
Wave Motion 107 (2021) 102823

a

U
b

o
p
f
a
F
a
e
c
e
c
N

h
0

Contents lists available at ScienceDirect

WaveMotion

journal homepage: www.elsevier.com/locate/wamot

The data-driven localizedwave solutions of the derivative
nonlinear Schrödinger equation by using improved PINN
approach
Juncai Pu a, Weiqi Peng a, Yong Chen a,b,∗

School of Mathematical Sciences, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal
niversity, Shanghai, 200241, China
College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, China

a r t i c l e i n f o

Article history:
Received 28 June 2021
Received in revised form 19 August 2021
Accepted 27 August 2021
Available online 30 August 2021

Keywords:
The data-driven localized wave solutions
The derivative nonlinear Schrödinger
equation
Improved physics-informed neural
networks

a b s t r a c t

The research of the derivative nonlinear Schrödinger equation (DNLS) has attracted
more and more extensive attention in theoretical analysis and physical application.
The improved physics-informed neural network (IPINN) approach with neuron-wise
locally adaptive activation function is presented to derive the data-driven localized wave
solutions, which contain rational solution, soliton solution, rogue wave, periodic wave
and rogue periodic wave for the DNLS with initial and boundary conditions in complex
space. Especially, the flow-process diagram that accounts for the IPINN of DNLS equation
has been outline in detail, and the data-driven periodic wave and rogue periodic wave
of the DNLS are investigated by employing the IPINN method for the first time. The
numerical results indicate the IPINN method can well simulate the localized wave
solutions of the DNLS. Furthermore, the relevant dynamical behaviors, error analysis
and vivid plots have been exhibited in detail.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

With the revolution of hardware technology, the great improvement of computer speed and the explosive growth
f available data, promoting the application of machine learning and data analysis in practice has made very important
rogress in pattern recognition, natural language processing, computer vision, cognitive science, genomics and many other
ields [1–6]. As is known to all, neural networks (NNs) is an extensive parallel interconnected network composed of
daptive simple units, its organization can simulate the interaction of biological neural system to real world objects [7].
urthermore, the deep learning of multilayer NNs can solve many practical problems, it has attracted more and more
ttention in recent years [4–6]. However, in the process of analyzing complicated mathematical, physical, biological and
ngineering systems, the cost of data acquisition is generally too high, how to utilize machine learning approach to draw
onclusions and make decisions under the small data regime is a significant practical problem. In addition, under the
nvironment with only partial information, the vast majority of state-of-the-art machine learning technologies, such as
onvolution and recurrent NNs [8,9], lack robustness and fail to provide any guarantee of convergence. Recently, a new
Ns which also be called physics-informed neural networks(PINNs) has been proposed and proved to be particularly
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uitable for solving and inversing equations which have been controlled via mathematical physical systems based on
he deep learning models of multilayer NNs, and found that the high-dimensional network tasks can be completed with
ess data sets [10]. That is the PINNs method with the small data regime can not only accurately solve both forward
roblems, where the approximate solutions of governing equations are obtained, but also precisely deal with the highly
ll-posed inverse problems, where parameters involved in the governing equation are inferred from the training data.
ubsequently, in order to improve the convergence rate and training effect for PINNs, Jagtap and collaborators presented
wo different kinds of adaptive activation functions, namely global adaptive activation functions and locally adaptive
ctivation functions, to approximate smooth and discontinuous functions as well as solutions of linear and nonlinear
artial differential equations, and introduced a scalable parameters in the activation function, which can be optimized
o achieve best performance of the network as it changes dynamically the topology of the loss function involved in
he optimization process [11,12]. Moreover, compared with global adaptive activation functions, the numerical results
emonstrate the locally adaptive activation functions further improve the training speed and performance of NNs [12].
urthermore, a slope recovery term based on activation slope has been added to the loss function of locally adaptive
ctivation functions to further improve the performance and speed up the training process of NNs.
In nonlinear optics, many nonlinear models can describe the excitation, propagation and evolution of optical solitons

