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Abstract: In this article, we construct the bi-Hamiltonian
structure of the multi-component Yajima-Oikawa
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1 Introduction

The Kadomtsev-Petviashvili (KP) hierarchy is of funda-
mental importance in the theory of integrable systems
and has been studied from various aspects [1-4]. It is
well known that the Lax equation of the KP hierarchy is
given by

I =I(I),, L], n21, )

where L=0+Ud'+U,0?+--- is a pseudo-differential
operator and (L"), is defined as the differential part of L".
The KP equation, which is derived from the propagation of
two-dimensional dispersive waves on shallow water, can
be obtained from the reduction of the KP hierarchy [5, 6].
Besides, many other well-known physical models, such as
the KdV equation, the Boussinesq-Kaup equation, and the
equation for a nonlinear string, are contained in the hier-
archies obtained by the so-called k-reductions of the KP
hierarchy [7, 8].

The k-constrained KP hierarchy is proposed in
Sidorenko and Strampp and Konopelchenko et al. [9, 10]
by the symmetry reduction of the KP hierarchy. It is not
only mathematically important but also physically rel-
evant. It is bi-Hamiltonian, has Darboux transformation,
and is related to the W algebra theory [11-13]. Moreover,
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some physically applicable models, such as the Yajima-
Oikawa model and the Melnikov model [14-17], which
describe, respectively, the interacting waves appearing in
plasma physics and hydrodynamics, can be found in the
constrained KP hierarchy.

The pair of Yajima-Oikawa equations

. 1
iE, +EEXX—nE:O, 2)

n+n +(|E[*) =0,

€)

describes the interaction of Langmuir and sound waves
in plasmas [18]. Through a transformation ¢ =Ee @™,
E=x-t, =t and a scaling for &, ¢, the Yajima-Oikawa
system is transformed to the long-wave-short-wave reso-
nant interaction model (sometimes also called the Yajima-
Oikawa system)

i¢r=_¢§§+n¢’ (4)

n=-2(1pl), 5)
which plays a central role in the transition to turbulence
of boundary layers and other shear flows [19-22]. The
Yajima-Oikawa system can be solved by the inverse scat-
tering transform and thus has N-soliton solutions [18, 23].
Its rogue wave solutions are discussed by the Darboux
dressing technique [24].

Moreover, the multi-component generalizations of
the k-constrained KP hierarchy associated with the Lax
operator

L=(L), + iqia’lri. (6)

i=1

have been considered by Sidorenko and Strampp [25].
When k=1, k=2, and k=3, the multi-component generali-
zations of the AKNS hierarchy [26], Yajima-Oikawa hierar-
chy and Melnikov hierarchy are obtained. The recursion
operators and bi-Hamiltonian structures have also been
calculated for the multi-component generalizations of
the k-constrained KP hierarchy under the constraint
r=q;, (i=1, ..., m). However, the ‘Hamiltonian operator’
given by Sidorenko and Strampp for the coupled Yajima-
Oikawa hierarchy is incorrect. Liu corrected the result and
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gave a bi-Hamiltonian structure for the coupled Yajima-
Oikawa hierarchy [27]. Furthermore, the interaction
between the multiple short waves and a long wave can be
described by the following multi-component generaliza-
tion of the Yajia-Oikawa system [28]:

i¢i+¢’u+n¢l=0, =1, ... @)
n=Ye (), ®)

The Painlevé analysis, soliton solutions, and energy-
sharing collisions of the multi-component Yajima-Oikawa
equation are also studied by them.

The purpose of this article is to construct the
bi-Hamiltonian structure for the multi-component Yajima-
Oikawa hierarchy using the trivector technique described
in the work of Olver [29].

2 Bi-Hamiltonian Structure
of Multi-Component
Yajima-Oikawa Hierarchy

In this section, we derive the bi-Hamiltonian structure for
the multi-component Yajima-Oikawa hierarchy.

