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Abstract The inverse scattering transformation for a
novel nonlocal Lakshmanan–Porsezian–Daniel (LPD)
equation with rapidly decaying initial data is studied in
the framework of Riemann–Hilbert problem. Firstly, a
novel integrable nonlocal LPD equation correspond-
ing to a 3 × 3 Lax pair is proposed. Secondly, the
inverse scattering process with a novel left-right 3 × 3
matrix Riemann–Hilbert(RH) problem is constructed.
The analytical properties and symmetry relations for
the Jost functions and scattering data are considerably
different from the local ones.Due to the special symme-
try properties for the nonlocal LPD equation, the zeros
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of the RHP problem are purely imaginary or occur in
pairs. With different types and configuration of zeros,
the soliton formula is provided and the rich dynamical
behaviors for the three kinds of multi-solitons for the
novel nonlocal LPD equation are demonstrated. Third,
by a technique of adding perturbed parameters and lim-
iting process, the formula of higher-order solitons for
the nonlocalLPDequation is exhibited. Lastly, the plots
of diverse higher-order solitons and various solutions
corresponding to different combinations of the follow-
ing zeros: purely imaginary higher-order zeros, purely
imaginary simple zeros, pairs of non-purely imaginary
simple zeros and pairs of non-purely imaginary higher-
order zeros are displayed.

Keywords Nonlocal LPDequation ·Riemann–Hilbert
problem · Multi-solitons · Higher-order soliton

1 Introduction

The nonlinear Schrödinger (NLS) equation is a key
physical model in optical and many other fields which
describes thewave propagation inKerrmedia. Then the
higher-order integrable NLS hierarchy has been stud-
ied [1–3]. As a higher-order extension of the scalar
NLS equation, the nonlinear Lakshmanan–Porsezian–
Daniel (LPD) equation with the fourth nonlinear and
dispersion terms was introduced [4,5] to describe the
effect of discreteness of the lattice on the classical
continuum limit of the isotropic Heisenberg ferromag-
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netic spin chain. Due to the important application in
nonlinear optics, abundant optical solitons [6–11] and
some new exact solutions [12] for LPD equation were
explored. Besides, the rich dynamic behaviors of soli-
tons, rogue waves and the interactional solutions for a
multi-component LPD equation were studied by Dar-
boux transformation [13–16] and inverse scattering
method [17].

Then, nonlocal integrable NLS equation was intro-
duced by Ablowitz et al. [18–20]. Due to the new
spatial and temporal symmetry properties, some new
physical effects and applications were found and par-
ticular attentions were given to the nonlocal integrable
equations [21–39], whichweremathematically distinct
from the classical local ones. Some integrable nonlocal
LPD equations corresponding to a 2× 2 Lax pair have
been proposed and studied [40–42].

Recently, a series of novel nonlocal NLS equations
with clear physical motivations were proposed from
the nonlocal reduction inManakov system [43]. Differ-
ent from the nonlocal NLS equation proposed in [18],
the nonlocal nonlinearity-inducedpotential of the novel
nonlocal NLS equation [43] is real and symmetric in
x . In addition, they discovered that the structures of the
Riemann–Hilbert problem (RHP) and the form of gen-
eral soliton solutions were more complicated, which
led to some interesting dynamical properties of soliton
solutions.

Inspired by the idea of Yang [43], the following
novel physically important nonlocal LPD equation is
proposed:

iqt = α [qxx + 2qV1] + β
[
q4x + 4(qxx V1)

+2(qV2)x + 6qx V3 + 6qV 2
1

]
. (1)

where q is the potential function of (x, t), α, β are arbi-
trary real numbers, the superscript ∗ represents com-
plex conjugation. The nonlinearity-induced potentials
Vk(x, t)(k = 1, 2, 3) with forms

V1(x, t) = |q(x, t)|2 + |q(x,−t)|2,
V2(x, t) = qx (x,−t)q∗(x,−t) + q∗

x (x, t)q(x, t),
V3(x, t) = q∗

x (x,−t)q(x,−t) + qx (x, t)q∗(x, t).

So Vk are metrical in t and Vk(x, t) = V ∗
k (x,−t) (k =

1, . . . , 3). The nonlocal Eq. (1) is invariant under the
nonlocal reverse-time transformation t → −t and the
conjugate transformation.

The nonlocal LPDEq. (1) is deduced by implement-
ing the following nonlocal reverse-time constraint

r(x, t) = q∗(x,−t), (2)

on the following coupled LPD Eq. (3)

⎧⎪⎪⎨
⎪⎪⎩

iqt =α
[
qxx +2q|q|2]+β[q4x +2[q(qq∗

x +rr ∗
x )]x

+4qxx |q|2+6qx(q∗qx +r ∗rx)+6q|q|4],
irt =α
[
rxx +2r |q|2]+β[r4x +2[r(qq∗

x +rr ∗
x )]x

+4rxx |q|2+6rx(q∗qx +r ∗rx)+6r |q|4],
(3)

where q, r are complex function of (x, t), |q|2 = |q|2+
|r |2.

The nonlocal LPD Eq. (1) corresponding to the fol-
lowing 3 × 3 Lax pair:

Φx = UΦ = (iλΛ + Q)Φ, (4a)

Φt = V Φ =
(
2iλ2(α − 4βλ2)Λ + V0

)
Φ. (4b)

whereΦ is a three-dimensional column vector with the
elements are complex functions of (x, t; λ) and λ is the
spectral parameter. Λ = diag(1, 1,−1) and

Q =
⎡
⎣

0 0 q(x, t)
0 0 q∗(x,−t)

−q∗(x, t) −q(−x, t) 0

⎤
⎦ ,

V0 = α
[
iΛ(Q2 + Qx ) − 2λQ

]
− β
[
8Qλ3

−4i
(
ΛQx − Q2Λ

)
λ2 − 2

×
(

Qxx − 2Q3 + [Q, Qx ]
)

λ

+iQx
2Λ + iΛQ3x − i [Q, Qxx ]

−3i
(

Q2Qx + Qx Q2 − Q4
)]

.