n specific scenes. The soliton transmission in different forms can be described with the use of nonlinear Schrödinger
quations, related research indicates that the transmission of solitons can be adjusted with the group velocity dispersion
nd Kerr nonlinearity coefficients, and the phase shift, amplification, oscillation and attenuation of solitons can also be
ontrolled by other related parameters [13]. The specific coupled nonlinear Schrödinger equation can control the evolution
f spatial solitons in photovoltaic photorefractive crystals [14], and by adjusting values of diffraction, width and phase
hirp parameters of wave for the (2 + 1)-dimensional nonautonomous-coupled nonlinear Schrödinger equation, the
aximum value of the accumulated time can be modulated [15]. Under a constraint among parameters of nonlinear
ispersion, nonlinearity and self-steepening perturbation, some new exact analytical solutions of the space–time fractional
okas–Lenells equation including bright soliton, dark soliton, combined soliton and periodic solutions are found, and the
ole of fractional order parameters in optical soliton transmission is studied [16]. Furthermore, The derivative nonlinear
chrödinger equation (DNLS) plays a significant role both in the integrable system theory and many physical applications,
specially in space plasma physics and nonlinear optics [17,18]. In 1976, Mio and co-workers first derived the DNLS
rom Alfvén wave propagation in plasma, and found it well described the propagation of small amplitude nonlinear
lfvén wave in low plasma [19]. Furthermore, it was shown that the DNLS can describe the behavior of large-amplitude
agnetohydrodynamic waves propagating in an arbitrary direction with respect to the magnetic field in a high-β plasma
s well [20]. In nonlinear optics, the DNLS also describes the transmission of sub-picosecond pulses in single mode optical
ibers [21], and the DNLS can be derived in the theory of ultrashort femtosecond nonlinear pulse in optical fiber [22]. In
lectromagnetism, the filamentation of lower-hybrid waves can be simulated by the DNLS which governs the asymptotic
tate of the filamentation, and it admits moving solitary envelope solutions for the electric field [23]. Therefore, it is very
ignificant to find abundant solutions of the DNLS for explaining various complex physical phenomena and revealing more
nknown physical laws.
For decades, some classical solutions and important results of the DNLS have been obtained with the aid of different

pproaches. In 1978, Kaup and Newell demonstrated the integrability of the DNLS in the sense of inverse scattering
ethod [17]. Furthermore, with the aid of the Hirota bilinear method, the N-soliton formula of the DNLS has been first

constructed by Nakamura and Chen [24]. According to the Darboux transform approach, Huang and Chen derived the
determinant form of N-soliton formula [25]. Kamchatnov and cooperators not only proposed a method for constructing
periodic solutions of several integrable evolution equations and applied it to the DNLS, but also found the formation of
solitons on the sharp front of optical pulse in an optical fiber via the DNLS [26,27]. Moreover, Hayashi and Ozawa discussed
the Cauchy problem of the DNLS in detail [28]. The compact N-soliton formulae both with asymptotically vanishing and
non-vanishing amplitudes were pursued by iterating Bäcklund transformation of the DNLS [29]. Recently, various methods
have been utilized to reveal more abundant solutions and more new physical phenomena of the DNLS. By means of
certain limit technique, two kinds of generalized Darboux transformations are constructed for the DNLS [30]. Furthermore,
in terms of Darboux transformation theory, the mixed interactions of localized waves in the three-component coupled
DNLS have been constructed [31], the breather and breather-rogue wave on a periodic background for the DNLS have
been investigated [32], the general N-order phase solutions and rogue waves of the DNLS are derived from the trivial
seed by using the determinant representation [33], and the generate higher order position solutions and rogue wave
solutions for the DNLS are studied [34]. The rogue wave, rational traveling solution, breather solution, periodic solution,
dark and bright solitons of the DNLS are given explicitly by substituting different seed solutions into N-fold Darboux
transformation [35]. Some important research results for the DNLS are also obtained by utilizing other methods, Zhang
and Yan reported a rigorous theory of the inverse scattering transforms for the DNLS with both zero boundary conditions
and nonzero boundary conditions at infinity and double zeros of analytical scattering coefficients [36], and general rogue
waves are derived for the generalized DNLS equations by a bilinear Kadomtsev–Petviashvili reduction method [37]. The
accurate rogue waves on the periodic background of the DNLS has been studied emphatically, the first-order and second-
order rogue wave on a periodic background are obtained based on the Darboux transformation, and the second-order
rogue wave can display either a fundamental pattern or a triangle pattern on the periodic background by taking a
certain perturbation coefficient to eigenfunction [38]. In addition, Chen and Pelinovsky have studied the rogue waves and
2
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lgebraic solitons arising on the background of periodic standing waves in the DNLS [39]. Although correlative methods
nd theories of explicit solutions of DNLS have become increasingly mature, it is still a difficult problem to obtain the
olutions of DNLS via numerical method with small data samples.
Recently, recovering the data-drive solutions and revealing the dynamic behaviors of nonlinear partial differential

