNN-v1, we further introduce the compatibility condition/zero curvature equation of Lax pairs to propose the LPNN-

v2. The numerical results indicate that LPNN-v2 can solve high-precision data-driven localized wave solutions and spectral problems 
for all integrable systems with Lax pairs, and can even improve training accuracy by more an order of magnitude when solving 
3

localized wave for certain integrable systems.



Journal of Computational Physics 510 (2024) 113090J.C. Pu and Y. Chen

The structure of the paper unfolds as follows: In section 2, we present the innovative models of LPNNs. Section 3 provides a 
comprehensive display of numerical experiments conducted to validate the effectiveness of our proposed methods. We encapsulate 
our work and draw meaningful conclusions in section 4.

2. Methodology

Generally, we consider a multi-dimensional spatiotemporal real nonlinear integrable system with operator Lax pairs (1.1)-(1.2)

or matrix Lax pairs (1.5) in the general form given by

 [𝒒,𝒒2,⋯ ,∇𝑡𝒒,∇2
𝑡 𝒒,⋯ ,∇𝐱𝒒,∇2

𝐱𝒒,⋯ ,𝒒 ⋅∇𝑡𝒒,⋯ ,𝒒 ⋅∇𝐱𝒒,⋯] = 0, (2.1a)

𝑓Lp ∶

{
𝐿𝜙 = 𝜆𝜙

𝜙𝑡 =𝐴𝜙
, usually for 𝐱 ∈Ω, or

{
Φ𝑥 =𝑀Φ

Φ𝑡 =𝑁Φ
, usually for 𝐱 = 𝑥, (2.1b)

in which potential 𝒒 = 𝒒(𝐱, 𝑡) ∈ ℝ𝑛×1 is the 𝑛-dimensional latent solution, 𝐱 ∈ Ω specifies the 𝑛-dimensional space and 𝑡 ∈ [𝑇i, 𝑇f ]
denotes time [𝑇i and 𝑇f respectively indicate the initial time and final time], ∇ is the gradient operator with respect to 𝐱 and 𝑡,  [⋅]
is a complex nonlinear operator of 𝒒 and its spatiotemporal derivatives. Here linear operator 𝐿 involves space 𝐱 and potential 𝒒, 𝜆
indicates spectral parameter and 𝜙 represents spectral function corresponding to spectral parameter. Φ = Φ(𝐱, 𝑡) stands for vector 
spectral function corresponding to spectral parameter 𝜆 in matrices 𝑀 and 𝑁 . Usually, from Lax pairs (2.1b), we can derive all 
integrable systems by means of compatibility condition equation (1.4) [for Lax pairs of operator form] and zero curvature equation 
(1.6) [for Lax pairs of matrix form].

Then we consider the general initial and boundary conditions of spatiotemporal nonlinear integrable system denoted by

[𝒒, 𝜙∕Φ;𝐱 ∈Ω, 𝑡 = 𝑇i] = 0,

[𝒒, 𝜙∕Φ,∇𝐱𝒒;𝐱 ∈ 𝜕Ω, 𝑡 ∈ [𝑇i, 𝑇f ]] = 0.
(2.2)

If we consider a complex valued potential �̂� ∈ ℂ𝑛×1 for nonlinear integrable systems, we can utilize decomposition �̂� = �̂� + i�̂� to 
derive two real-value functions �̂� ∈ℝ𝑛×1 and �̂� ∈ℝ𝑛×1, then back to the problem of Eq. (2.1a). The initial and boundary points set 
ib for training are sampled randomly through corresponding initial and boundary conditions (2.2), and the collocation points set 
c for training are generated by the Latin Hypercube Sampling method [43].

The next part, we utilize the Lax pairs, a prominent feature of integrable systems, to design novel deep learning method, namely 
LPNNs. The NN part of LPNNs still adopts fully connected networks, while the Lax pairs informed part is constructed through Lax 
pairs, compatibility condition equation/zero curvature equation. Given an input 𝐱′ [for convenience, here 𝐱′ include 𝐱 and 𝑡], the 
output of the 𝐿-layer deep feedforward NN 𝐹 is a combination of the affine transformations {𝑑}𝐿𝑑=1 and nonlinear activation 
functions {𝜎𝑑}𝐿−1𝑑=1 , stated as follows

𝐹 (𝐱′;𝜽) =𝐿◦𝜎𝐿−1◦𝐿−1⋯◦𝜎2◦2◦𝜎1◦1(𝐱′),

𝑑 (𝐱′𝑑−1) ≜𝑾 𝑑𝐱′
𝑑−1 + 𝒃𝑑 , 𝐱′0 ∶= 𝐱′,

𝐱′
𝑑
= 𝜎𝑑◦𝑑 ≜ 𝜎𝑑

(
𝑑 (𝐱′𝑑−1)

)
,

in which the weight and bias term are 𝑾 𝑑 ∈ℝ𝑁𝑑×𝑁𝑑−1 and 𝒃𝑑 ∈ℝ𝑁𝑑 in the NN associated with the 𝑑-th layer, and the 𝑁𝑑 denote the 
number of neurons contained in 𝑑-th hidden layer. Here popular choices of 𝜎𝑑 include the ReLU function, the sigmoid function, the 
hyperbolic tangent function, and so on. In this work, we all adopt the hyperbolic tangent as activation function, the set of trainable 
parameters 𝜽 ∈ consists of 

{
𝑾 𝑑 , 𝒃𝑑

}𝐷
𝑑=1, in which  is the parameter space.

For the construction of Lax pairs informed part of LPNN, we mainly divide it into two methods: LPNN-v1 only uses Lax pairs 
as Lax pairs informed; while LPNN-v2 utilizes Lax pairs and their zero curvature equation/compatibility condition equation as Lax 
pairs informed. Each of the two schemes has its unique advantages, among which the LPNN-v1 relies entirely on the Lax pairs of 
integrable systems to extract Lax pairs informed, greatly simplifying the solving of complex integrable systems, it is well-suited for 
studying localized wave solutions and spectral problems of complex integrable systems with uncomplicated Lax pairs, and it stands 
out for its high training efficiency. While the LPNN-v2 method is primarily tailored for delving into various localized wave solutions 
and spectral problems within all integrable systems with Lax pairs, and it usually attains high training accuracy. Fig. 1 depicts the 
schematic architecture of the LPNNs model, encompassing both the LPNN-v1 and LPNN-v2.

Specifically, Fig. 1 displays two versions of LPNNs through the upper and lower panels, namely LPNN-v1 and LPNN-v2. The upper 
panel Fig. 1 𝐚 showcase the NN part and Lax pairs informed part, where the left part of panel Fig. 1 𝐚 is the fully connected deep 
feedforward network, the input 𝐱′ include 𝐱 and 𝑡, the output 𝐹 contains potential 𝒒 and spectral function 𝜙∕Φ. While the right 
part of panel Fig. 1 𝐚 is Lax pairs informed network dominated by the Lax pairs and their related conditions. Different Lax pairs 
constraints correspond to different versions of LPNNs, that is LPNN-v1 only corresponds to “Lax pairs of integrable systems”, then 
LPNN-v2 corresponds to “Lax pairs of integrable systems” and corresponding “compatibility condition equation”/“zero curvature 
equation”. The spectral parameter 𝜆 corresponds to the spectral function Φ, which can be set as hyper-parameter or trained through 
network, and is reflected in the Lax pairs of integrable systems. The Lax pairs of certain high-dimensional integrable systems may not 
4

contain spectral parameter, we do not need to consider the spectral parameter term in this case. The left and right parts of panel Fig. 1
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Fig. 1. (Color online) Schematic architecture of the LPNNs model for integrable systems with Lax pairs, including LPNN-v1 and LPNN-v2. 𝐚 the NN part (left part) 
and Lax pairs informed part (right part). 𝐛 the components of the loss function and optimize process in LPNNs.

𝐚 are connected using automatic differentiation [AutoDiff]. The loss function and optimize process of LPNNs are depicted in the lower 
panel Fig. 1 𝐛, where the training parameters of total loss  are provided from two-part of panel Fig. 1 𝐚, the optimization algorithms 
appropriately selected appropriate optimizer for training of LPNNs. Ultimately, employing appropriate optimization algorithms to 
seek optimal parameters 𝜽∗, this endeavor aims to minimize the total loss function  effectively. The total loss function is defined as

LPNN-v1 ∶(ib,c;𝜽, 𝜆) =ibd(ib;𝜽) +Lpr (c;𝜽, 𝜆), (2.3a)

LPNN-v2 ∶(ib,c;𝜽, 𝜆) =ibd(ib;𝜽) +Lpr (c;𝜽, 𝜆) +

{
operator form ∶ ccr (c;𝜽)

matrix form ∶ zcr (c;𝜽)
. (2.3b)

Here, ibd represents the initial and boundary data loss, Lpr indicates residual loss of Lax pairs, then ccr and zcr respectively 
represent the residual loss of compatibility condition equation [for Lax pairs of operator form] and residual loss of zero curvature 
equation [for Lax pairs of matrix form]. They can be defined as follows

ibd(ib;𝜽) =
1
𝑁ib

‖‖‖𝒒𝜽,ib − 𝒒𝒎,ib‖‖‖22, (2.4)

Lpr (c;𝜽, 𝜆) =
1
𝑁c

‖‖‖𝑓 c
Lp
‖‖‖22, (2.5)

and

ccr (c;𝜽) =
1
𝑁c

‖‖‖𝑓 c
cce

‖‖‖22, (2.6)

zcr (c;𝜽) =
1
𝑁c

‖‖‖𝑓 c
zce

‖‖‖22, (2.7)

where 𝑁ib and 𝑁c represent respectively the number of elements in sets ib and c, ‖ ⋅‖2 denotes the 𝐿2 norm. Then 𝒒𝜽,ib represents 
the learning result of 𝒒𝜽 acting on initial and boundary points set ib. Besides, 𝒒𝒎,ib represents the measurement data of 𝒒 on initial 
and boundary points set ib. The 𝑓 c

Lp is value of Lax pairs 𝑓Lp on collocation points set c. The 𝑓 c
cce is value of compatibility 

condition equation 𝑓cce on collocation points set c, and the 𝑓 c
zce is value of zero curvature equation 𝑓zce on collocation points set 

c. Finally, we summarize the main steps of LPNNs in Algorithm 1.

3. Numerical experiment

In this section, we utilize three different types of deep learning models to study data-driven localized wave solutions, and solve 
spectral problems for integrable systems with several different types of Lax pairs, then provide detailed numerical results and related 
dynamic behavior figures. In this work, unless otherwise specified, all deep learning methods [involve the PINN and LPNNs] both 
possess 5 hidden-layer NNs with 100 neurons per hidden layer, namely 𝐿 = 6 and 𝑁𝑑 = 100. Additionally, most of the numerical 
results [this section and Appendices A-B] in this article were obtained based on the TensorFlow framework, while a small number of 
5

numerical results [Appendix C] were obtained based on the JAX framework.
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Algorithm 1 The Lax pairs informed neural networks for integrable systems.