The Lax pair is a 3×3matrix systemwith two linear
matrix differential equations 4a-4b. The nonlocal LPD
Eq. (1) can be obtained by the compatible condition
Ut − Vx + [U, V ] = 0. This proves the integrability
of the nonlocal LPD Eq. (1). When α = 1, β = 0,
Eq. (1) reduced to the nonlocal NLS equation proposed
in [43]. The scattering process of the nonlocal LPD
Eq. (1) will be presented with the following vanishing
initial condition:

q(x, 0) = q0(x) ∈ S(R), (5)
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General multi-soliton and higher-order soliton 657

where S(R) is the Schwartz space.
The inverse scattering transformation (IST) of Man-

akov system with initial value condition (5) had been
established in [43,44], where the RH problem corre-
sponding to the spectral problem (4a) and the N -soliton
formula were constructed. However, as for the time
evolution part and the symmetry relations, which are
quite different from the nonlocal LPDEq. (1). The con-
straints of the scattering data and eigenvectors were
muchmore complex to derive, which will lead to richer
configurations of zeros and dynamical behavior of soli-
ton solutions. Furthermore, thiswill lead tomuch richer
distributions of the higher-order zeros and the struc-
tures of higher-order solitons. We will first study the
formula of soliton solution under different distribution
of zeros by inverse scattering process via construct-
ing an RHP. Then we will try to get the formula of
the solution corresponding to the higher-order zeros.
In addition, the rich structures and characteristics of
the solution under varied higher-order zeros will be
considered.

The organization is as follows. Section 2 provides
the inverse scattering process via an RH problem,
the time evolution and the recovery of the potential
function. Then the multi-soliton solution formula is
obtained when the RHP is reflectless and the zeros are
all simple. In Section 3, the dynamics for the general
soliton solution with simple zeros are investigated in
three cases: (1)n1 = 0, n2 �= 0; (2)n1 �= 0, n2 = 0 and
(3) n1 �= 0, n2 �= 0. Section 4 concludes the higher-
order soliton formula by a limit process and exhibits
kinds of higher-order soliton solutions corresponding
to different configurations of higher-order zeros and
simple zeros. The last section is the conclusion.

2 Inverse scattering process and multi-soliton
solutions

In this section, we will consider the scattering prob-
lems of the nonlocal Eq. (1) with initial condition (5).
By the initial value condition (5), q(x, 0) → 0, x →
±∞, q∗(x, 0) → 0, x → ±∞. So when x → ±∞,
the potentialmatrix Q → 0, the solutionofEqs. (4a and
4b) is Φbg = eiθ(λ)Λ, θ(λ) = λx + 2λ2

(
α − 4βλ2

)
t .

Define the solution of Eqs. (4a and 4b) with the form
Φ = JΦbg with J is a complex function of (x, t; λ). So
J → I, x → ±∞, where I is the third-order identity
matrix and J satisfies

Jx = iλ [Λ, J ] + Q J, (6a)

Jt = 2iλ2(α − 4βλ2) [Λ, J ] + V0 J. (6b)

where [Λ, J ] = ΛJ −JΛ is a commutator. The adjoint
Lax pair can be obtained as

Kx = iλ [Λ, K ] − K Q, (7a)

Kt = 2iλ2(α − 4βλ2) [Λ, K ] − K V0. (7b)

2.1 The Jost solution and the construction of the RHP

To implement the scattering process of potential func-
tion at the fixed point t = 0, that is, the potential func-
tion q and the other related functions will be treated as
functions only related to the variable x . Then, we will
construct the corresponding scatteringproblemandcal-
culate the initial scattering data at t = 0. To avoid con-
fusion, it is no longer explicitly stated in this subsection.
After the initial scattering data at the fixed point t = 0
is obtained, the scattering data at arbitrary time will be
obtained through time inverse, and then, the solution
q(x, t) at arbitrary time will be reconstructed by using
the inverse scattering process.

Recall Φ satisfies the following scattering problem
(4b)

Φx (x, 0; λ) = iλΛΦ(x, 0; λ) + Q(x; 0)Φ(x, 0; λ),

(8)

and the corresponding adjoint scattering problem

Kx (x, 0; λ) = iλΛK (x, 0; λ) − K (x, 0; λ)Q(x, 0).

(9)

For simplicity, (x, 0; λ) and (x, 0) will be omitted in
this section.

Introduce the Jost solution J1,2 of Eq. (6a) who sat-
isfies the following x- asymptotic behavior

J1 → I, x → +∞, J2 → I, x → −∞,

Combinedwith initial conditions (5), definitionΦ1,2

and its scattering Eq. (4a). J1,2 satisfies the following
Volterra integral equation
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J1(x, λ) = I − ∫ +∞
x eiλΛ(x−y)Q(y)

J1(y, λ)e−iλΛ(x−y)dy,

J2(x, λ) = I + ∫ x
−∞ eiλΛ(x−y)Q(y)

J2(y, λ)e−iλΛ(x−y)dy.

(10)

By the integral Eq. (10), to guarantee the integral of
the right side coverage. Similar to the method of [44],
by the structure of the potential matrix Q, the analytical
properties of Jk can be obtained.

For J1,2 is the solution of Eq. (6a), by the definition
of (4a), so there exists solution function Φ1,2 of (4a)
that Φ1 = J1E, Φ2 = J2E, where E = eiλx is a dia-
gram matrix. Φ1,2 are two different nonzero solutions
of the same linear Eq. (4a), so there exists a matrix
S(λ) = [sk j ]3×3 who is independent of the variable x
and Φ1S = Φ2, i.e.,

J2 = J1e−iλx Seiλx . (11)

Then by (11), the analytical properties of the
elements of S can be obtained. Furthermore, take
S−1 = (ŝk j )3×3, then recall the analytical properties
of matrix J1,2, we can obtain the following proper-
ties: s11, s21, s12, s22, ŝ33 are analytical when λ ∈ C−
and ŝ11, ŝ21, ŝ12, ŝ22, s33 are analytical in λ ∈ C+.
Sign Jk =

[
J [1]

k , J [3]
k , J [3]

k

]
and J−1

k =
[

Ĵ [1]
k , Ĵ [3]

k , Ĵ [3]
k

]T
,

k = 1, 2, where J [ j]
k is the j-th column of matrix Jk

and Ĵ [ j]
k is the j th row of matrix J−1

k , , j = 1, 2, 3.
So the analytical properties of S can be obtained.

Then, we have the following lemma.

Lemma 1 The Jost solutions Jk and the scattering
matrix S satisfy the following analytical properties

– J [1]
2 , J [2]

2 , J [3]
1 are analytical when λ ∈ C+,

J [1]
1 , J [2]

1 , J [3]
2 are analytical when λ ∈ C−.

– Ĵ [1]
2 , Ĵ [2]

2 , Ĵ [3]
1 are analytical when λ ∈ C+,

Ĵ [1]
1 , Ĵ [2]

1 , Ĵ [3]
2 are analytical when λ ∈ C−.

– s11, s21, s12, s22, ŝ33 are analytical when λ ∈ C+
and ŝ11, ŝ21, ŝ12, ŝ22, s33 are analytical in λ ∈ C−.

Note that the trace of the matrix U is iλ. It can be
obtained by Abel’s identity that det(Φ(x; λ)) = eiλx .

Then, combine the definition of J±, and the definition
of S, we have det(J1,2(x, λ)) = det(S(λ)) = 1.