quations with physical constraints have attracted extensive attention and set off a research boom by using the PINN
ethod [10]. Due to the abundant sample space and good properties of integrable systems, it has become a research
otspot to apply the PINN approach to the field of integrable systems, and an effective numerical calculation method
nd complete theory will be established. More recently, Chen research team constructed a great quantity data-driven
olutions for many nonlinear integrable systems by using PINN deep learning method. Li and Chen obtained abundant
ynamic behaviors of exact solutions for some second-order and third-order nonlinear evolution partial differential
quations via the PINN framework [40,41]. It is worth mentioning that the data-driven rogue periodic wave of nonlinear
artial differential equation has been learned by applying multi-layer PINN for the first time [42]. For non-integrable
onlinear system, the data-driven rogue wave solutions and parameter discovery of the defocusing nonlinear Schrödinger
quation with the time-dependent potential have also been studied by using PINN method [43]. Moreover, Fang and
ollaborators firstly extended the PINN to investigate the high-order nonlinear Schrödinger equation and predicted a
ariety of femtosecond optical soliton excitations in fiber, the unknown physical parameters are studied by using rogue
ave solutions as data sets [44]. Especially, the solitons, breathers and rogue wave solutions of the nonlinear Schrödinger
quation have been recovered with the help of the PINN model [45]. Furthermore, an improved PINN (IPINN) approach
ith neuron-wise locally adaptive activation function was presented to derive rational soliton solutions and rogue
ave solutions of the DNLS in complex space, and numerical results demonstrated the improved approach has faster
onvergence and better simulation effect than classical PINN method [46]. In this paper, we will consider localized wave
olutions which contain periodic wave solution, rogue wave solution, rogue periodic wave solution and rational solutions
f the DNLS by utilizing the IPINN approach with neuron-wise locally adaptive activation function [12,46]. We focus on
he following DNLS with initial–boundary value conditions, whose dispersion term is different from that of the DNLS in
ef. [46], the expression is as follows⎧⎨⎩

qt + iqxx + (|q|2q)x = 0, x ∈ [L0, L1], t ∈ [T0, T1],
q(x, T0) = q0(x), x ∈ [L0, L1],
q(L0, t) = qlb(t), q(L1, t) = qub(t), t ∈ [T0, T1],

(1.1)

where the subscripts denote the partial derivatives of the complex field q(x, t) with respect to the space x and time t , and
the L0 and L1 represent the lower and upper boundaries of x respectively. Similarly, T0 and T1 represent the initial and final
times of t respectively. Moreover, the qlb(t) and qub(t) are the lower and upper boundaries of the q(x, t) corresponding to
x = L0 and x = L1 respectively.

This paper is organized as follows. In Section 2, we introduce briefly discussions of the IPINN method with locally
adaptive activation function, where also discuss about training data, loss function, optimization method and the operating
environment. Moreover, the algorithm flow schematic of the DNLS based on IPINNmodel is exhibited in detail. In Section 3,
the data-driven rational soliton, rational phase solution and vivid plots of DNLS have been exhibited via IPINN model.
Section 4 provides the periodic wave, rogue wave and rogue periodic wave of the DNLS by utilizing the improved PINN
approach, and related plots and dynamic analysis are given out in detail. Conclusion is given out in last section.