Step 1: Specification of training set in computational domain:

initial and boundary training points: ib, collocation training points: c.

Step 2: Construct neural network 𝐹 [including potential 𝒒 and spectral function 𝜙∕𝚽] with random initialization of parameters 𝜽 [contain/preset spectral 
parameter 𝜆].

Step 3: Construct the Lax pairs informed part by substituting surrogate 𝐹 (𝐱′; 𝜽) into the Lax pairs of integrable systems in LPNN-v1 [or the Lax pairs of 
integrable systems and compatibility condition equation/ zero curvature equation in LPNN-v2].

Step 4: Specification of the total loss function (ib, c; 𝜽, 𝜆).
Step 5: Seek the optimal parameters 𝜽∗ using suitable optimization algorithms for minimizing the total loss function  as

𝜽∗ = argmin
𝜽∈

(𝜽).

3.1. Efficient training performance of LPNN-v1

In this subsection, we apply LPNN-v1 to study integrable systems with simple Lax pairs, and efficiently solve data-driven solutions 
and corresponding spectral problems.

∙ Case 1: Korteweg-de Vries equation

The KdV equation is a PDE that describes the motion of water waves, and is one of the most classic equations in the soliton 
theory and integrable systems. In 1834, British scientist Russell occasionally observed a type of water wave [also known as a solitary 
wave] whose shape and velocity did not change during the process of traveling, but he did not find an appropriate model or specific 
mathematical expression to describe this interesting natural phenomenon at the time. Until 1895, Korteweg and de Vries proposed the 
KdV equation and pointed out that the traveling wave solution of the equation could perfectly explain the solitary wave phenomenon 
discovered by Russell [35]. In 1965, Zabusky and Kruskal first discovered the connection between the FPU problem proposed by 
Fermi, Pasta, Ulam, and Tsingou in 1955 and the KdV equation by utilizing numerical calculation methods [44], and explained 
the FPU regression phenomenon using the dynamic behavior of solitary waves in the KdV equation [36]. Since then, Zabusky and 
Kruskal proposed the term “soliton” in 1965 to reflect the properties of solitary waves and particle interactions [36]. Solitons are 
nonlinear localized waves that can maintain their shape and velocity during propagation, even when interacting with other waves. 
Therefore, the KdV equation is closely related to the origin of solitons and the flourishing development of integrable system theory, 
which has had a significant impact on the fields of nonlinear science and mathematical physics. Until now, the KdV equation is 
widely recognized as a paradigm for the description of weakly nonlinear long waves in many branches of physics and engineering.

We consider the KdV equation with Lax pairs [operator form] as follows

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0, (3.1)

𝑓Lp ∶
{𝜙𝑥𝑥 = (𝜆− 𝑢)𝜙

𝜙𝑡 = 𝑢𝑥𝜙− (4𝜆+ 2𝑢)𝜙𝑥

, (3.2)

thus KdV equation (3.1) can be derived by means of Lax pairs (3.2) and specific formula 𝜙𝑥𝑥𝑡 − 𝜙𝑡𝑥𝑥 = 0 of compatibility condition 
equation (1.4), where 𝜙𝑥𝑥𝑡 is computed from the first equation of Eq. (3.2) and 𝜙𝑡𝑥𝑥 is given by the second equation of Eq. (3.2). Then 
we consider following initial condition  and boundary conditions  for KdV equation (3.1) in spatiotemporal region [−5, 5] ×[−5, 5]

𝑢(𝑥, 𝑡 = −5) = 2sech(20 + 𝑥)2, 𝑥 ∈ [−5,5],

𝑢(−5, 𝑡) = 2sech(−4𝑡− 5)2, 𝑢(5, 𝑡) = 2sech(−4𝑡+ 5)2, 𝑡 ∈ [−5,5].
(3.3)

For the Lax pairs of KdV equation (3.1), spectral function 𝜙(𝑥, 𝑡) ∈ ℝ1×1 satisfied free initial-boundary condition and initialized to 
𝜙(𝑥, 𝑡) = 0 in spatiotemporal region [−5, 5] ×[−5, 5]. Then we apply conventional PINN and novel LPNN-v1 to solve the KdV equation 
(3.1) with spectral problem (3.2), and set spectral parameter 𝜆 = 1 as well as training points 𝑁ib = 400, 𝑁c = 10000. The relative 𝐿2

norm error of the LPNN-v1 model achieves 5.756885e-03 for data-driven single-soliton solution 𝑢(𝑥, 𝑡) in 64.6284 seconds, and the 
number of iterations is 327.

Fig. 2 manifests the deep learning results of the data-driven single-soliton solution 𝑢(𝑥, 𝑡) and spectral function 𝜙(𝑥, 𝑡) stemming 
from the LPNN-v1 for the KdV equation (3.1). In Fig. 2(a), we display the density plots of the true dynamics, prediction dynamics 
and error dynamics, then showcase its corresponding amplitude scale size on the right side of density plots, and exhibit the sectional 
drawings which contain the learned and true solution at three different moments. The evolution curve figures of the loss function 
arising from the LPNN-v1 are displayed in Fig. 2(b). Figs. 2(c) and (d) indicate respectively the three-dimensional plot with contour 
map on three planes for the predicted single-soliton solution 𝑢(𝑥, 𝑡) and learned spectral function 𝜙(𝑥, 𝑡).

To further showcase the efficiency of LPNN-v1 in studying localized wave solutions of integrable systems with concise Lax pairs, 
we provide a comparison of the training errors and training time between LPNN-v1 and conventional PINNs in Table 1, which spans 
same spatio-temporal domain as well as possesses identical hyper-parameters and network setting. From Table 1, we can obtain that 
although the training error using LPNN-v1 is slightly greater than that using standard PINN, the training time of LPNN-v1 is much 
shorter than that required using PINN, benefiting from the simpler Lax pairs form of the KdV equation compared to the KdV equation 
itself. In realistic problems, faster and efficient network training is often more favored when the training errors of the network are 
not significantly different. From Table 1, we can intuitively observe that the feature of LPNN-v1 is that they can not only solve 
integrable system, but also solve spectral problem of integrable system and numerically obtain spectral parameter and corresponding 
6

spectral function, which PINN cannot obtain. The numerical spectral parameter and numerical spectral function obtained by LPNNs 
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Fig. 2. (Color online) The training results of single-soliton solution 𝑢(𝑥, 𝑡) and spectral function 𝜙(𝑥, 𝑡) for KdV equation arising from the LPNN-v1. (a) The ground 
truth, prediction and error dynamics density plots, as well as sectional drawings which contain the true and prediction single-soliton solution at three distinct moments 
𝑡 = −0.5, 0, 0.5; (b) Evolution graph of the loss function in LPNN-v1; (c) The three-dimensional plot with contour map for the data-driven single-soliton solution; (d) 
The three-dimensional plot with contour map for the data-driven spectral function corresponding to spectral parameter 𝜆 = 1.

Table 1

Performance comparison between LPNN-v1 and conventional PINN for solving KdV equation.

Types 𝐱 × 𝑡 ib,c optimizer 𝜆 𝜙 𝐿2 norm error training time

PINN [-5,5]×[-5,5] 400,10000 L-BFGS × × 2.742974e-03 200.5237 s

LPNN-v1 [-5,5]×[-5,5] 400,10000 L-BFGS 1.0
√

5.756885e-03 64.6287 s

play an important role in many classical theories, such as inverse scattering theory and Darboux transformation theory. It may bring 
some novel results to these classical theories, and providing important research foundations for the discovery of new localized wave 
solutions and new Lax pairs, which is of great significance. Therefore, the numerical results in this subsection indicate that LPNN-v1 
is particularly suitable for studying cases where the integrable system model itself is complicated but possesses simple Lax pairs when 
training certain data-driven localized wave solutions.

∙ Case 2: Camassa-Holm equation

For verifying the effectiveness of LPNN-v1 in solving non-smooth solutions of integrable systems, we considered the classical CH 
equation

𝑢𝑡 − 𝑢𝑥𝑥𝑡 + 2𝜔𝑢𝑥 + 3𝑢𝑢𝑥 − 2𝑢𝑥𝑢𝑥𝑥 − 𝑢𝑢𝑥𝑥𝑥 = 0, (3.4)

arises as a model describing the unidirectional propagation of shallow water waves over a flat bottom, where 𝑢(𝑥, 𝑡) represent the 
height of the free surface about a flat bottom and the real constant 𝜔 being related to the critical shallow water speed. The CH 
equation was first appeared in Ref. [45] as an abstract bi-Hamiltonian equation with infinitely many conservation laws. Camassa and 
Holm subsequently discovered Eq. (3.4) can serve as a model for describing unidirectional propagation of waves on shallow water 
in 1993 [37], and pointed out the CH equation is a completely integrable equation and manifested its solitary waves are peakons 
if 𝜔 = 0 [37,46]. Especially, the CH equation is the earliest integrable models discovered to possess peakon solution different from 
the soliton solution, and the first-order derivative of this non-smooth peakon solution at the wave peak does not exist. The peakon 
solution is also considered as a unique type of non-smooth soliton solution to the integrable CH equation [37]. From Ref. [37], the 
CH equation (3.4) with 𝜔 = 0 possesses the following Lax pairs

𝑓Lp ∶

⎧⎪⎪⎨⎪⎪⎩
𝜙𝑥𝑥 =

[
1
4
+ 𝜆(𝑢− 𝑢𝑥𝑥)

]
𝜙

𝜙𝑡 =
(

1
2𝜆

− 𝑢

)
𝜙𝑥 +

1
2
𝑢𝑥𝜙

, (3.5)

one can deduce the CH equation (3.4) with 𝜔 = 0 by employing the Lax pairs (3.5) and compatibility condition equation 𝜙𝑥𝑥𝑡−𝜙𝑡𝑥𝑥 =
0. We set spectral function 𝜙(𝑥, 𝑡) ∈ℝ1×1 and spectral parameter 𝜆 ∈ ℝ, while spectral parameter 𝜆 is initialized to 𝜆 = 1.5 as well 
as we initialize 𝜙 = 0 and make it satisfy the free initial-boundary conditions, then we consider the initial and boundary condition of 
CH equation (3.4) with 𝜔 = 0 in spatiotemporal region [−5, 5] × [0, 3], shown as below

𝑢(𝑥, 𝑡 = 0) = 0.9e−|𝑥|, 𝑥 ∈ [−5,5],

𝑢(−5, 𝑡) = 0.9e−|−5−0.9𝑡|, 𝑢(5, 𝑡) = 0.9e−|5−0.9𝑡|, 𝑡 ∈ [0,3].
(3.6)

We randomly select 𝑁ib = 400 points based on the aforementioned initial and boundary conditions (3.6), and extract 𝑁c = 10000
collocation points in residual spatiotemporal region, then we produce the data-set for the LPNN-v1 pertaining to the CH equation. 
After that, by utilizing LPNN-v1 with training data-set, we successfully and efficiently obtained data-driven peakon solution, as well 
as corresponding spectral parameter and spectral function. The relative 𝐿2 norm error of the LPNN-v1 model achieves 6.878529e-02 
for data-driven peakon solution 𝑢(𝑥, 𝑡) in 148.1191 seconds, and the number of iterations is 530. The spectral parameter learned from 
7

LPNN-v1 is 𝜆 = 1.4812.
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Fig. 3. (Color online) The training results of peakon solution 𝑢(𝑥, 𝑡) and spectral function 𝜙(𝑥, 𝑡) for CH equation arising from the LPNN-v1. (a) The ground truth, 
prediction and error dynamics density plots, as well as sectional drawings which contain the true and prediction peakon solution at three distinct moments 𝑡 =
0.49, 1.5, 2.5; (b) Evolution graphs of the loss function [panel b1] and spectral parameter 𝜆 [panel b2] in LPNN-v1; (c) The three-dimensional plot with contour map 
for the data-driven peakon solution [panel c1] and the data-driven spectral function [panel c2] corresponding to spectral parameter 𝜆 = 1.4812.