The multi-component Yajima-Oikawa hierarchy
defined by the Lax representation

k
L =[(*),, L], L=0"~u-Q"9R, ©)

is the multi-component generalization of 2-constrained
KP hierarchy, where Q, R are the n-component vector
potentials defined as

Q=(q,, 4, -...q,)", R=(r,,1,, ..., 7). (10)
It is not difficult to show that the aforementioned
hierarchy is equal to the hierarchy of Yajima-Oikawa system
(7) and (8) after a simple transformation, and we only con-
sider the multi-component Yajima-Oijawa hierarchy (9).
In fact, the hierarchy (9) can also be obtained by the

zero-curvature equation
M,~N_+[M, N]=0, (11)

which is the compatibility condition of a (n+2)x(n+2)

matrix spectral problem
¢,=Mo, ¢, =Ng, (12)

with
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0 0 1 Nl,l A Nl,n+2

M= R o, O'||N=f B S C | (13)
Atu QT 0 n+2,1 D Nn+2, n+2

where 0 and O, are, respectively, n dimensional row
vector and nxn zero matrix, and A, B, C, D, S and each
entry N, ; are dependent on the potentials u, Q, R and the
spectral parameter A.

Substituting (13) into (11), we get

Q", S=9'(RA-CQ"),B=-C +N, R

1L,n+27

D=A +N

1,n+2

N, =10 (Q'C-AR)~(N, )1

N

n+2,n+2

SI(QC-AR+H(N, ), .

1 1
Nn+2,1=5(QTC+AR)_E(Nl,n+z)xx+('1+u)N1,n+2’
and
u Nl,n+2
Q =(AL+TJ)| C |, (14)
R A"
where
20 0 0
K=l0o" o  -I | (15)
OT IY! Onxn
and
1., 1 r T 1 o T
—58 +u +2ud 5(QX+BQ 9) E(RX+3R 9)
T4 Q420 (00 +500 J, :
R+2R) o (R'RTY 4+ RY 'R
(16)
with

I =diag(1, 1, -, 1), ]1:(az—u—QTa’lR)In—%Qa’lRT.

n

It is easy to see that the operators K and 7 are skew-
symmetric and that £ is a Hamiltonian operator. In the
following, we show 7 is a Hamiltonian operator and is
compatible with £C.

Our main results are summarised as follows.
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Theorem 1 The multi-component Yajima-Oikawa hierar-
chy (9) is a bi-Hamiltonian system

6Hk+2 6Hk
u ou ou
O0H O0H
:]C k+2 | Tk , 1
q oQ J oQ )
R f 6Hk+2 6Hk
OR OR

where the operators K and 7 are given by (15) and (16),
k
respectively, and H, =%Res( I?).

The proof of the theorem is given by the use of Olver’s
technique [29]. Let 6 denote the basic uni-vector corre-
sponding to the potential, and D is any skew-symmetric
operator depending on the spatial variable x and the
potential. In the proof, we will use mainly the properties
listed following:

— the basic property of wedge product

[&Andx=(-1)" [y n&dx, (18)
for any m-form & and n-form #.
- the skew-symmetry of the operator D
J&ADydx=—[(DE) Andx. (19)
— the prolongation
~PtV, (0ADO)=0 APV, (D) Ab. (20)

The minus sign in (20) arises from the fact that we

have interchanged a wedge product of 6 using the

formula (18).
Proof: Let6,6,=0,,0,, ...,0,) and 6,=(6,,0,,, ... 0,)"
be the basic uni-vectors corresponding to u, Q, and R,
respectively. We know that the operator 7is the Hamilto-
nian if and only if (because the skew-symmetry is known)

Prv_(@,)=0, (1)

where 0=(9,, 6, 0,) and

0,=>J(orm)ax,

is the associated bi-vector of 7.
To check whether K and 7 form a bi-Hamiltonian pair,
we only need to prove

PtV

Ko

(®,)=0. 22)

The proof of the theorem is rather technical and
lengthy, and we give it in the Appendix.
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Remark 1 When n=2, the operators K and 7 are just the
Hamiltonian operators of the coupled Yajima-Oikawa
hierarchy [27].