To construct awell-definedRHP, define themodified
Jost solutions P+ and P− with the following forms

P+ =
[

J [1]
1 , J [2]

1 , J [3]
2

]
= J1H1 + J2H2,

P− =
[

Ĵ [1]
1 , Ĵ [2]

1 , Ĵ [3]
2

]
= H1 J−1

1 + H2 J−1
2 , (12)

where H1 = diag(1, 1, 0), H2 = diag(0, 0, 1). It can
be calculated that det(P+) = s33, det(P−) = ŝ33.
So P+ and P− are analytical in λ ∈ C+ and λ ∈ C−,
respectively. By the definition of P± and J1,2, it is obvi-
ous that P+ is a solution of (6a), and P− is the solution
of (7a). Recall the Volterra integral Eq. (10), the fol-
lowing λ asymptotic property can be obtained.

P±(x, λ) → I3, λ ∈ C± → ∞.

In summary, themodifiedmatrix P satisfies the follow-
ing matrix RH decomposition problem.

Riemann-Hilbert Problem 1 The sectionally mero-
morphic matrix P satisfies the following conditions:

– Analytical properties: P+ is analytic in λ ∈ C+
and P− is analytic in λ ∈ C−.

– The canonical normalization conditions P±(x, ζ )

→ I3, λ ∈ C± → ∞.

– The jump condition

P−(λ)P+(λ) = G(λ) = E

⎛
⎝

1 0 s13
0 1 s23

ŝ31 ŝ32 1

⎞
⎠ E−1,

E = exp(iλx), λ ∈ R. (13)

This is a matrix equation of a sectionally analytical
matrix P which is constructed from the initial poten-
tial at t = 0. So there should be some relationships
between the solution of RHP and the potential function.
To establish the relation between the potential function
and the solutionof theRHP.The relationof the potential
matrix and the solution of the RHP is necessary. Thus,
if the RHP 1 is solved, we can get the corresponding
potential function q.

Expanding the function P+ at λ → ∞ as P+(λ) =
I3+λ−1P [1]

+ (x)+O
(
λ−2
)
, and inserting the expansion

of P+ into (6a). Then comparing the same order terms
of λ,

the potential matrix Q can be given by

Q = −i
[
Λ, P [1]

+
]

= i
[
Λ, P [1]

−
]

(14)
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and the coefficient ofλ−1:
P [1]

+,x = i[λ, P [2]
+ ] + Q P [1]

+ ,

P [1]
−,x = i[λ, P [2]

− ] − P [1]
− Q.

Then, togetherwith the equations (14),we can conclude
that the asymptotic expansion of P+ at λ = ∞

P+(x) =
⎡
⎣
1 + 1

2iλ

∫ +∞
x |q(y)|2dy 1

2iλ

∫ +∞
x q(y)2dy 1

2iλq(x)
1
2iλ

∫ +∞
x q∗(y)2dy 1 + 1

2iλ

∫ +∞
x |q(y)|2dy 1

2iλq∗(x)
1
2iλq∗(x) 1

2iλq(x) 1 − 1
iλ

∫ x
−∞ |q(y)|2dy

⎤
⎦+ O(λ−2).

Similarly, the asymptotic expansion of P− can be obtained as

P−(x) =
⎡
⎣
1 + 1

2iλ

∫ x
−∞ |q(y)|2dy 1

2iλ

∫ x
−∞ q(y)2dy − 1

2iλq(x)
1
2iλ

∫ x
−∞ q∗(y)2dy 1 + 1

2iλ

∫ x
−∞ |q(y)|2dy − 1

2iλq∗(x)

− 1
2iλq∗(x) − 1

2iλq(x) 1 − 1
iλ

∫ +∞
x |q(y)|2dy

⎤
⎦+ O(λ−2).

Implementing the direct calculation on the equation
above, the asymptotic expansion of the determination
det(P+), i.e., the scattering coefficient ŝ33 and s33 can
be obtained

s33 = 1 + 1

iλ

(∫ +∞

x
|q(y)|2dy −

∫ x

−∞
|q(y)|2dy

)

+O(λ−2),

ŝ33 = 1 − 1

iλ

(∫ +∞

x
|q(y)|2dy −

∫ x

−∞
|q(y)|2dy

)

+O(λ−2).

Besides, by Eq. (14) and the form of matrix Q, the
potential function q can be recovered by the following
formula

q = −2i[P [1]
+ ]13. (15)

Imposing the similar process to P−, we can get q =
2i[P [1]

− ]13. If the RH problem (13) can be solved, then
the potential function q can be reconstructed from its
solution P±. By the definition of Q, it can be checked
that Q and the related functions satisfy the following
two kinds of symmetry relations

Proposition 1 The modified Jost function P±, the scat-
tering data satisfy the symmetry properties

– The self-conjugate symmetry properties

Q(x, t) = −Q†(x, t), P†
+(λ∗) = P−(λ),

S†(λ∗) = S−1(λ), ŝ33(λ) = s33(λ∗). (16)

– The reverse-time symmetry properties

Q(x, t) = Σ Q∗(x,−t)Σ, Σ(P+)∗(x,−t; −λ∗)Σ

= P+(x, t; λ),

ΣS∗(−λ∗)Σ = S(λ), s∗
33(−λ∗) = s33(λ). (17)

with Σ =
⎡
⎣
0 1 0
1 0 0
0 0 1

⎤
⎦ .

Proof Begin from the first symmetry relation of Q,
the anti-Hermitic symmetry (16). Take Hermitian con-
jugate on both sides of the scattering Eq. (6a), we
can get J † meet with spectral problem (9), and J−1

also satisfies Eq. (9). So there is a constant matrix
C0 J †(λ∗) = J−1λC0, make x → ±∞, in combina-
tion with the asymptotic behavior of J at infinite, then
C0 = I, as a result, J †(λ∗) = J−1(λ). Consequently,
the symmetry relations of P± and scattering matrix are
P†

+ (λ∗) = P−(λ), S†(λ∗) = S−1(λ). And the symme-
try relations of the scattering data ŝ33(λ) = s33(λ∗), so
if s33(λk) = 0, then we have ŝ33(λ∗

k) = 0.
Secondly, due to the potential matrix Q also satis-

fies the symmetry relations Q(x, t) = −Q†(x, t), take
conjugate of the nonlocal LPD Eq. (1). Then, multi-
ply Σ from both sides and replace t with −t , then we
concluded that

(Σ J ∗(x,−t)Σ)x = −iλ∗ [Λ,Σ J ∗(x,−t)Σ]