Table 2

Performance comparison between LPNN-v1 and conventional PINN for solving CH equation.

Types 𝐱 × 𝑡 ib,c optimizer 𝜆 𝜙 𝐿2 norm error training time

PINN [-5,5]×[0,3] 400,10000 L-BFGS × × 6.882064e-02 819.0868 s

LPNN-v1 [-5,5]×[0,3] 400,10000 L-BFGS 1.4812
√

6.878529e-02 148.1191 s

Fig. 3 exhibits the deep learning results of the data-driven peakon solution 𝑢(𝑥, 𝑡) and spectral function 𝜙(𝑥, 𝑡) stemming from 
the LPNN-v1 for the CH equation (3.4) with 𝜔 = 0. Fig. 3(a) showcases the density plots of the ground truth dynamics, prediction 
dynamics and error dynamics, then give its corresponding amplitude scale size on the right side of density plots, and exhibit the 
sectional drawings which contain the learned and true solution at three different moments. The evolution curve figures of the loss 
function [panel b1] and spectral parameter 𝜆 [panel b2] resulting from the LPNN-v1 are displayed in Fig. 3(b). Figs. 3(c1) and (c2) 
indicate respectively the three-dimensional plot with contour map on three planes for the predicted peakon solution and learned 
spectral function corresponding to spectral parameter 𝜆 = 1.4812.

Similarly, in order to further demonstrate the efficiency of LPNN-v1, we compared the training performance with the standard 
PINN and provided detailed comparison results in Table 2. By the way, the abundant data-driven peakon and periodic peakon 
solutions of the CH equation have been investigated by utilizing the PINN algorithm, interested readers refer to [47]. Unlike case 1, 
in this example we have no fixed spectral parameter 𝜆 for training, but instead train through LPNN-v1 after giving the initial spectral 
parameter value. From Table 2, we can clearly see that the training error of LPNN-v1 is not significantly improved compared to the 
standard PINN algorithm, but the training time is more than 5 times faster than the standard PINN algorithm. In contrast with the 
numerical result of KdV equation in case 1, the training of CH equation in this case is significantly more efficient, it benefits from the 
complexity for the Lax pairs of the CH equation and KdV equation is not significantly different, but the form of the CH equation itself 
is more complex than that of the KdV equation. Additionally, the peakon solution in this case is a non-smooth solution, indicating 
that LPNN-v1 is also capable of efficiently recovering non-smooth solution.

∙ Case 3: Kadomtsev-Petviashvili equation

In the first two examples, we efficiently solved two classical (1+1)-dimensional integrable models using LPNN-v1. The (2+1)-

dimensional integrable systems usually have three independent variables {𝑥, 𝑦, 𝑡}, where 𝑥 and 𝑦 usually refer to space variables 
8

and 𝑡 refers to time variable. To further verify the performance of LPNN-v1 in high-dimensional integrable systems, we consider a 
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Fig. 4. (Color online) The training results of line-soliton solution 𝑢(𝑥, 𝑦, 𝑡) and spectral function 𝜙(𝑥, 𝑦, 𝑡) at time 𝑡 = 0 for KP equation arising from the LPNN-v1. 
(a) The ground truth, prediction and error dynamics density plots, as well as sectional drawings which contain the true and prediction line-soliton solution at three 
distinct 𝑦-dots 𝑦 = −1.5, 0, 1.5; (b) Evolution graph of the loss function in LPNN-v1; (c) The three-dimensional plot with contour map for the data-driven line-soliton 
solution; (d) The three-dimensional plot with contour map for the data-driven spectral function.

Table 3

Performance comparison between LPNN-v1 and conventional PINN for solving KP equation.

Types 𝐱 × 𝑡 ib,c optimizer 𝜙 𝐿2 norm error training time

PINN [-3,3]×[-3,3]×[-0.5,0.5] 500,10000 L-BFGS × 1.037711e-02 4757.5630 s

LPNN-v1 [-3,3]×[-3,3]×[-0.5,0.5] 500,10000 L-BFGS
√

5.867296e-03 2767.3306 s

typical (2+1)-dimensional integrable PDE in this example, namely the KP equation [38]. The KP equation was derived by Kadomtsev 
and Petviashvili to examine the stability of the single-soliton of the KdV equation under transverse perturbations in 1970, and it is 
relevant for most applications in which the KdV equation arises. The KP equation can be written as

(𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥)𝑥 + 3𝜎2𝑢𝑦𝑦 = 0, (3.7)

where 𝜎2 = −1 or 𝜎2 = 1. The Eq. (3.7) is called the KPI equation if 𝜎2 = −1, and the KPII equation if 𝜎2 = 1. Since the KP equation 
(3.7) degenerates into the one-dimensional KdV equation (3.1) as 𝑢 is independent of 𝑦, the KP equation is the natural generalization 
of the KdV equation. The KP equation describes the motion of two dimensional water wave and possesses important applications in 
fluid mechanics and theoretical physics.

Correspondingly, we can directly write the Lax pairs of the KP equation (3.7) [25], as shown in the following equation

𝑓Lp ∶

{
𝜙𝑦 = −𝜎−1𝜙𝑥𝑥 − 𝜎−1𝑢𝜙

𝜙𝑡 = −4𝜙𝑥𝑥𝑥 − 6𝑢𝜙𝑥 − (3𝑢𝑥 − 3𝜎𝜕−1𝑥 𝑢𝑦)𝜙
. (3.8)

We can directly derive the KP equation (3.7) by utilizing the compatibility condition equation 𝜙𝑦𝑡−𝜙𝑡𝑦 = 0. Due to the complexity and 
peculiarity of high-dimensional integrable systems, Lax pairs of some high-dimensional integrable systems [including the KP equation 
(3.7) in this part and high-dimensional KdV equation (3.10) in next example] do not involve corresponding spectral parameter 𝜆 and 
only contain spectral function 𝜙(𝑥, 𝑦, 𝑡) and potential function 𝑢(𝑥, 𝑦, 𝑡). Specifically, we consider the KPII equation with taking 𝜎 = 1, 
then study the following initial and boundary conditions

𝑢(𝑥, 𝑦, 𝑡 = −0.5) = 18e3𝑥+6𝑦+31.5

(1 + e3𝑥+6𝑦+31.5)2
, 𝐱 ∈Ω,

𝑢(𝑥, 𝑦, 𝑡) = 18e3𝑥+6𝑦−63𝑡

(1 + e3𝑥+6𝑦−63𝑡)2
, 𝐱 ∈ 𝜕Ω, 𝑡 ∈ [−0.5,0.5].

(3.9)

Here 𝐱 = {𝑥, 𝑦}, Ω = [−3, 3] × [−3, 3]. The spectral function 𝜙 ∈ ℝ1×1 satisfied free initial-boundary condition and initialized to 
𝜙(𝑥, 𝑦, 𝑡) = 0. We select initial and boundary points 𝑁ib = 500 from the initial-boundary conditions (3.9), and collocation points 
𝑁c = 10000. After 1125 L-BFGS optimization in LPNN-v1, the relative 𝐿2 norm error for line-soliton solution 𝑢(𝑥, 𝑦, 𝑡) reaches 
5.867296e-03 in 2767.3306 seconds. Generally, if the region where 𝑢 is far from zero forms a band on the (𝑥, 𝑦) plane, this kind of 
solution is called “line-soliton”. This does not happen in (1+1)-dimensional integrable systems.

Fig. 4 displays the numerical results obtained by solving the KP equation by applying LPNN-v1. Fig. 4(a) showcases three different 
density plots and sectional drawings at three distinct 𝑦-dots. In the process of LPNN-v1 optimization training using L-BFGS, the 
evolution figure of loss function is given in Fig. 4(b). Figs. 4(c) and Fig. 4(d) exhibit the three-dimensional plots of the line-soliton 
solution 𝑢(𝑥, 𝑦, 𝑡) and spectral function 𝜙(𝑥, 𝑦, 𝑡), respectively. Table 3 provides a detailed results comparison of using PINN and 
LPNN-v1 to solve the line-soliton solution of the KP equation. Surprisingly, comparing with the PINN, one can find that the LPNN-v1 
not only reduces training time but also improves training accuracy by about twice. Since the Lax pairs of the KP equation does 
not contain spectral parameter, Table 3 only displays that LPNN-v1 can learn and obtain spectral function, which is an important 
numerical result that PINN cannot obtain. The numerical results indicate that LPNN-v1 is also suitable for efficiently solving high-
9

dimensional integrable systems and their spectral problems.
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Fig. 5. (Color online) The training results of lump solution 𝑢(𝑥, 𝑦, 𝑡) and spectral function 𝜙(𝑥, 𝑦, 𝑡) at time 𝑡 = 0 for high-dimensional KdV equation arising from the 
LPNN-v1. (a) The ground truth, prediction and error dynamics density plots, as well as sectional drawings which contain the true and prediction lump solution 𝑢(𝑥, 𝑦)
at three distinct 𝑦-dots 𝑦 = −5, 0, 5; (b) Evolution graph of the loss function in LPNN-v1; (c) The three-dimensional plot with contour map for the data-driven lump 
solution 𝑢(𝑥, 𝑦); (d) The three-dimensional plot with contour map for the data-driven spectral function 𝜙(𝑥, 𝑦).