It is known that for a pseudo-differential symbol
of [th? form X:ZiSOXi8‘+zi>0Xia',Res(X) is defined
as [30]:

Res(X):=fres(X)dx, res(X)=X ,

Therefore, the Hamiltonian functions H,, (k=1, ...)
[11, 27] can be obtained by a direct computation:
le—.[udx
H,=-[Q"Rdx

Then, the second positive flow is obtained

0H,
u (;3; -2(Q'R),
Ql =J 6_(22 = -Q,+uQ (23)
R . 5 H, R _—uR
OR
with a Lax pair
-4 -Q" 0
¢X=M¢7 ¢[ = Rx Onxn -R P-
-Q'R -Q) -4
Ifn=1, we get
q,,=—4,,tuq,, n,=n,, —un, ut=—2(qll’l)x. (24)

In what follows, we connect the system (24) with
the Yajima-Oikawa system [5]. Starting from the Yajima-
Oikawa system (2) and (3), we can rewrite it as

iE,+~E_-nE=0,
2 Xx

S G

~iE +~E, —nE’ =0,
2 XX

n+n +(|E[*) =0.

Then, after a transformation ¢ = Ee'?™, E=x — 1, 7=t,
the aforementioned system is changed to

. 1
l¢r+5¢§§_n¢=0’
P S .
_l¢r +E¢§§_n¢ =Oa

n,+(19]), 0.
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After the transformation t'=ir, x’=—i\/E§, ¢=3/5<2>
and the rewriting t’, x” back to t, x, we get (24) as we set

q,=¢,r=¢", n=—u.
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Appendix

First, we prove that the operator J is Hamiltonian,
namely to verify (21). To simplify the presentations
and calculations, we define the function U and the

n dimensional column vectors Q=(q,,4q,,....q,)",
R=(r,r,, ..,r)" as
— 1 1 T T
U——EGOW+uX90+2u00X+E(QX01+BQ 0,)
1
+E(Rf02+3RT02X), 25)
~ 3 _ 1 .-
Q=Q.9, +EQGOX+(Q3 1QT)T491+EQB '(Q'0,-R0,)
+(0’-u-Q'9'R)6,, (26)
R=R 6, +>R9, +(R9'R")'6,~~Ra(Q'6,~R"6
it 0+5 0x+( ) 2_5 (Q 1_ 2)
+(-90’+u-R'07'Q)0,. @27
It is easy to check that
1
U—_EGOW"'“XBO"‘Z“@OX
1 n
+5;( quelk+rkx92k+3qk61kx+3rk92kx)’ (28)
=1
—~ 3 n B
4,=4,90, +Eqi90X+(82—u)02i+qu8 '"(g6,,-10,,)
k=1
1 &
+Eqikz48 l(qkelk_rkezk)’ (29)
=1
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1

~ 3 D
r=rb, +E'}00x+(_az+u)01i_zrka 1(qk01i_r'92k)
. k=1 (30)
__r;‘za_l(qkelk_rkezk)'
23

From (16), we have

T

:(U’ qu L] qny 1? ""rn) .

Then the associated bi-vector for 7is

1
©,=3[(0rT)dx
=%j00 AU+6, AQ+0, ARdx

1 &, ~ -
=EIOO AUdX+E,§‘J0“ AG,+0,, Ardx,

substituting (28), (29), and (30) into the aforementioned
equality and applying the properties (18), (19), we get

®J=ZJ_61ixA92ix_91i/\u92i+00/\(qie )
i=1

1ix+ri62ix

1 1
_500)( A( qieli +ri92i )dX+5 z ,[( qjeli _riezj)
i,j=1

/\ail( qielj _rjgzi )
—rf,,)dx+ [0, Auf, dx.

ARV

1 4
+3(qi0“—ri02i)/\a (q0 (31)

Calculation of (21) shows that

Prv,(©,)=[6, /\U/\@OXdX+iJ—9H/\U/\02i
i=1

+0, /\(&;/\Om+2/\9

2ix

)_%am/\(i/\eu"":i/\ezi)dx

+ ZJ.(OH AG;=0,, A1) A0 (q0,-T0,,

1
i,j=1

)

1, ~ . =
+5(01i/\qi—02i/\ri)/\a 1(61].01).—7‘}.t92].)dx. (32)

Substituting (28), (29), and (30) to the aforemen-
tioned expression and applying the properties (18), (19),
the expression (32) can be divided into three parts: I, II,
and III. Part I is about the terms for double summation
without the variable 6. i.e.
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0, +3r0 IA0,,

jo1jx 2jx

I= ZJ'——G ~g,0,,+1.0,;

i,j=1

+(0./\9

+3q.