+ QΣ J ∗(x,−t)Σ,

so Σ J ∗(x,−t;−λ∗)Σ satisfies the scattering Eq. (6a).
Similarly, by combining the asymptotic behavior of
function J at infinity,Σ J ∗(x,−t;−λ∗)Σ = J (x, t; λ).
And furthermore, by the definitions of P± and the
matrix S, the following symmetric properties can be
obtained
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Σ(P+)∗(x,−t;−λ∗)Σ = P+(x, t; λ), ΣS∗(−λ∗)

Σ = S(λ). (18)

and s∗
33(−λ∗) = s33(λ). So if s33(λk) = 0, then

s33(−λ∗
k) = 0. ��

By the symmetry properties above, suppose det(P+)

= ŝ33 possess N simple zeros λk ∈ C+, k =
0, . . . , N = n1+2n2.
{
λ1, λ2, . . . , λn1+n2 , λn1+n2+1, . . . , λn1+2n2

}
,

Since the scattering matrix S satisfies (16), so ŝ33
admits n1+2n2 simple zeros λ̄k = λ∗

k
∈ C−, k =

0, . . . ,n1+2n2.
Consequently, we have

s33 =
N1∏

k=1
(λ − λk)

N1+N2∏
j=N1+1

(λ − λ j )(λ + λ∗
j )

s[0]
33 (λ), s[0]

33 (λ) �= 0,

ŝ33 =
N1∏

k=1
(λ − λ∗

k)
N1+N2∏
j=N1+1

(λ − λ∗
j )(λ + λ j )

ŝ[0]
33 (λ), ŝ[0]

33 (λ) �= 0,
ŝ33(λk) = s33(λ∗

k) = 0, ŝ
′
33(λk) �= 0, s

′
33(λ

∗
k) �= 0,

where

λk =
⎧⎨
⎩

ζk, k = 1, . . . , n1,

μk−n1 , k =n1+1, . . . ,n1+n2,

−μ∗
k−n1−n2

, k =n1+n2 + 1, . . . ,n1+2n2,

(19)

with ζk ∈ iR+, k = 1, . . . , n1 are purely imagi-
nary spectral parameters and arg(μk) ∈ (0, π

2 ), k =
1, . . . , n2 are spectrums in the first quadrant of the com-
plex plane. The distributions of the discrete spectrums
are shown in Fig. 1.

Denote the eigenvectors for P+ and P− correspond-
ing to the eigenvalues corresponding to the eigenval-
ues λk ∈ C+ and λ̄k ∈ C− are vk and v̄k , respectively.
Since P+ satisfies the scattering problem (6a) and P−
satisfies the adjoint scattering problem (7a), we have
vk = eiλkΛx ṽk0 and v

†
k = ṽ∗

k0
e−iλkΛ∗x .

Then, we consider the time evolution of the inverse
scattering process. To get the time dependence of the
related functions, recall the time-dependent part (6b)
of the Lax pair for J , then the time evolution of the
scattering matrix can be gotten as so the corresponding
Eq. (11) becomes

Fig. 1 (Color online) Distribution of the discrete spectrum for
the RHP on complex λ-plane, Region D+ = {λ ∈ C|Reλ > 0}
(white region), while region D− = {λ ∈ C|Reλ < 0} (blue
region)

J2(x, t; λ) = J1(x, t; λ)e−iλx S(t; λ)eiλx . (20)

by Eq. (20), we can get that J2(x, t; λ)e−iλx =
J1(x, t; λ)S(t; λ). Since J2(x, t; λ) satisfies the time
part of (6b), J2(x, t; λ)E satisfies equation (6b) and
does J1(x, t; λ)e−iλx S(t; λ), substitute it into equation
(6b), so we have

(J1(x, t; λ)e−iλx S(t; λ))t = 2iλ2(α − 4βλ2)[
Λ, J1(x, t; λ)e−iλx S(t; λ)

]

+V0(x, t; λ)J1(x, t; λ)e−iλx S(t; λ). (21)

Let x → ±∞ in the above equation, due to V0 →
0, J1(x, t; λ) → I, we get

S(t; λ)t = 2iλ2(α − 4βλ2) [Λ, S(t; λ)] .

Similarly, the time dependence of S−1(t; λ) can be
gotten

S−1(t; λ)t = 2iλ2(α − 4βλ2)
[
Λ, S−1(t; λ)

]
.

Furthermore, the time evolutions for the scattering
coefficients are ∂s33

∂t = ∂ ŝ33
∂t = 0, and

s13(t; λ) = s13(0; λ) exp(4iλ2(α − 4βλ2)t),

s23(t; λ) = s23(0; λ) exp(4iλ2(α − 4βλ2)t),

ŝ31(t; λ) = ŝ31(0; λ) exp(−4iλ2(α − 4βλ2)t),

ŝ32(t; λ) = ŝ32(0; λ) exp(−4iλ2(α − 4βλ2)t).

Consequently, the zeros of the RHP are dependent
with t . Successively, by the scattering problem (6b), the
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time evolution of the eigenvectors vk can be taken as
and the corresponding adjoint problem, respectively.
Take the derivative with respect to t of both sides
of following equation vk = e(iλk x+2iλ2(α−4βλ2)t)Λvk0 .

In addition, transform t → −t and take conjuga-
tion on the kernel equation and combine the sym-
metry relation (17), the corresponding eigenvector for
the eigenvalue λ = −λ∗

k is v̂k = Σv∗
k (x,−t; λk) =

Σe(iλ∗
k x+2iλ∗2(α+2βλ∗)t)Λv∗

k0
. To sum up, for the eigen-

value λk ∈ C+ , the corresponding eigenvectors are

vk =

⎧⎪⎪⎨
⎪⎪⎩

e(iζk x+2iζ 2k (α−4βζ 2k )t)Λv
[0]
k , k =1, . . . , n1,

e(iμk−n1 x+2iμ2
k−n1

(α−4βμ2
k−n1

)t)Λ
v

[0]
k , k = n1 + 1, . . . , n1 + n2,

Σe(−iμ∗
k−n1

x−2i(μ∗
k−n1

)2(α−4β(μ∗
k−n1

)2)t)Λ
(v

[0]
k−n1

)∗, k =n1 + n2 + 1, . . . , N ,

(22)

and

v̄k=

⎧⎪⎨
⎪⎩

(v
[0]
k )∗e(iζ ∗

k x+2i(ζ ∗
k )2(α−4β(ζ ∗

k )2)t)Λ, k =1, . . . , n1,

(v
[0]
k )∗e(iμ∗

k−n1
x+2i(μ∗

k−n1
)2(α−4β(μ∗

k−n1
)2)t)Λ

, k =n1 + 1, . . . , n1 + n2,

v
[0]
k e(−iμk−n1 x+2iμ2

k−n1
(α−4βμ2

k−n1
)t)Λ

Σ, k =n1 + n2 + 1, . . . . . . , N ,

(23)

where

v
[0]
k =
{

(a[1]
k , (a[1]

k )∗, c[1]
k ), k = 1, . . . , n1

(a[2]
k , b[2]

k , c[2]
k ), k =n1 + 1, . . . , n1 + n2

with c[1]
k are real and a[1]

k , a[2]
k , b[2]

k , c[2]
k are arbitrary

complex numbers.
To solve the above problems with simple zeros, we

need to transform the non-regular problem into the reg-
ular RH problem by removing simple zeros, and then,
the solution of the regularRHproblemcanbe expressed
by the Sokhotski–Plemelj formula. By virtue of the
above eigenvectors vk and v̄k , for j = 1, , . . . , n1, intro-
duce the matrix Θ j