∙ Case 4: High-dimensional Korteweg-de Vries equation

In this part, we further consider the following high-dimensional KdV equation

𝑢𝑡𝑦 + 𝑢𝑥𝑥𝑥𝑦 + 3(𝑢𝑦𝑢𝑥)𝑥 − 𝑢𝑥𝑥 + 2𝑢𝑦𝑦 = 0, (3.10)

here 𝐱 = {𝑥, 𝑦} ∈ Ω indicates the 2-dimensional space in Eq. (2.1a). Wazwaz firstly put forward the new (2+1)-dimensional KdV 
equation, and pointed out the integrability of the new (2+1)-dimensional KdV equation is investigated via using the Painlevé test 
[48]. Afterwards, with the aid of Bell polynomials theory, we derived the bilinear formalism, bilinear Bäcklund transformations and 
Lax pairs of the (2+1)-dimensional KdV equation (3.10), and obtained the 𝑁 -soliton solution base on the bilinear formalism, the 
lump solution and quasiperiodic wave solutions along with their asymptotic properties in Ref. [49]. Therefore, we can directly write 
the Lax pairs of operator form (2.1b) for the high-dimensional KdV equation (3.10), as shown below

𝑓Lp ∶
⎧⎪⎨⎪⎩
𝜙𝑥𝑦 =

1
3
𝜙− 𝜙𝑢𝑦

𝜙𝑡 = −3𝑢𝑥𝜙𝑥 −𝜙𝑥𝑥𝑥 − 2𝜙𝑦

. (3.11)

We can derive the high-dimensional KdV equation (3.10) via the compatibility condition equation 𝜙𝑥𝑦𝑡 − 𝜙𝑡𝑥𝑦 = 0. Now we let 
spectral function 𝜙(𝑥, 𝑦, 𝑡) ∈ ℝ1×1 satisfied free initial-boundary condition and initialized to 𝜙(𝑥, 𝑦, 𝑡) = 0 in spatiotemporal region 
[−10, 10] × [−10, 10] × [−5, 5], namely Ω = [−10, 10] × [−10, 10]. Then we consider the following initial and boundary conditions of 
high-dimensional KdV equation (3.10)

𝑢(𝑥, 𝑦, 𝑡 = −5) = 15 + 2𝑥+ 2𝑦
(0.5𝑥+ 𝑦+ 10)2 + (−2.5 + 0.5𝑥)2 + 3

, 𝐱 ∈Ω,

𝑢(𝑥, 𝑦, 𝑡) = −3𝑡+ 2𝑥+ 2𝑦
(0.5𝑥+ 𝑦− 2𝑡)2 + (0.5𝑡+ 0.5𝑥)2 + 3

, 𝐱 ∈ 𝜕Ω, 𝑡 ∈ [−5,5].
(3.12)

Owing to the 2-dimensional space of high-dimensional KdV equation (3.10), we can obtain the 𝜕Ω has four boundary surfaces. Then 
we use 400 initial and boundary points, as well as 20000 collocation points in LPNN-v1, and obtain the 9.171556e-03 relative 𝐿2

norm error for data-driven lump solution 𝑢(𝑥, 𝑦, 𝑡) and spectral function 𝜙(𝑥, 𝑦, 𝑡) of Lax pairs (3.11) by using 641 L-BFGS optimization 
in 963.9654 seconds. The lump solution is a special type of rational function solution in high-dimensional integrable systems, which 
is localized in all directions of space, it appears in various fields such as Bose-Einstein condensates, optics and marine science [50].

Fig. 5 depicts the deep learning results of the data-driven lump solution 𝑢(𝑥, 𝑦, 𝑡) and spectral function 𝜙(𝑥, 𝑦, 𝑡) at time 𝑡 = 0
stemming from the LPNN-v1 for the high-dimensional KdV equation (3.10). Specifically, as shown in Fig. 5(a), we display the density 
plots of the true dynamics, prediction dynamics and error dynamics, then showcase its corresponding amplitude scale size on the right 
side of density plots, and exhibit the sectional drawings which contain the learned and true solution at three different 𝑦-dots. The 
evolution curve figure of the loss function arising from the LPNN-v1 is displayed in Fig. 5(b). Figs. 5(c) and (d) indicate respectively 
the three-dimensional plot with contour map on three planes for the predicted lump solution 𝑢(𝑥, 𝑦) and learned spectral function 
𝜙(𝑥, 𝑦). Generally, we can also fix the 𝑥-axis [or 𝑦-axis] to visualize the relevant deep learning results for data-driven lump solution 
and spectral function in the (𝑦, 𝑡)-dimension [or (𝑥, 𝑡)-dimension].

Under the same training conditions, we also used traditional PINN to solve the high-dimensional KdV equation, and presented 
a comparison of the efficiency and accuracy of the two algorithms in Table 4. As shown in Table 4, compared with PINN, we can 
know that the LPNN-v1 decreased training time by more than twice at the cost of sacrificing training accuracy. The numerical results 
further demonstrate that LPNN-v1 is equally effective for solving high-dimensional integrable systems.

As is well known, the L-BFGS optimizer is a second-order optimizer and is more expensive to use. This work mainly utilized 
the L-BFGS optimizer for training, owing to the L-BFGS optimizer performs better overall in numerical experiments. In fact, we 
can also use first-order Adam optimizer or stochastic gradient descent optimizer for optimization. We also performed numerical 
10

experiments using the Adam optimizer with default settings for all the examples in this subsection, and detailed numerical re-
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Table 4

Performance comparison between LPNN-v1 and conventional PINN for solving high-dimensional KdV equation.

Types 𝐱 × 𝑡 ib,c optimizer 𝜙 𝐿2 norm error training time

PINN [-10,10]×[-10,10]×[-5,5] 400,20000 L-BFGS × 5.416409e-03 2002.7561 s

LPNN-v1 [-10,10]×[-10,10]×[-5,5] 400,20000 L-BFGS
√

9.171556e-03 963.9654 s

sults are attached in Tables 9-12 of Appendix A. From Table 9 in Appendix A, we can also observe that the training errors of 
LPNN-v1 and PINN are similar when using the Adam optimizer, but the training time of LPNN-v1 is shorter. When solving the 
non-smooth localized wave solution of the CH equation, it can be seen from Table 10 in Appendix A that although the training 
efficiency of LPNN-v1 is more than 3 times faster than that of PINN, the training error of LPNN-v1 is very large. By combining 
Table 2 and meticulous analysis, we argue that the optimization performance of Adam optimizer used in PINN and LPNN-v1 is 
worse than that of L-BFGS optimizer when solving non-smooth solutions. In addition, LPNN-v1 solved not only the non-smooth 
solution of the CH equation, but also the corresponding spectral problem, which may lead to a large training error using the Adam 
optimizer. By combining Table 11 in Appendix A and Table 3, the LPNN-v1 using the Adam optimizer achieved nearly 3x ac-

celerations in training efficiency and nearly 40x improvements in training accuracy by comparing to the PINN using the Adam 
optimizer, which is similar to the training effect using the L-BFGS optimizer. From Table 12 in Appendix A and Table 4, it can 
be seen that when using the Adam optimizer to solve the high-dimensional KdV equation, the training time of LPNN-v1 is shorter 
but the training accuracy is slightly lower than that of PINN, which is consistent with the training effect of using the L-BFGS opti-

mizer.

In this subsection, we efficiently solved the KdV equation, CH equation, KP equation and high-dimensional KdV equation using 
LPNN-v1 with a novel network framework. In addition to obtaining data-driven soliton solution, non-smooth peakon solution, line-

soliton solution and lump solution, we also learned and obtained the corresponding spectral parameter and spectral function of 
spectral problems for the first time. Due to the fact that these integrable systems have simpler Lax pairs than these equations 
itself, the Lax pairs informed part of LPNN-v1 is simpler and more direct than the PDE informed of standard PINN, thus efficiently 
solving integrable systems and spectral problems. Surprisingly, our proposed LPNN-v1 significantly improves the training efficiency 
in solving non-smooth solution and studying high-dimensional integrable system, with training accuracy is similar to or even higher 
than the standard PINN. Although the training error of LPNN-v1 in Table 1 is larger than that of vanilla PINN, and the training 
errors of the two in Table 2 are almost the same, the major advantage of LPNN-v1 is that it requires less training time, which is 
suitable for some practical scenarios where accuracy is not as high but time requirements are faster. Specifically, the training time 
of vanilla PINN in Table 1 is more than 3 times longer than LPNN-v1, while the training time of vanilla PINN in Table 2 is more 
than 5 times longer than LPNN-v1. For some integrable systems with more complex equations and simpler Lax pairs, the training 
time of LPNN-v1 can even be more than an order of magnitude less than that of vanilla PINN. When studying certain integrable 
systems, LPNN-v1 can achieve higher training accuracy and shorter training time than vanilla PINN, as shown in the numerical 
results of training high-dimensional KP equation using LPNN-v1 in Table 3. In summary, LPNN-v1 may exhibit different training 
results for different research objects in terms of training accuracy. Although LPNN-v1 may also achieve higher training accuracy 
than vanilla PINN, its main advantage is that LPNN-v1 requires shorter training time than vanilla PINN. This is due to the fact that 
the training performance of LPNN-v1 generally depends more on the mathematical structure of the integrable model and its Lax pairs 
that we are studying. Usually, high-dimensional integrable systems themselves have a relatively complex form, while their Lax pairs 
have a simpler form compared to PDE itself, hence the LPNN-v1 is particularly suitable for studying high-dimensional integrable 
systems.

3.2. High-accuracy solving performance of LPNN-v2

In the following subsections, we delve into the data-driven localized wave solutions and spectral problems for other significant 
and classical integrable systems with Lax pairs by applying LPNN-v2, and provide comprehensive numerical results along with kinetic 
analysis.