+6, ./\0

2jxx Tixx

A9 (q0,,-10,,)

i1j

+— ((9 A0, +0, A0,

2ixx

0 —r0 )dx

JARY)

W) A0 (g,

= 2_[‘1;(911‘ ’\91;‘ /\ezix _911‘ /\Oux ’\921‘_911‘ /\Gzix /\911'

i,j=1

—0,,70,, A0, )+r(c9 A0, A0, =0, A0, 1O, +0,

lix

A, /\GZi +¢92]. NN AHZi)dXZO.

Part I is the term of double summation contain 6, i.e.

= Zje /\{|:qal(q191}—r9 )+—q81(q]01]—r6 )}Ae

1)1

+

-197(q,0,-19,, )——rE) (q0,-10,) /\Gm}

EOOX A{[qjal( q0,,-10,) +—qi8’1( q,0,,-10,, ):|/\91i
_—ra 1(‘1,911 -6, )——ra 1(q}01}—r6 )_/\9}
Gli/\(qjxeo+§qi90) 0, i r0 + r0 j
;\8‘1( q0,,-19,)

+%[91i/\(%90 +%in0 ) 0, /\(ré) +=16

+

+

|
)

Aa’l(q.e ,—r]ﬂzj)dx

_ZJ.( 1 llX/\e 5 qlxoll/\e + 1011/\0
i,j=1
AD” 1(q.(9 1, .)

r9 A ]Aa (q.0 -0,

oy

( ro,, A8, +lr0 A0 +—
2121)( 2

-

q0/\0 +q0 O +q 0, A0 +— q6/\0

jx 1

A 1(qﬂ“—r}@ )
+(';00 /\02 ')(_%’EHOX /\6 ':xezl /\9 ';02;' AGOX)
N (qﬂ“—rj@zl.)dx

1
_le_ 60,705 \(a,0,,710,)+-10, 70, A (4,0,
i,j=
—q,0,,10, /\(qO rj02i)+ri02j/\90/\(qi91j—r)02i)dx
_21'[_ (qlell ';ezi)/\eol\(qjelj_rjezj)
i,j=
—(qﬂn—rﬂ BINN /\(qﬂl] erZi)dx

:O’

(33)
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The remainder terms of (32) are calculated as follows:

n B 1 B
= z Hell./\[qka 1(q}.91k—rk92i)+5ql.a 1(qk@lk—rk@Zk)}

iy, k=1
_ 1
+92i/\|:rka l(qk91i_ri92k)+5ria 1(qk91k_rk92k):|}

A0 (g0 -0, )

i 1j

1
+5{9m[qk9‘1(qﬂlk R0,)+ qa (g, ~ m}

_ 1
+ 621‘ /\|:rka 1( qkeli _riezk ) +Eria 1( qkelk _rk92k )}}

-1
AD (qjelj—rj@zj)dx

= 2 J'qkeli/\ail(qjelk_rkezj)/\ail(qielj_rjezi)

i,j, k=1

+rk62)‘ /\ail(qkeli_’;‘azk)/\ail(qielj_rjezi)dx
=Y J'qkeh. £07q,0,, A07'q0, +1,0, A0 TH, DT, dx

i,j, k=1

=0. (35)

Then (33), (34), and (35) yields

PtV,(©,)=0, (36)

so the skew-symmetric operator [7is Hamiltonian.
Next, we show the compatibility of the operators K
and 7, i.e. the equality (22). Notice that

260

Ox

-0

2

0

1

Ko= (37)

;)
Using the equality (31), we obtain

)

2ix

PIV,,(©,)=) j ~0,720, A0, +0, A(~0, O, _+6 _AO
i=1
+190X (0, A0, ~0. 7O, )0, A20, AO, dx
) +ZJ.[GIIA(_QZ]‘)_OZJ'/\QH]Aa_l(qielj_rjeh')

i,j=1

0,-10, )dx

JARY)

1 :
+E[ 0, A(=0,,)-0,,A0 110 (q.
=Y [20, 70, A0, ~20, A0, A0, dx

i=1
(38)

(34) =0.
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Equation (38) implies that the operators Q and P are
compatible Hamiltonian operators and, therefore, the
theorem is proved.
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