Θ j = I + λ∗
j − λ j

λ − λ∗
j

|v j >< v
†
j |

< v
†
j |v j >

,

Θ−1
j = I − λ∗

j − λ j

λ − λ j

|v j >< v
†
j |

< v
†
j |v j >

.

For k =n1+1, . . . , n2, define the matrix Θ̂k

Θ̂k =
(
I + λ∗

k − λk

λ − λ∗
k

|vk >< v
†
k |

< v
†
k |vk >

)

(
I + λ∗

k − λk

λ + λk

|v̂k >< v̂
†
k |

< v̂
†
k |v̂k >

)
,

Θ̂−1
k =
(
I − λ∗

k − λk

λ − λk

|vk >< v
†
k |

< v
†
k |vk >

)

(
I − λ∗

k − λk

λ + λ∗
k

|v̂k >< v̂
†
k |

< v̂
†
k |v̂k >

)
.

By direct calculation, we obtain

det(Θ j ) = λ − λ j

λ − λ∗
j
, det(Θ̂k) = (λ − λk)(λ + λ∗

k)

(λ − λ∗
k)(λ + λk)

.

Then, introduce the following matrix T with

T = Θn1+2n2 . . . Θn1+1Θn1 . . . Θ1, (24)

and then, we have the following lemma.

Lemma 2 The above product expression (24) of matrix
T can be written as the following expression with the
sum of partial fractions

T (λ) = I +
n1+2n2∑

j,k=1

v j
(
M−1
)

jk v
†
k

λ − λ∗
k

,

T −1(λ) = I −
n1+2n2∑

j,k=1

v j
(
M−1
)

jk v
†
k

λ − λ j
,

(25)

where M is a matrix of N × N with the elements

M jk = v
†
jvk

λ∗
j − λk

, 1 ≤ j, k ≤ n1 + 2n2,

and the determination can be gotten as where

det(T ) =
n1∏

k=1

λ − ζk

λ − ζ ∗
k

n2∏
j=1

(λ − μ j)(λ + μ∗
j )

(λ − μ∗
j )(λ + μ j)

.
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Fig. 2 (Colour online) The 2d-plots of the solution Eq. (27) when n2 = 0. The parameters are α = β = 1, a[1]
k = i

2 , k = 1..4. The
spectral parameters are a η1 = 1

4 ; b η1 = 1
4 , η2 = 1

3 ; c η1 = 1
4 , η2 = 4

3 ; dη1 = 1
4 , η2 = 1

3 ;e same with c except for η3 = 1
2

The proof of the lemma 2 can refer to the proof of
theorem2.1 in reference [44].Here,weomit the process
of details.

Furthermore, when the system is reflectless, the
reflectless potential function q corresponds to the soli-
ton solution. By the solution formula to the nonregular
RHPwith simple zeros in [44], then the scattering coef-
ficients of the RHP 1 are all equal to zero, i.e., G = I,
so P−1+ (λ) = T −1(λ), λ ∈ C+. i.e., P+(λ) = T (λ),
the sum expansion of T (λ) have been obtained by (24),
so we have

P [1]
+ = T [1](λ) =

n1+2n2∑
j,k=1

v j

(
M−1
)

jk
v
†
k . (26)

The following theorem can be obtained.

Theorem 1 The N soliton formula for the nonlocal
LPD Eq. (1) is

q(x, t)=2i

∣∣∣∣
M Ȳ T

3

Y1 0

∣∣∣∣
|M | , (27)

where M is a N × N matrix with M jk = v
†
j vk

λ∗
j − λk

, 1 ≤

j, k ≤ n1 + 2n2, Yk and Ȳk are the k row of

Y = [Y1, Y2, Y3]
T =[v1,. . . ,vn1,. . . ,vn1+n2 ,

Σv∗
n1+1(x,−t),. . . ,Σv∗

n1+n2(x,−t)
]
3×N

,

Ȳ = [Ȳ1, Ȳ2, Ȳ3
]T =[v∗

1 ,. . . ,v
∗
n1,. . . ,v

∗
n1+n2 ,

Σvn1+1(x,−t),. . . ,Σvn1+n2(x,−t)
]
3×N ,

with vk are shown in Eq. (22).

To illustrate the formula (27), the dynamical behav-
iors for the general soliton solutions will be studied in
next section.

3 Dynamics for the general soliton solutions

For the arbitrary vectors v
[0]
k , take the parameters c[1]

k =
c[2]

k = 1. Then,wewill study the solutionwith different
parameter values in three cases: case 1:n1 = 0, n2 �= 0;
case 2: n1 �= 0, n2 = 0 and case 3: n1 �= 0, n2 �= 0.

Case 1 When n1 �= 0, n2 = 0. In this case, the
solutions are standing waves breathing up and down
periodically over time but does not varywith t .Without
loss of generality, take ζk = iηk and c[1]

k = 1, k =
1, . . . , n1. We give the following examples. (1) If n1 =
1, then q have the following expression

q = 4
a[1]
1 η1e2η1x

e4xη1 + 2|a[1]
1 |2 e

−4iη12
(
α+4βη1

2
)
t . (28)

The amplitude is determined by the imaginary part of
the spectrum parameter η1 and parameter a[1]

1 . Further-
more, it can be seen that the parameters α and β do not
affect the amplitudeof this standingwave.Theplotwith
η1 = 1

4 , a[1]
1 = i

2 is shown in Fig. 2a. (2) If n1 = 2,
take η1 = 1

4 , the ring breather wave shown in Fig. 2b
with η2 = 1

3 and the line breather wave in Fig. 2c with
η2 = 4

3 . (3) If n1 = 3, the ring-line breather wave
shown in Fig. 2 (e) with η1 = 1

4 , η2 = 1
3 , η3 = 1

2 is
gotten. Besides, it is worth mentioned that the param-
eter a[1]

k are all taken as i
2 . But the shape of the waves

is quite different with different a[1]
k . For example, for

n1 = 2, when a[1]
1 �= a[1]