∙ Case 1: Sine-Gordon equation

The SG equation is classical integrable model, which is introduced in 1939 by Frenkel and Kontorova as a model for the dynamics 
of crystal dislocations [39]. The SG equation has found a variety of applications, including Bloch wall dynamics in ferromagnetics and 
ferroelectrics, fluxon propagation in long Josephson (superconducting) junctions, self-induced transparency in nonlinear optics, spin 
waves in the A-phase of liquid 3He at temperatures near to 2.6 mK, and a simple, one-dimensional model for elementary particles 
[51]. The SG equation and its Lax pairs [matrix form] can be represented as

𝑢𝑥𝑡 = sin(𝑢), (3.13)

𝑓Lp ∶
{Φ𝑥 =𝑀Φ

Φ𝑡 =𝑁Φ
, 𝑀 =

[
−i𝜆 −1

2𝑢𝑥
1
2𝑢𝑥 i𝜆

]
, 𝑁 =

[ i
4𝜆 cos(𝑢)

i
4𝜆 sin(𝑢)

i
4𝜆 sin(𝑢) − i

4𝜆 cos(𝑢)

]
, (3.14)

here “i” indicates imaginary unit, and we have 𝑢(𝑥, 𝑡) ∈ ℝ1×1, spectral function Φ(𝑥, 𝑡) ∈ ℂ2×1, spectral parameter 𝜆 = 𝜆1 + 𝜆2i ∈
11

ℂ. Thus we set Φ(𝑥, 𝑡) = (𝜙1(𝑥, 𝑡), 𝜙2(𝑥, 𝑡))T and 𝜙1(𝑥, 𝑡) = 𝜙11(𝑥, 𝑡) + i𝜙12(𝑥, 𝑡), 𝜙2(𝑥, 𝑡) = 𝜙21(𝑥, 𝑡) + i𝜙22(𝑥, 𝑡), in which 𝜙𝑖𝑗 (𝑥, 𝑡) ∈
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Fig. 6. (Color online) The training results of kink solution 𝑢(𝑥, 𝑡) and spectral functions 𝜙1(𝑥, 𝑡), 𝜙2(𝑥, 𝑡) for SG equation arising from the LPNN-v2. (a) The ground truth, 
prediction and error dynamics density plots, as well as sectional drawings which contain the true and prediction kink solution at three distinct moments 𝑡 =−2.5, 0, 2.5; 
(b) Evolution graphs of the loss function [panel b1] and spectral parameter 𝜆 = 𝜆1 + i𝜆2 [panels b2 and b3] in LPNN-v2; (c) The three-dimensional plots with contour 
map for the data-driven kink solution [panel c1] and spectral functions [panels c2, c3] corresponding to spectral parameter 𝜆 =−0.000402 + 0.000416i.

Table 5

Performance comparison between LPNN-v2, LPNN-v1 and conventional PINN for solving SG equation.

Types 𝐱 × 𝑡 ib,c optimizer 𝜆 Φ 𝐿2 norm error training time

PINN [-5,5]×[-5,5] 500,10000 L-BFGS × × 7.025371e-04 19.8829 s

LPNN-v1 [-5,5]×[-5,5] 500,10000 L-BFGS 0.004767-0.01552i
√

2.711373e-03 38.0464 s

LPNN-v2 [-5,5]×[-5,5] 500,10000 L-BFGS -0.000402+0.000416i
√

1.962527e-04 215.7550 s

ℝ1×1[𝑖, 𝑗 = 1, 2]. Accordingly, we can derive the SG equation (3.13) through the zero curvature equation (1.6), we let 𝜙𝑖𝑗 satisfy free 
initial-boundary conditions and they are initialized to 𝜙𝑖𝑗 = 0, and we initialize spectral parameter 𝜆 to 0 + 0i. Then we consider the 
initial and boundary conditions of SG equation in spatiotemporal region [−5, 5] × [−5, 5] as bellow

𝑢(𝑥, 𝑡 = −5) = 4arctan(e𝑥−5), 𝑥 ∈ [−5,5],

𝑢(−5, 𝑡) = 4arctan(e−5+𝑡), 𝑢(5, 𝑡) = 4arctan(e5+𝑡), 𝑡 ∈ [−5,5].
(3.15)

We use 500 initial and boundary points, as well as 10000 collocation points in LPNN-v2, then obtain the 1.962527e-04 relative 𝐿2

norm error for data-driven kink solution 𝑢(𝑥, 𝑡) by using 666 L-BFGS optimization in 215.7550 seconds. Moreover, we also numerically 
learned the spectral parameter 𝜆 = −0.000402 + 0.000416i and their corresponding spectral function Φ(𝑥, 𝑡) = (𝜙1(𝑥, 𝑡), 𝜙2(𝑥, 𝑡))T in 
spectral problem (3.14).

Fig. 6 displays the data-driven training results of the kink solution 𝑢(𝑥, 𝑡) and spectral functions 𝜙1(𝑥, 𝑡), 𝜙2(𝑥, 𝑡) by utilizing 
the LPNN-v2 with the initial-boundary value conditions of the SG equation. The upper panel of Fig. 6(a) depicts various dynamic 
density plots, including true, learned dynamics as well as error dynamics with corresponding amplitude scale size on the right 
side, and the bottom panel of Fig. 6(a) presents sectional drawing at different moments. The evolution curve figures for the loss 
function [panel (b1)] and spectral parameter [panels (b2), (b3)] arising from the LPNN-v2 with L-BFGS are displayed in Fig. 6(b). 
The three-dimensional plots with contour map on three planes for the data-driven kink solution and spectral functions have been 
displayed in Fig. 6(c), in which left panel is three-dimensional figures of kink solution 𝑢(𝑥, 𝑡), while the middle and right panel are 
three-dimensional figures of spectral functions 𝜙1(𝑥, 𝑡), 𝜙2(𝑥, 𝑡).

Similarly, we exhibit that comparison of relative 𝐿2 norm error and training time between LPNN-v2, LPNN-v1 and conventional 
PINN for solving SG equation in Table 5. From this table, we found that in the context of consistent training parameter information, 
traditional PINN has the shortest training time, LPNN-v2 has the highest training accuracy, while LPNN-v1 has both time and 
accuracy at the intermediate level. Since the Lax pairs of the SG equation is expressed in matrix form, the Φ learned and obtained by 
12

LPNNs in Table 5 is a vector spectral function, which contains 𝜙1 and 𝜙2. Owing to the SG equation form is more concise compared 
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Fig. 7. (Color online) The training results of single-soliton solution 𝑢(𝑥, 𝑡) and spectral functions 𝜙𝑖𝑗 (𝑥, 𝑡) for mKdV equation arising from the LPNN-v2. (a) The ground 
truth, prediction and error dynamics density plots, as well as sectional drawings which contain the true and prediction soliton solution at three distinct moments 
𝑡 = −0.34, 0, 0.34; (b) Evolution graphs of the loss function [panel b1] and spectral parameter 𝜆 [panels b2] in LPNN-v2; (c) The three-dimensional plots with contour 
map for the data-driven soliton solution [panel c1] and spectral functions [panels c2-c5] corresponding to spectral parameter 𝜆 = 0.056701.

to its Lax pairs, so LPNN-v1 cannot complete efficient training, but LPNN-v2 can achieve high training accuracy. Therefore, we can 
see that LPNN-v2 can achieve high training accuracy, but at the same time it may consume more training time.

∙ Case 2: Modified KdV equation

The mKdV equation, which was derived in the study of an-harmonic lattices, is also one of the most important models in integrable 
systems and can be regarded as the KdV equation (3.1) with a cubic nonlinearity [40]. Moreover, the exact solutions of the KdV 
equation and the mKdV equation can be transformed into each other via the explicit Miura transformation, which provides an 
important foundation for the development of Miura transformation theory [52]. We directly present the mKdV equation and its Lax 
pairs, as follows:

𝑢𝑡 + 6𝑢2𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0, (3.16)

𝑓Lp ∶
{Φ𝑥 =𝑀Φ

Φ𝑡 =𝑁Φ
, 𝑀 =

[
𝜆 𝑢

−𝑢 −𝜆

]
,

𝑁 =
[

−4𝜆3 − 2𝑢2𝜆 −4𝑢𝜆2 − 2𝑢𝑥𝜆− 2𝑢3 − 𝑢𝑥𝑥
4𝑢𝜆2 − 2𝑢𝑥𝜆+ 2𝑢3 + 𝑢𝑥𝑥 4𝜆3 + 2𝑢2𝜆

]
.

(3.17)

Different from the KdV equation, the Lax pairs (3.17) of the mKdV equation are more complex compared to the mKdV equation 
itself, so we choose LPNN-v2 to solve and study its localized wave solution and spectral problem. Unlike the previous handling of 
the SG equation, we take spectral parameter 𝜆 ∈ℝ and initialize it to 𝜆 = 1. Particularly, we select spectral function Φ(𝑥, 𝑡) ∈ℝ2×2, 
namely we have second-order matrix Φ(𝑥, 𝑡) = [𝜙𝑖𝑗 ]2×2, 𝑖, 𝑗 = 1, 2. We initialize the spectral functions to 𝜙𝑖𝑗 = 0 while satisfying the 
free initial-boundary condition. When the spatiotemporal variables {𝑥, 𝑡} ∈ [−4, 4] ×[−0.5, 0.5], we consider the solution of the mKdV 
equation with Lax pairs to have the following initial and boundary conditions

𝑢(𝑥, 𝑡 = −0.5) = 2sech(2𝑥+ 6), 𝑥 ∈ [−4,4],

𝑢(−3, 𝑡) = 2sech(−8𝑡− 6), 𝑢(3, 𝑡) = 2sech(−8𝑡+ 10), 𝑡 ∈ [−0.5,0.5].
(3.18)

Utilizing the initial and boundary conditions (3.18), we select 𝑁ib = 400 initial-boundary points and 𝑁c = 10000 collocation 
points to generate the training data set for LPNN-v2. We successfully trained and obtained the data-driven single-soliton solution of 
the mKdV equation with high accuracy using LPNN-v2, here the relative 𝐿2 norm error of the solution 𝑢(𝑥, 𝑡) is 7.578669e-04, the 
learned spectral parameter is 𝜆 = 0.056701, and the training time and loss function iteration times of the network are 2396.8047 s 
and 4150 times, respectively.

We present the vivid numerical results of LPNN-v2 for solving the mKdV equation in Fig. 7. In Fig. 7(a), we display detailed 
density plots for the ground truth, prediction and error dynamics, as well as showcase the sectional drawings at three distinct 
13

moments corresponding to the blue dashed line in density plots. The evolution graphs of the loss function [panel b1] and spectral 
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Table 6

Performance comparison between LPNN-v2, LPNN-v1 and conventional PINN for solving mKdV equation.

Types 𝐱 × 𝑡 ib,c optimizer 𝜆 Φ 𝐿2 norm error training time

PINN [-4,4]×[-0.5,0.5] 400,10000 L-BFGS × × 8.767018e-03 447.3520 s

LPNN-v1 [-4,4]×[-0.5,0.5] 400,10000 L-BFGS 0.455595
√

7.656110e-01 667.0884 s

LPNN-v2 [-4,4]×[-0.5,0.5] 400,10000 L-BFGS 0.056701
√

7.578669e-04 2396.8047 s

parameter 𝜆 [panels b2] are revealed in Fig. 7(b). Fig. 7(c1) displays the three-dimensional plot with contour map of the data-

driven soliton solution 𝑢(𝑥, 𝑡), while Figs. 7(c2-c5) display the spectral functions corresponding to spectral parameter 𝜆 = 0.056701. 
Moreover, we provide a detailed performance comparison of using three different algorithms to solve the mKdV equation in Table 6. 
Due to the Lax pairs of the mKdV equation is expressed in matrix form, the Φ learned and obtained by LPNNs in Table 6 is a matrix 
spectral function, which contains 𝜙1, 𝜙2, 𝜙3 and 𝜙4. From Table 6, owing to the complexity of the Lax pairs of mKdV equation, 
LPNN-v1 performs poorly in terms of training efficiency and accuracy. If readers prefer to use LPNN-v1, the accuracy and efficiency 
of LPNN-v1 can be improved by adjusting the appropriate training spatiotemporal region, resetting the hyper-parameters of NN 
and suitable initialization of spectral parameter. Although LPNN-v2 consumes more training time than PINN, it improves training 
accuracy by an order of magnitude.

∙ Case 3: Nonlinear Schrödinger equation

The integrable NLS equation is closely related to many nonlinear problems in fields such as nonlinear optics, plasma and Bose-

Einstein condensates. Unlike the integrable models studied previously, the potential function of the NLS equation is a complex valued 
function, and it is also one of the most classic integrable models in integrable systems, playing a crucial role in the integrable systems 
theory. The NLS equations have attracted much attention after Zakharov and Shabat in 1972 constructed the matrix Lax pairs and 
studied the inverse scattering transform and exact solutions for the NLS equation [28]. The NLS equation with two auxiliary equations 
[Lax pairs] can be written as

i𝑞𝑡 +
1
2
𝑞𝑥𝑥 + |𝑞|2𝑞 = 0, (3.19)

𝑓Lp ∶
{Φ𝑥 =𝑀Φ

Φ𝑡 =𝑁Φ
, 𝑀 =

[
i𝜆 i𝑞∗
i𝑞 −i𝜆

]
, 𝑁 =

[
i𝜆2 − 1

2 i𝑞𝑞
∗ i𝜆𝑞∗ + 1

2 𝑞
∗
𝑥

i𝜆𝑞 − 1
2 𝑞𝑥 −i𝜆2 + 1

2 i𝑞𝑞
∗

]
, (3.20)

where the superscript “*” represents complex conjugation, |𝑞| indicate modulus of complex-value solution 𝑞(𝑥, 𝑡) ∈ℂ1×1, then we set 
𝑞(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) + i𝑣(𝑥, 𝑡), 𝑢(𝑥, 𝑡)∕𝑣(𝑥, 𝑡) ∈ ℝ1×1 for network training. Similarly, spectral function Φ(𝑥, 𝑡) ∈ ℂ2×1, thus we let Φ(𝑥, 𝑡) =
(𝜙1(𝑥, 𝑡), 𝜙2(𝑥, 𝑡))T and 𝜙1(𝑥, 𝑡) = 𝜙11(𝑥, 𝑡) +i𝜙12(𝑥, 𝑡), 𝜙2(𝑥, 𝑡) = 𝜙21(𝑥, 𝑡) +i𝜙22(𝑥, 𝑡), in which 𝜙𝑖𝑗 (𝑥, 𝑡) ∈ℝ1×1[𝑖, 𝑗 = 1, 2]. Furthermore, 
spectral parameter 𝜆 ∈ℂ, then we take 𝜆 = 𝜆1 +𝜆2i, here we have 𝜆1 ∈ℝ and 𝜆2 ∈ℝ. The NLS equation (3.19) can be derived via the 
Lax pairs (3.20) and zero curvature equation (1.6). Next we initialize 𝜙𝑖𝑗 = 0 and make it satisfy the free initial-boundary conditions. 
Then according to Ref. [13,53], we provide the following initial-boundary value conditions of NLS equation in spatiotemporal region 
[−3, 3] × [−1.5, 1.5]

𝑞(𝑥, 𝑡 = −1.5) =
[
1 − 4(1 − 3i)

4𝑥2 + 10

]
e−1.5i, 𝑥 ∈ [−3,3],

𝑞(−3, 𝑡) =
[
1 − 4(1 + 2i𝑡)

4𝑡2 + 37

]
ei𝑡, 𝑞(3, 𝑡) =

[
1 − 4(1 + 2i𝑡)

4𝑡2 + 37

]
ei𝑡, 𝑡 ∈ [−1.5,1.5].

(3.21)

Likewise, according to the initial and boundary conditions (3.21), we choose 𝑁ib = 400 initial and boundary points, as well as 
𝑁c = 10000 collocation points in LPNN-v2. The complex-value spectral parameter 𝜆 is initialized to −0.5 + 0.5i, then the relative 𝐿2

norm error reaches 1.264692e-03 for data-driven rogue wave solution 𝑞(𝑥, 𝑡) by applying 13733 L-BFGS optimization in 6446.000261 
seconds. Meanwhile, the spectral parameter of numerical discovery is 𝜆 = 0.38823 +0.018209i, and the corresponding vector spectral 
function Φ in spectral problem (3.20) has learned with high accuracy from LPNN-v2. Rogue wave is a very rare and short-lived 
isolated large amplitude wave, characterized by “coming without a shadow, going without a trace”, and its wave height is generally 
more than twice that of the surrounding highest wave [54]. The NLS equation (3.19) is also the most basic mathematical model 
for describing rogue wave phenomena. Hitherto, rogue waves have emerged in numerous research fields, such as optics and fluid 
mechanics [55,56].

Fig. 8 displays the training results of the data-driven rogue wave solution and corresponding spectral problem for the NLS equation 
stemming from the LPNN-v2. Similarly, the abundant density plots and sectional drawings are revealed in Fig. 8(a), then Fig. 8(b) 
reveals the loss function curve [panel (b1)] and the numerical evolution of the real and imaginary parts of the spectral parameters 
𝜆 [panels (b2) and (b3)]. The three-dimensional plots and its contour map on three planes for the data-driven rogue wave solution 
and spectral functions are exhibited in Fig. 8(c). We provide the performance comparison of utilizing three different methods to 
solve the NLS equation in Table 7. From Table 7, we can observe that LPNN-v2 has the highest training accuracy after consuming 
more training time, while LPNN-v1 has the shortest training time but lower training accuracy. Compared with traditional PINN, 
LPNN-v2 has improved training accuracy by more than twice. Certainly, we can further improve the training accuracy of LPNN-v1 
14

and LPNN-v2 by readjusting the training spatiotemporal region, resetting hyper-parameters and spectral parameter.
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Fig. 8. (Color online) The training results of rogue wave solution |𝑞(𝑥, 𝑡)| and spectral functions |𝜙1(𝑥, 𝑡)|, |𝜙2(𝑥, 𝑡)| for NLS equation arising from the LPNN-v2. (a) 
The ground truth, prediction and error dynamics density plots, as well as sectional drawings which contain the true and prediction rogue wave solution at three 
distinct moments 𝑡 = −0.75, 0, 0.75; (b) Evolution graphs of the loss function [panel b1] and spectral parameter 𝜆 = 𝜆1 + i𝜆2 [panels b2, b3] in LPNN-v2; (c) The three-

dimensional plots with contour map for the data-driven rogue wave solution [panel c1] and spectral functions [panels c2, c3] corresponding to spectral parameter 
𝜆 = 0.38823 + 0.018209i.

Table 7

Performance comparison between LPNN-v2, LPNN-v1 and conventional PINN for solving NLS equation.

Types 𝐱 × 𝑡 ib,c optimizer 𝜆 Φ 𝐿2 norm error training time

PINN [-3,3]×[-1.5,1.5] 100,10000 L-BFGS × × 3.375881e-03 2911.307015 s

LPNN-v1 [-3,3]×[-1.5,1.5] 100,10000 L-BFGS -0.374518+0.393163i
√

4.112298e-01 979.621199 s

LPNN-v2 [-3,3]×[-1.5,1.5] 100,10000 L-BFGS 0.38823+0.018209i
√

1.264692e-03 6446.000261 s

∙ Case 4: Short pulse equation

The short pulse (SP) equation

𝑢𝑥𝑡 = 𝑢+ 1
6
(𝑢3)𝑥𝑥 (3.22)

is proposed by Schäfer and Wayne [42] as an alternative (to the NLS equation) model for approximating the evolution of ultrashort 
intense infrared pulses in silica optical, in which 𝑢 represents the dimensionless electric field, 𝑡 and 𝑥 standing for time-like and space-

like independent variables, respectively. Subsequent numerical analyses have demonstrated that the SP equation as an approximation 
of the Maxwell’s equation has superior applicability, particularly when characterizing the propagation of extremely short-duration 
light pulses [57]. This equation was initially introduced as one of Rabelo’s equations in the realm of differential geometry [58]. 
Furthermore, aforementioned KdV equation, mKdV equation, SG equation and NLS equation all belong to the AKNS hierarchy [30], 
while the SP equation is the most classical integrable model in WKI equations and possesses a Lax pairs of the WKI type [41], and it 
can be transformed into the integrable SG equation [59]. One can obtain the Lax pairs of SP equation, as shown in following

𝑓Lp ∶
{Φ𝑥 =𝑀Φ

Φ𝑡 =𝑁Φ
, 𝑀 =

[
𝜆 𝜆𝑢𝑥
𝜆𝑢𝑥 −𝜆

]
, 𝑁 =

[ 1
2𝜆𝑢

2 + 1
4𝜆

1
2𝜆𝑢

2𝑢𝑥 −
1
2𝑢

1
2𝜆𝑢

2𝑢𝑥 +
1
2𝑢 −1

2𝜆𝑢
2 − 1

4𝜆

]
. (3.23)

The SP equation (3.22) can be derived by utilizing the zero curvature equation (1.6) along with Lax pairs (3.23). Similar to case 
3, we set spectral function Φ(𝑥, 𝑡) ∈ ℂ2×1 and spectral parameter 𝜆 ∈ ℂ, thus we take 𝜆 = 𝜆1 + 𝜆2i, Φ(𝑥, 𝑡) = (𝜙1(𝑥, 𝑡), 𝜙2(𝑥, 𝑡))T
and 𝜙1(𝑥, 𝑡) = 𝜙11(𝑥, 𝑡) + i𝜙12(𝑥, 𝑡), 𝜙2(𝑥, 𝑡) = 𝜙21(𝑥, 𝑡) + i𝜙22(𝑥, 𝑡), where 𝜆1∕𝜆2 ∈ℝ and 𝜙𝑖𝑗 (𝑥, 𝑡) ∈ℝ1×1[𝑖, 𝑗 = 1, 2]. Next we initialize 
𝜙𝑖𝑗 = 0 and make it satisfy the free initial-boundary conditions, then we refer to Ref. [60] and consider the initial and boundary 
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value conditions of SP equation in spatiotemporal region [−6, 6] × [−3, 3], as shown in following
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Fig. 9. (Color online) The training results of pulse solution 𝑢(𝑥, 𝑡) and spectral functions |𝜙1(𝑥, 𝑡)|, |𝜙2(𝑥, 𝑡)| for SP equation arising from the LPNN-v2. (a) The ground 
truth, prediction and error dynamics density plots, as well as sectional drawings which contain the reference and prediction pulse solution at three distinct moments 
𝑡 = −1.5, 0, 1.5; (b) Evolution graphs of the loss function [panel b1] and spectral parameter [panels b2, b3] in LPNN-v2; (c) The three-dimensional plots with contour 
map for the data-driven pulse solution [panel c1] and spectral functions [panels c2, c3] corresponding to spectral parameter 𝜆 = 0.002629 + 0.047998i.