2 , the ring breather wave will
no longer be symmetric with respect to x = 0 and
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Fig. 3 The 2d-plots of Eq. (27) with different parameters. a
with μ1 = 1

2 + i
4 and a[2]

1 = i
2 , b[2]

1 = i; b with same parameters

as (a) except for b[2]
1 = 0; c with μ1 = 1

2 + i
4 , μ2 = 1

2 + i
3 and

a[2]
1 = a[2]

2 = i
3 , b[2]

1 = b[2]
2 = 1; d with same parameters as (c)

except for a[2]
1 = 0; e with same parameters as (c) except for

b[2]
1 = 0

Fig. 4 The 2d-plots of Eq. (27) with different parameters. a
ζ1 = i

4 , μ1 = 1
2 + i

3 and a[1]
1 = b[2]

1 = i
2 , a[2]

1 = 1+ i
2 ; b

with same eigenvalues except for a[2]
1 = 0; c and d with same

ζ1 = i
4 , ζ2 = i

3 , μ1 = 1
2 + i

3 and except for (c) a[2]
1 = 1+ i

2

and d a[2]
1 = 0; e with ζ1 = i

4 , ζ2 = i
3 , ζ2 = i

2 , μ1= 1
2 + i

3 and

a[1]
1 = a[2]

1 = a[3]
1 = i

2

when a[1]
1 = i

2 , a[1]
2 = i

4 , the corresponding plot in
Fig. 2 (d) and other rich dynamical behaviors can be
obtained with different values combination of a[1]

k .
Case 2 When n1 = 0, n2 �= 0. The solution is a

2n2-soliton solution which is related to a pair of non-
purely imaginary eigenvalues {μk,−μk}, so their cen-
ter positions for the 2n2-soliton are symmetric with
respect to t = 0. If n2 = 1, the fundamental two-
soliton solution is gotten in Fig. 3a where μ1 = 1

2 + i
4

and a[2]
1 = i

2 , b[2]
1 = i. And with same parameters

except for b[2]
1 = 0, the traveling single soliton is

obtained in Fig. 3 (b) which is reduced from the two-
soliton solution. Similarly, an interesting phenomenon
is observed when n2 = 2. The general four-soliton
can be obtained in Fig. 3c with the nonzero parame-
ters but when the parameter a[2]

1 = 0, one of the soli-
ton disappear after the collision in Fig. 3 (d-e). The
other parameters are μ1 = 1

2 + i
4 , μ2 = 1

2 + i
3 and

a[2]
1 =0, a[2]

2 = i
3 , b[2]

1 =b[2]
2 =1.

Case 3 When n1n2 �= 0, the solution is a interaction
wave composed by elementary 2n2-soliton and peri-
odic breathing wave. But there is one exception, when
n1 = 1, n2 = 1, a general two-soliton interact with a
standing wave parallel to the X-axis is illustrated in
Fig. 4a. Similarly, the interactive wave as shown in
Fig. 4b can be obtained when a[2]

1 = 0. Besides, we
also give two examples of n1 =2, n2 =1, then the cir-
cle breather interacting with a two soliton is obtained
in Fig. 4c with a[2]

1 =1+ i
2 and Fig. 4d a[2]

1 =0. Fig. 4e
is the ring-line breather interacting with a two-soliton
wave. In this case, both amplitudes of the breather and
soliton change after collision.

4 Higher-order soliton formulas

If det(P+) = ŝ33(λ) possess N = n1+2n2 elementary
higher-order zeros (19) (the geometric multiplication
is 1). But the corresponding order of the zero λk is
R[k] with R = [r1, . . . , rn1 , r̂1, . . . , r̂n2 , r̂1, . . . , r̂n2 ]
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is a N -th vector. So the algebraic multiplications are

N0 =
n1∑
j=1

r j + 2
n2∑

k=1
r̂k . Then, by the symmetry relation

(16), ŝ33 and s33 admits the following form

ŝ33 =
n1∏
j=1

(λ − ζ j )
r j

n2∏
k=1

(λ − μk)
r̂k (λ + μ∗

k)
r̂k ŝ[0]

33 (λ),

ŝ[0]
33 (λ) �= 0,

s33 =
n1∏
j=1

(λ − ζ ∗
j )

r j

n2∏
k=1

(λ − μ∗
k)

r̂k (λ + μk)
r̂k s[0]

33 (λ),

s[0]
33 (λ) �= 0.

Inspired by the idea in [45–47], for
{
ζk, μ j ,−μ∗

j

}
,

k = 1, . . . , n1, j = 1, . . . , n2, add the perturbation
parameters

ζk → ζk + ε, μk → μk + ε, −μ∗
k → −μ∗

k + ε̂.

And the corresponding eigenvectors for the pertur-
bation eigenvalue ζ j + ε ∈ iR+ and ζ ∗

j + ε̄ ∈ iR−
are

u j =
[

A[ j]
1 eθ(ζ j ), A[ j]

1
∗
eθ(ζ j ), C [ j]

1 e−θ(ζ j )
]T

,

u†
j =
[

A[ j]
1

∗
eθ̄ (ζ j ), A[ j]

1 eθ̄ (ζ j ), C [ j]
1 e−θ̄ (ζ j )

]
, (29)

the corresponding perturbation eigenvectors for eigen-
values [μ j +ε,−μ∗

j +ε̂] ∈ C+ and [μ∗
j +ε̄,−μ j +ˆ̄ε] ∈

C− are

w j =
[

A[ j]
2 eθ(μ j ), B[ j]

2 eθ(μ j ), C [ j]
2 e−θ(μ j )

]T
,

ŵ j =
[

B[ j]
2

∗
eθ̂ (μ j ), A[ j]

2
∗
eθ̂ (μ j ), C [ j]

2
∗
e−θ̂ (μ j )

]
,

w
†
j =
[

A[ j]
2

∗
eθ̄ (μ j ), B[ j]

2
∗
eθ̄ (μ j ), C [ j]

2
∗
e−θ̄ (μ j )

]T
,

ŵ
†
j =
[

B[ j]
2 e

ˆ̄θ(μ j ), A2e
ˆ̄θ(μ j ), C [ j]

2 e− ˆ̄θ(μ j )

]
, (30)

with

θ(λ j , ε) = i
(
λ j + ε
)

x

+2i
[
α
(
λ j + ε
)2 − 4
(
λ j + ε
)4

β
]

t,

θ̄ (λ j , ε̄) = −i
(
λ̄ j + ε̄
)

x

−2i
[
α
(
λ̄ j + ε̄
)2 − 4β

(
λ̄ j + ε̄
)4]

t,

θ̂ (λ j , ε̄) = −i
(
λ∗

j + ε̄
)

x

+2i

[
α
(
λ∗

j + ε̄
)2 − 4β

(
λ∗

j + ε̄
)4]

t,

ˆ̄θ(λ j , ε) = i
(
λ j + ε
)

x

−2i
[
α
(
λ j + ε
)2 + 4βi

(
λ j + ε
)4]

t.

Let C [ j]
1 = C [ j]

2 = 1 and take the follow-

ing perturbation expansion A[ j]
i =

+∞∑
k=0

a[k]
i, j ε

k , B[ j]
i =

+∞∑
k=0

b[k]
i, j ε

k , i = 1, 2. Expand the eigenvectors uk, u†
k and

w j , ŵ j , w
†
j , ŵ

†
j at [ε̄, ε] = [0, 0], then

u j =
r j −1∑
k=0

u[k]
j εk + o(εr j −1),

u†
j =

r j −1∑
k=0

ū[k]
j ε̄k + o(ε̄r j −1),

w j =
r̂ j −1∑
k=0

w
[k]
j εk + o(εr̂ j −1),

w
†
j =

r̂ j −1∑
k=0

w̄
[k]
j ε̄k + o(ε̄r̂ j −1),

ŵ j =
r̂ j −1∑
k=0

ŵ
[k]
j ε̄k + o(ε̄r̂ j −1),

ŵ
†
j =

r̂ j −1∑
k=0

ˆ̄w[k]
j εk + o(εr̂ j −1).

(31)

To get the higher-order solution formula, add per-
turbation parameters [ε̄, ε] into the eigenvalues and the
corresponding eigenvectors of (27). At this point, the
solution formula becomes an expression of the per-
turbation parameters. Take limit of the perturbation
parameters [ε̄, ε] → [0, 0], the following theorem can
be obtained.

Theorem 2 If det (P+) possess n1 +2n2 higher-order
zeros (19), then the N0-th higher-order soliton formula
can be gotten as

q(x, t) = 2i

∣∣∣∣
F χ̄T

3

χ1 0

∣∣∣∣
|F | , r(x, t) = −q∗(x,−t)

= 2i

∣∣∣∣
F χ̄T

3

χ2 0

∣∣∣∣
|F |

(32)

where χ [k], χ̄[ j] be the k-th column and j-th row of
the following χ and χ̄ , respectively.
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χ =
[
u[0]
1 , . . . , u[r1−1]

1 , . . . , u[0]
n1 , . . . , u

[rn1−1]
n1 , w

[0]
1 ,

. . . , w
[r̄1−1]
1 , . . . , w[0]

n2 , . . . , w
[r̄n2−1]
n2 , ŵ

[0]
1 ,

. . . , ŵ
[r̄1−1]
1 , . . . , ŵ[0]

n2 , . . . , ŵ
[r̄n2−1]
n2

]
3×N0

,

χ̄ =
[
ū[0]
1 , . . . , ū[r1−1]

1 , . . . , ū[0]
n1 , . . . , ū

[rn1−1]
1 , w̄

[0]
1 ,

. . . , w̄
[r̄1−1]
1 , . . . , w̄[0]

n2 , . . . , w̄
[r̄n2−1]
n2 , ˆ̄w[0]

1 ,

. . . , ˆ̄w[r̄1−1]
1 , . . . , ˆ̄w[0]

n2 , . . . , ˆ̄w[r̄n2−1]
n2

]
N0×3

and F = [Mk, j
]

N0×N0
, k, j = 1..N0 is a block

matrixwithMk, j =
[
m[l1,l2]

k, j

]
R[k]×R[ j] are R[k]×R[ j]

matrixes with the elements are

m[l1,l2]
k, j = lim

ε,ε̄→0

1

(k − 1)!( j − 1)!
∂k+ j−2

∂ε̄l1−1∂εl2−1
[

χ̄[k]χ [ j]
λ∗

k + ε̄ − λ j + ε

]
.

The proof of the theorem can be referred to the
details in [45,47], where the nonlocal NLS equation
was corresponded to 2 × 2 linear equation. The pro-
cess for this nonlocal LPD Eq. (1) is similar except for
the symmetry properties. Thus, the detailed process of
the higher-order soliton formula for such nonlocal LPD
Eq. (1) is omitted here.

Remark The biggest difficulty and difference here is
that the symmetry properties for the perturbed param-
eters. Due to the special nonlocal properties for such
nonlocal LPDEq. (1) corresponding to a 3×3Lax pair,
the symmetry properties for the perturbed parameters
are quite different and difficult to conclude.

To illustrate the higher-order soliton formula (32), we
give some examples as follows.

When N1 = 1, N2 = 0, the RHP (1) only have
a purely imaginary higher-order zero ζ1. In this case,
the solution is a higher-order soliton. If r1 = 2, at this
time, implement the Taylor expansions of the following

expressions u1 = u[0]
1 + u[1]

1 ε + o(ε), u†
1 = ū[0]

1 +
ū[1]
1 ε̄ + o(ε̄). F =

[
m[l1,l2]

1,1

]
2×2

is a 2 × 2 matrix,

where the elements m[l1,l2]
1,1 are the coefficients of the

following expansion
[

χ̄ [k]χ [ j]
λ∗

k + ε̄ − λ j + ε

]
= m[1,1]

1,1 + m[2,1]
1,1 ε̄

+m[1,2]
1,1 ε + m[2,2]

1,1 ε̄ε + o(ε̄ε).

By the higher-order formula (32), then the 2-order
soliton solution for the nonlocal LPD Eq.is

q(x, t) = 2i

∣∣∣∣∣∣∣

m[1,1]
1,1 m[1,2]

1,1 ū[0]
1 [3]

m[2,1]
1,1 m[2,2]

1,1 ū[1]
1 [3]

u[0]
1 [1] u[1]

1 [1] 0

∣∣∣∣∣∣∣
∣∣∣∣∣
m[1,1]

1,1 m[1,2]
1,1

m[2,1]
1,1 m[2,2]

1,1

∣∣∣∣∣

.

Let ζ1 = iξ1 in the equation above and simplify the
equation, so we have

q(x, t) ==
[
−8ξ1C1e

2xξ1+3a[0]
1,1 − 8ξ1

(
64iβtξ14 + 8iαtξ12 − iξ1a[1]

1,1 + 2xξ1 − 1
)
e6xξ1+a[0]

1,1

]
e−4i tξ12

(
4βξ1

2+α
)

(
16a[1]

1,1
2
ξ1

2 + 4
)
e4a[0]

1,1 + e8xξ1 + C2e
4xξ1+2a[0]

1,1

,

with

C1 =
(
−256a[1]

1,1ξ1
5β + 128iβξ1

4 − 32a[1]
1,1ξ1

3α

+16iαξ1
2
)

t − 8i xa[1]
1,1ξ1

2 − 4a1,1
2ξ1

2

−2ia[1]
1,1ξ1 − 4xξ1 − 2,

C2 =
(
32768ξ1

8β2 + 8192ξ1
6αβ + 512ξ1

4α2
)

t2

+32ξ1
2x2 + 8a[1]

1,1
2
ξ1

2 + 4.