Table 8

Performance comparison between LPNN-v2, LPNN-v1 and conventional PINN for solving SP equation.

Types 𝐱 × 𝑡 ib,c optimizer 𝜆 Φ 𝐿2 norm error training time

PINN [-6,6]×[-3,3] 400,10000 L-BFGS × × 3.432290e-02 577.9960 s

LPNN-v1 [-6,6]×[-3,3] 400,10000 L-BFGS 0.037306+0.040709i
√

1.664159e+00 532.3504 s

LPNN-v2 [-6,6]×[-3,3] 400,10000 L-BFGS 0.002629+0.047998i
√

1.528543e-02 2400.7532 s

𝑢(𝑥, 𝑡 = −3) = 0.04cos(𝑥+ 3)
cosh(0.01𝑥− 0.03))

, 𝑥 ∈ [−6,6],

𝑢(−6, 𝑡) = 0.04cos(−6 − 𝑡)
cosh(−0.06 + 0.01𝑡)

, 𝑢(6, 𝑡) = 0.04cos(6 − 𝑡)
cosh(0.06 + 0.01𝑡)

, 𝑡 ∈ [−3,3].
(3.24)

From aforementioned initial and boundary value conditions (3.24), we select 𝑁ib = 400 and 𝑁c = 10000 for training of LPNN-v2, 
while the spectral parameter was initialized as 𝜆 = 0.5 +0.5i. After 5913 L-BFGS optimization in LPNN-v2, the relative 𝐿2 norm error 
reaches 1.528543e-02 in 2400.7532 seconds, and the optimal spectral parameter learned is 𝜆 = 0.002629 + 0.047998i. As shown in 
Ref. [60], the data-driven solution learned is been called the pulse solution, it represents a single-valued nonsingular pulse or a wave 
packet, and the shape of the pulse is similar to that of the NLS soliton: the sech-shaped envelope modulates the cos-shaped wave. 
Moreover, owing to the initial and boundary training points in our training data come from approximate pulse solution of the SP 
equation (3.22), we can find that the 𝐿2 error trained by LPNN is relatively large. Based on the high-precision characteristics of 
LPNN-v2, we have reason to believe that the pulse solution learned in this part is more realistic.

The training results of the data-driven pulse solution stemming from the LPNN-v2 are indicated in Fig. 9, in which Fig. 9(a) 
displays the abundant density plots and sectional drawings. Fig. 9(b) shows the loss function curve in panel (b1), and the numerical 
evolutions for the real and imaginary parts of the spectral parameter 𝜆 with network training are shown in (b2) and (b3), respectively. 
While Fig. 9(c) showcases the three-dimensional plot and its contour map on three planes for pulse solution 𝑢(𝑥, 𝑡) and spectral 
functions 𝜙1, 𝜙2. Table 8 exhibits a detailed comparison of training results by applying three algorithms to solve the SP equation. 
Similar to the numerical results of solving the NLS equation in case 3, LPNN-v2 has improved training accuracy by more than twice 
compared to the traditional PINN algorithm. Due to the fact that the Lax pairs of the SP equation are more complicated compared to 
the SP equation itself, so LPNN-v1 has poor training accuracy in solving the SP equation. Therefore, as solving this type of integrable 
systems with intricate Lax pairs, we usually recommend using LPNN-v2 to obtain higher training accuracy.

Similarly, we performed numerical experiments using the Adam optimizer for all the examples in this subsection, and detailed 
numerical results are attached in Tables 13-16 of Appendix B. From Table 13 in Appendix B, we can observe that the training error 
of LPNN-v2 is the smallest among the numerical results of solving the SG equation using the Adam optimizer in the three neural 
16

networks, which is similar to the numerical results of the three neural networks using the L-BFGS optimizer in Table 5. In Table 14 of 
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Appendix B, according to numerical results of solving mKdV equation with Adam optimizer for three kinds of neural networks, we can 
obviously observe that the training error of LPNN-v2 is larger than that of PINN, which seems to violate the high-accuracy training 
feature of LPNN-v2. Since the Adam optimizer terminates the training iteration by setting the maximum number of iterations, and 
the loss function of LPNN-v2 is much more complex than that of PINN, Table 14 also showcases the numerical results of LPNN-v2 
after 200,000 Adam iterations. The numerical results indicate that the training accuracy of LPNN-v2 is further improved, but the 
improvement is not significant due to the influence of highly nonlinear terms in the mKdV equation. However, by combining Table 6, 
we find that PINN and LPNN-v2 have much higher training accuracy when using the L-BFGS optimizer than when using the Adam 
optimizer. Therefore, we believe that LPNN-v2 using Adam optimizer is difficult to present high-accuracy training characteristic when 
solving integrable systems with highly nonlinear terms. According to Table 15 in Appendix B and Table 7, once training intricate 
rogue wave of NLS equation, the training error values of LPNN-v2 and PINN are very close by applying 60000 Adam iterations, so 
the advantage of higher training accuracy of LPNN-v2 is not obvious. Similar to the previous case, Table 15 also shows the numerical 
results of LPNN-v2 after 100,000 Adam iterations, and the numerical results show that the training accuracy of LPNN-v2 is further 
improved, although the improvement is not very dramatic. Therefore, we argue that the training effect of the L-BFGS optimizer is 
better than that of the Adam optimizer when solving complex localized wave solutions of integrable systems. Finally, from Table 16

in Appendix B and Table 8, we can see that the training accuracy of LPNN-v2 using the Adam optimizer is higher than that of PINN, 
which is similar to the numerical results of the two neural networks using the L-BFGS optimizer. In summary, we can conclude 
that using the lower cost Adam optimizer, then LPNNs can still outperform standard PINNs in most training scenarios. However, in 
some special training scenarios, LPNNs can outperform standard PINNs only when using second-order L-BFGS optimizers, such as 
simulating non-smooth solution and intricate rogue wave, and solving integrable systems with highly nonlinear terms.

In this subsection, we further introduce compatibility condition/zero curvature equation constraints into Lax pairs informed based 
on LPNN-v1, then propose LPNN-v2 that can achieve higher accuracy. For practical problems requiring higher training accuracy and 
studying more complex localized wave solutions, we can generally utilize LPNN-v2 for training. We investigated the data-driven 
localized wave solutions and spectral problems of several important integrable systems by means of LPNN-v2, and found that LPNN-

v2 achieved higher training accuracy than standard PINN and LPNN-v1 by sacrificing training time. Specifically, we employed 
the LPNN-v2 to solve data-driven localized wave solutions and their spectral problems for the SG equation, mKdV equation, NLS 
equation and SP equation, where localized wave solutions include kink solution, soliton solution, rogue wave solution and pulse 
solution. Strikingly, the training accuracy of LPNN-v2 in Table 6 can be improved by an order of magnitude. Moreover, the training 
accuracy of LPNN-v2 also depends on the mathematical structure of the integrable system and its Lax pairs, and LPNN-v2 may have 
limited improvement in training accuracy when studying extremely complex scenarios of integrable systems and their Lax pairs, 
owing to the loss function of the neural network is too intricate, which may generate negative impact on the training performance. 
The numerical results indicate that the LPNN-v2 has a wider range of applications than LPNN-v1, and can usually be utilized to study 
all integrable systems with Lax pairs with high accuracy.

The main goal of this work is to propose a pure LPNNs, similar to the PINN proposed by Rassi et al. [2], upon which various 
strategies can be applied for improvement according to specific research needs. Specifically, the LPNNs proposed in this paper 
are designed based on the PINN architecture, thus besides the TensorFlow framework, we can also implement LPNNs in the JAX 
framework [61], achieving efficient and high-precision training performance as well as learning and obtaining spectral parameter 
and spectral function. Notably, the Taylor-mode automatic differentiation (Taylor-mode AD) based on the jax.jet module in JAX 
is implemented using truncated Taylor polynomial approximation [62], allowing effective computation of high-order derivatives of 
function compositions through the faà di Bruno formula [63]. Numerical results indicated that PINNs using Taylor-mode AD exhibit 
higher training efficiency compared to those using traditional forward-mode or reverse-mode automatic differentiation (AD), with 
efficiency increasing significantly with the order of differentiation [64]. Lax pairs serve as advantageous mathematical tools to reduce 
the order of high-order derivatives in integrable systems, although high-order derivative terms of the potential function may still 
exist in Lax pairs, such as those Lax pairs (3.5) and (3.17) of this paper which contain second-order derivative terms. Additionally, 
since the benchmarks in this paper are classical low-order integrable models, the Lax pairs of more complex higher-order integrable 
models may involve higher-order derivative terms, such as the Lax pairs of seventh-order KdV equation in Ref. [65]. Taylor-mode 
AD efficiently calculates high-order derivatives in PDEs using clever automatic differentiation techniques to accelerate training, 
while LPNNs utilize the alternative mathematical structures (i.e., Lax pairs) of integrable systems to simplify or enhance the training 
objectives of networks, thereby achieving efficient or high-precision training performance. Furthermore, the proposed LPNNs, besides 
their characteristics of efficiency and high precision, can also learn and obtain spectral parameter and spectral function, which play 
a crucial role in integrable system theory and serve as the research basis for future work.

For demonstrating that LPNN-v1 based on the JAX framework can further improve training efficiency after using Taylor-mode 
AD, we use the CH equation (3.4) and its Lax pairs (3.5) as example, we consider the initial and boundary conditions (3.6) in the 
spatiotemporal domain [0, 0.1] × [−3, 3], then obtain the training results of PINN and LPNN-v1 using Taylor-mode AD and traditional 
AD in JAX, and display detailed numerical results in Table 17 and Fig. 10 of Appendix C. From Table 17, it is evident that under fixed 
spectral parameter and associated hyper-parameter settings, LPNN-v1 using Adam optimizer demonstrates faster training efficiency 
compared to PINN while sacrificing training accuracy. Moreover, LPNN-v1 employing Taylor-mode AD exhibits faster training than 
LPNN-v1 utilizing conventional AD, which is attributed to the second-order derivative terms of the potential function in Lax pairs 
(3.5). Furthermore, Fig. 10 illustrates a comparative chart of training time between PINN and LPNN-v1 with varying numbers of 
neurons and hidden layers. It is observed that with a fixed number of hidden layers, increasing the number of neurons per hidden 
layer results in longer training times, with LPNN-v1 employing Taylor-mode AD exhibiting the shortest training time. Similarly, with 
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a fixed number of neurons per hidden layer, an increase in the number of hidden layers leads to longer training times, with LPNN-v1 
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employing Taylor-mode AD again showing the shortest training time. In summary, although Taylor-mode AD can enhance the training 
efficiency of PINN, the extent of its improvement greatly depends on the order and quantity of high-order derivative terms in the 
PDE. However, Taylor-mode AD can enhance the training efficiency of LPNN-v1, with its improvement not only contingent upon the 
order and quantity of high-order derivative terms in Lax pairs, but also on their own mathematical structures of integrable systems 
and their Lax pairs. Consequently, LPNN-v1 utilizing Taylor-mode AD is more likely to significantly enhance training efficiency, 
especially when the greater the number of neurons and hidden layers, the more pronounced the improvement in training efficiency, 
as displayed in Fig. 10. Moreover, one can also introduce Taylor-mode AD and various other improvement strategies based on the 
JAX framework into the LPNNs (including LPNN-v1 and LPNN-v2) to achieve various training performance expected by users.