Take ζ1 = ı
4 , a[0]

1,1 = a[1]
1,1 = 0 and the plot of 2-order

soliton for the nonlocal LPD Eq. (1) is shown in Fig. 5
(a). It can be seen that the branches of higher order
solitons propagate forward in almost parallel directions
with time, and then return to the original direction after
the collision near the zero point and continue to propa-
gate forward. Besides, the 3-order and 4-order soliton
corresponding to a purely imaginary higher-order zero
for the nonlocal LPD Eq. (1) are shown in Fig. 5b and
c, respectively.
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Fig. 5 The 2d-plots of the higher-order soliton formula (32) for
nonlocal LPD Eq. (27) with different parameters. The parame-
ters of the waves are: α = β = 1 and the eigenvalues are a, b

and c:ζ1 = i
4 , d and e:ζ1 = i

4 , ζ1 = i
6 , f :μ1 = 1

3 + i
5 and g,

h:ζ1 = i
4 , μ1 = 1

3 + i
5 . Other parameters are all 0

In addition, in Fig. 5d,we also give themixed higher-
order soliton solution of a two-order soliton and a stand-
ing wave, which is correspond to a purely imaginary
higher-order zero and a purely imaginary simple zero.
And Fig. 5e is a higher-order soliton solution which
is correspond to two purely imaginary 2-order zeros.
Fig. 5c and e shows two different kinds of 4-order soli-
ton corresponded to different spectral configurations.
Besides, Fig. 5f and g shows the other two kinds of 4-
order solitonswith different higher-order zeros, respec-
tively. The wave shown in Fig. 5f is correspond to a
two second-order purely imaginary zeros and a pair of
non-purely imaginary simple zeros. And the solution
of Fig. 5g is correspond to a pair of second-order non-
purely imaginary zeros. Finally, Fig. 5e gives a stand-
ing wave interact with a fourth-order soliton shown
in Fig. 5d, which is correspond to a purely imaginary
simple zero and a pair of non-purely imaginary second-
order zeros .

5 Conclusion

In summary,we proposed a novel nonlocal LPDEq. (1)
corresponding to a 3×3 Lax pair (4a and 4b), which is
reduced from a two-component coupled LPD Eq. (3)
by a reverse-time reduction. Then, the inverse scatter-
ing transformation for initial value problem of the non-
local LPD Eq. (1) was studied with the help of an RHP.
The RHP was established after constructing the Jost
function with specific analytic properties and asymp-
totic properties. The symmetry relations were then pro-
vided for the Jost function and the scattering data.

The zeros of the RHP were purely imaginary or
appear in pairs as (μk,−μ∗

k). Then, the correspond-
ing reflectionless potential formulas for the RHP were
given as the following three different types of simple
zeros: Case 1: all the zero are purely imaginary; Case
2: all the zero are non-purely imaginary or in pairs;
Case 3: n1 zeros are purely imaginary and n2 pairs of
non-purely imaginary zeros .
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At the same time, the corresponding plots and
dynamical behaviors for the above solutions were
given. For case 1, when n1 = 1, n2 = 0, the solution is
a standing wave which did not travel with time. When
n1 ≤ 2, n2 = 0, the solutions were breathing with time
and kinds of rich structures were given with different
parameters. For case 2, when n1 = 0, n2 �= 0, the 2n2

solitons occurring symmetrically were obtained with
suitable parameters. Besides, the 2n2 − 1 solitons and
special soliton structures shown in Fig. 3c and e can
be obtained in this case. For Case 3, when n1n2 �= 0,
the interaction solutions of a two-soliton solutions and
a standing wave were obtained. It is worth mention-
ing that the amplitude of these two waves changed
markedly after the collision. The plots of the sym-
metric two-solitons interacting with a standing wave
and breathers are shown in Fig. 4a, c and e. Besides,
with special parameters, the special interacting waves
as shown in Fig. 4b and d were obtained.

Ultimately, the higher-order soliton formula was
obtained by adding perturbations and taking limit of the
perturbations. Then by some matrix transformations,
the higher-order formula in determinant form (5) was
given. It isworth noting that this formula canbe reduced
to the solution formula (27) corresponding to simple
zeros when the order of all higher-order zeros is one.
In addition, through this formula (5), we can also get
some solutions when the high-order zeros and the sim-
ple zeros exist simultaneously. The corresponding solu-
tions corresponding to different combinations of the
following zeros: purely imaginary higher-order zeros,
purely imaginary simple zeros, pairs of non-purely
imaginary simple zeros and pairs of non-purely imag-
inary higher-order zeros are shown in Fig. 5, respec-
tively.

Furthermore, the inverse scattering transformation
and kinds of soliton solutions for the following nonlo-
cal integrable LPD equation will be considered in the
future.

(1) The nonlocal reverse-space LPD equation

iqt (x, t)

= iβ
[
qxxx (x, t) + 3qx(x, t)

(|q(x, t)|2

+|q(−x, t)|2)+ 3q(x, t) (qx(−x, t)q∗

×(−x, t) + qx(x, t)q∗(x, t))] + α [qxx(x, t)

+2q
(|q(x, t)|2 + |q(−x, t)|2)] . (33)

(2) The nonlocal reverse-time LPD equation

iqt (x, t)

= iβ
[
qxxx (x, t) + 3qx (x, t)

(|q(x, t)|2 + |q(x,−t)|2)

+3q(x, t)
(
q∗

x (x,−t)q(x,−t) + qx (x, t)q∗(x, t)
)]

+ α
[
qxx (x, t) + 2q(x, t)

(|q(x, t)|2 + |q(x,−t)|2)] .
(34)

(3) The nonlocal LPD equation of reverse-spacetime
type

iqt (x, t)

= iβ
[
qxxx (x, t) + 3qx (x, t)

(|q(x, t)|2 + |q(−x,−t)|2)

+ 3q(x, t)
(
q∗

x (−x, −t)q(−x,−t)

+qx (x, t)q∗(x, t))
]

+ α
[
qxx (x, t) + 2q(x, t)

(|q(x, t)|2 + |q(−x,−t)|2)] .
(35)

The nonlocal equations above were obtained from
the coupled LPD Eq. (3) by the following nonlocal
reductions r(x, t) = q(−x, t), r(x, t) = q∗(x,−t),
and r(x, t) = q∗(−x,−t).
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