4. Conclusions

In this article, we introduce Lax pairs, which is the most important feature of integrable systems, into deep NN algorithms and 
propose the LPNNs suitable for integrable systems. LPNN-v1 relies entirely on the Lax pairs of integrable systems and introduces 
Lax pairs informed into the loss function, which can efficiently study the localized wave solutions and spectral problems of certain 
integrable systems. Based on the LPNN-v1, the Lax pairs constraint and loss function of LPNN-v2 also depend on the compatibility 
condition equation or zero curvature equation of the integrable systems, which can accurately solve all integrable systems with 
high-accuracy and obtain the corresponding spectral parameter and spectral function in the spectral problem.

This article designs several deep learning numerical experiments for important integrable systems with Lax pairs. Specifically, the 
KdV equation, CH equation, KP equation and high-dimensional KdV equation were efficiently solved by utilizing LPNN-v1, and the 
data-driven soliton solution, non-smooth peakon solution, line-soliton solution, lump solution, spectral parameter and corresponding 
spectral function were learned and obtained, here the training time of LPNN-v1 was more than two to five times faster than that of 
the standard PINN. The data-driven localized wave solutions and their corresponding spectral problems of the SG equation, mKdV 
equation, NLS equation and SP equation were studied with high precision by means of LPNN-v2, in which the data-driven localized 
wave solutions include kink solution, soliton solution, rogue wave solution and pulse solution. LPNN-v2 achieved higher accuracy 
than standard PINN and LPNN-v1, and it is suitable for all integrable systems with Lax pairs. Generally, setting different spectral 
parameter initialization in LPNNs often leads to different spectral function, training time and training accuracy, which often need to 
be adjusted based on results and experience in practical numerical experiments.

By means of replacing or assisting the PDE in Lax pairs informed network, we introduce the most important feature of integrable 
systems, namely Lax pairs, into deep NNs in the first time. Then we propose novel LPNNs suitable for the integrable systems with Lax 
pairs, in which LPNN-v1 is generally superior to standard PINN in terms of training efficiency, while LPNN-v2 usually outperforms 
vanilla PINN in terms of training accuracy, namely the training performance of LPNNs can be superior to vanilla PINN in studying 
practical problems of integrable systems with Lax pairs. Since LPNNs rely heavily on the mathematical structure of integrable systems 
and Lax pairs, it must be pointed out that we cannot guarantee that the training efficiency and accuracy of LPNNs simultaneously 
outperform vanilla PINN in any scenario. Nevertheless, we provide a novel deep learning method that not only cleverly utilizes Lax 
pairs to achieve more efficient and accurate training results from the mathematical structure of integrable system, but also obtains 
spectral parameter and spectral function in spectral problem, they play a crucial role in the classical integrable system theory, such 
as inverse scattering theory and Darboux transformation theory. The study of numerical spectral problems in integrable systems 
using deep learning methods has not yet been reported, so the research results of this work will be highly distinctive and unique. The 
research work of this article provides new idea, approach and pathway for solving data-driven localized wave solutions and spectral 
problems, and discovering novel localized wave solutions and even new Lax pairs for integrable systems.
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Appendix A. The training results of solving integrable systems by utilizing Adam optimizer in the LPNN-v1 and PINN

After utilizing Adam optimizer in the LPNN-v1 and standard PINN, the training results of solving integrable systems are shown 
as follows Tables 9-12.

Table 9

Performance comparison of solving KdV equation by utilizing Adam optimizer in the LPNN-v1 and standard PINN.

Types 𝐱 × 𝑡 ib,c Adam 𝜆 𝜙 𝐿2 norm error training time

PINN [-5,5]×[-5,5] 400,10000 12000 × × 5.287849e-03 352.5421 s

LPNN-v1 [-5,5]×[-5,5] 400,10000 12000 1.0
√

6.036824e-03 165.5438 s

Table 10

Performance comparison of solving CH equation by utilizing Adam optimizer in the LPNN-v1 and standard PINN.

Types 𝐱 × 𝑡 ib,c Adam 𝜆 𝜙 𝐿2 norm error training time

PINN [-5,5]×[0,2] 800,10000 40000 × × 8.451458e-02 1919.9885 s

LPNN-v1 [-5,5]×[0,2] 800,10000 40000 0.399974
√

7.185118e-01 863.6540 s

Table 11

Performance comparison of solving KP equation by utilizing Adam optimizer in the LPNN-v1 and standard PINN.

Types 𝐱 × 𝑡 ib,c Adam 𝜙 𝐿2 norm error training time

PINN [-3,3]×[-3,3]×[-0.5,0.5] 500,10000 30000 × 2.328239e-01 6007.5784 s

LPNN-v1 [-3,3]×[-3,3]×[-0.5,0.5] 500,10000 30000
√

5.900874e-03 2128.5921 s

Table 12

Performance comparison of solving high-dimensional KdV equation by utilizing Adam optimizer in the LPNN-v1 
and standard PINN.

Types 𝐱 × 𝑡 ib,c Adam 𝜙 𝐿2 norm error training time

PINN [-10,10]×[-10,10]×[-5,5] 400,20000 20000 × 3.890484e-03 6187.1247 s

LPNN-v1 [-10,10]×[-10,10]×[-5,5] 400,20000 20000
√

6.323496e-03 2507.5781 s

Appendix B. The training results of solving integrable systems by utilizing Adam optimizer in the LPNN-v2, LPNN-v1 and 
PINN

After utilizing Adam optimizer in the LPNN-v2, LPNN-v1 and standard PINN, the training results of solving integrable systems 
are shown as follows Tables 13-16.

Table 13

Performance comparison of solving SG equation by utilizing Adam optimizer in the LPNN-v2, LPNN-v1 and standard PINN.

Types 𝐱 × 𝑡 ib,c Adam 𝜆 Φ 𝐿2 norm error training time

PINN [-5,5]×[-5,5] 500,10000 50000 × × 1.241263e-03 465.0311 s

LPNN-v1 [-5,5]×[-5,5] 500,10000 50000 -0.005755-0.000759i
√

2.807519e-03 1182.7721 s

LPNN-v2 [-5,5]×[-5,5] 500,10000 50000 0.000975-0.003289i
√

2.987313e-04 1545.2205 s
19



Journal of Computational Physics 510 (2024) 113090J.C. Pu and Y. Chen

Table 14

Performance comparison of solving mKdV equation by utilizing Adam optimizer in the LPNN-v2, LPNN-v1 and standard PINN.

Types 𝐱 × 𝑡 ib,c Adam 𝜆 Φ 𝐿2 norm error training time

PINN [-4,4]×[-0.1,0.1] 400,10000 150000 × × 4.915344e-02 4454.1543 s

LPNN-v1 [-4,4]×[-0.1,0.1] 400,10000 150000 0.004356
√

4.495894e-01 6313.4711 s

LPNN-v2 [-4,4]×[-0.1,0.1] 400,10000 150000 -0.008034
√

5.903415e-02 7322.0335 s

LPNN-v2 [-4,4]×[-0.1,0.1] 400,10000 200000 0.00347
√

4.264126e-02 9351.7990 s

Table 15

Performance comparison of solving NLS equation by utilizing Adam optimizer in the LPNN-v2, LPNN-v1 and standard PINN.

Types 𝐱 × 𝑡 ib,c Adam 𝜆 Φ 𝐿2 norm error training time

PINN [-3,3]×[-1.5,1.5] 100,10000 60000 × × 2.014013e-02 1255.2755 s

LPNN-v1 [-3,3]×[-1.5,1.5] 100,10000 60000 0.018866-0.023404i
√

5.003518e-01 1607.8049 s

LPNN-v2 [-3,3]×[-1.5,1.5] 100,10000 60000 -0.014245-0.023910i
√

1.958669e-02 2462.2456 s

LPNN-v2 [-3,3]×[-1.5,1.5] 100,10000 100000 0.0091-0.02619i
√

1.548688e-02 6659.3198 s

Table 16

Performance comparison of solving SP equation by utilizing Adam optimizer in the LPNN-v2, LPNN-v1 and standard PINN.

Types 𝐱 × 𝑡 ib,c Adam 𝜆 Φ 𝐿2 norm error training time

PINN [-6,6]×[-3,3] 400,10000 30000 × × 3.565266e-02 553.2875 s

LPNN-v1 [-6,6]×[-3,3] 400,10000 30000 -0.033059-0.010942i
√

1.584708e+00 842.4056 s

LPNN-v2 [-6,6]×[-3,3] 400,10000 30000 -0.003506+0.008045i
√

2.783789e-02 1173.6363 s

Appendix C. The training results of solving CH equation by utilizing Taylor-mode AD and AD in the LPNN-v1 and PINN

After utilizing Taylor-mode AD and AD in the LPNN-v1 and PINN, the training results of solving CH equation are shown as follows

Table 17 and Fig. 10.

Table 17

Performance comparison of solving CH equation by utilizing Taylor-mode AD and AD in the LPNN-v1 and PINN.

Types 𝐿,𝑁𝑑 ib,c Adam 𝜆 𝜙 𝐿2 norm error training time

PINN+AD 6,100 800,20000 40000 × × 2.381e-02 3110 s

PINN+Taylor-mode AD 6,100 800,20000 40000 × × 2.420e-02 2283 s

LPNN-v1+AD 6,100 800,20000 40000 1.5
√

5.602e-02 1742 s

LPNN-v1+Taylor-mode AD 6,100 800,20000 40000 1.5
√

6.514e-02 1524 s

Fig. 10. (Color online) The comparison chart of training time for solving CH equation by utilizing Taylor-mode AD and AD in the LPNN-v1 and PINN. (a) The 
comparison chart of training time for PINN and LPNN-v1 applying 5 hidden layers with different numbers of neurons per hidden layer; (b) The comparison chart of 
training time for PINN and LPNN-v1 applying different numbers of hidden layers with 100 neurons per hidden layer.
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