2. The improved PINN method

In general, we consider the general (1 + 1)-dimensional nonlinear time-dependent equations in complex space, in
which each contains a dissipative term as well as other partial derivatives, such as nonlinear terms or dispersive terms,
as shown below

qt + N (q, qx, qxx, qxxx, . . .) = 0, (2.1)

where q are complex-valued solutions of x and t to be determined later, and N is a nonlinear functional which contains the
solution q(x, t), its derivatives of arbitrary order respecting to x and any combination between them. Due to the complexity
of the structure of the complex-valued solutions q(x, t) in Eq. (2.1), we decompose q(x, t) into the real part u(x, t) and the
imaginary part v(x, t) by employing two real-valued functions u(x, t) and v(x, t), that is q(x, t) = u(x, t) + iv(x, t). Then
substituting it into Eq. (2.1), we have

ut + Nu(u, ux, uxx, uxxx, . . .) = 0, (2.2)

vt + Nv(v, vx, vxx, vxxx, . . .) = 0. (2.3)

Similarly, the Nu and Nv are nonlinear functionals which consist of the corresponding solutions, their derivatives
of arbitrary order respecting to x and any combination between them, respectively. Then the physics-informed neural
networks fu(x, t) and fv(x, t) can be defined as

f := u + N (u, u , u , u , . . .), (2.4)
u t u x xx xxx

3
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fv := vt + Nv(v, vx, vxx, vxxx, . . .). (2.5)

The original PINN method could not accurately reconstruct solutions of complex forms in some complicated nonlinear
quations. Therefore, due to some accuracy and performance requirements, we draw into an IPINN where a neuron-
ise locally adaptive activation function technique is introduced into the classical PINN method in this paper. It changes
he slope of the activation function adaptively, resulting in non-vanishing gradients and faster training of the network.
pecifically, we first define such neuron-wise locally adaptive activation function as

σ
(
nadi

(
Ld
(
xd−1))

i

)
, d = 1, 2, . . . ,D − 1, i = 1, 2, . . . ,Nd,

here n > 1 is a scaling factor and {adi } are additional
∑D−1

d=1 Nd parameters to be optimized. Note that, there is a critical
caling factor nc , and the optimization algorithm will become sensitive when n ⩾ nc in each problem set. The neuron
ctivation function acts as a vector activation function in each hidden layer, and each neuron has its own slope of activation
unction.

The new NN with neuron-wise locally adaptive activation function can be represented as

q(x; Θ̄) =
(
LD ◦ σ ◦ naD−1

i (LD−1)i ◦ · · · ◦ σ ◦ na1i (L1)i
)
(x), (2.6)

here the set of trainable parameters Θ̄ ∈ P̄ consists of
{
Wd, bd

}D
d=1 and

{
adi
}D−1
i=1 , ∀i = 1, 2, . . . ,Nd, P̄ is the parameter

pace. In this method, the initialization of scalable parameters are carried out in the case of nadi = 1, ∀n ⩾ 1.
The resulting optimization algorithm will attempt to find the optimized parameters including the weights, biases and

dditional coefficients in the activation to minimize the new loss function defined as

Loss = Lossq + Lossf + Lossa, (2.7)

here Lossq, Lossf are defined as following

Lossq =
1
Nq

⎡⎣ Nq∑
i=1

|u(xiu, t
i
u) − ui

|
2
+

Nq∑
i=1

|v(xiv, t
i
v) − vi

|
2

⎤⎦ , (2.8)

nd

Lossf =
1
Nf

⎡⎣ Nf∑
j=1

|fu(x
j
f , t

j
f )|

2
+

Nf∑
j=1

|fv(x
j
f , t

j
f )|

2

⎤⎦ , (2.9)

where {xiu, t
i
u, u

i
}
Nq
i=1 and {xiv, t

i
v, v

i
}
Nq
i=1 denote the initial and boundary value data on Eqs. (2.2) and (2.3). Furthermore,

{xjf , t
j
f }

Nf
j=1 represent the collocation points on networks fu(x, t) and fv(x, t). The last slope recovery term Lossa in the loss

unction (2.5) is defined as

Lossa =
1

Na
D−1

∑D−1
d=1 exp

(∑Nd
i=1 adi
Nd

) , (2.10)

here Na has been imposed to control the range of the value size of Lossa, and we all take Na = 10 for dominating the
oss function and ensuring that the loss value is not too large in this paper. Here, term Lossa forces the NN to increase
he activation slope value quickly, which ensures the non-vanishing of the gradient of the loss function and improves the
etwork’s training speed. Consequently, Lossq corresponds to the loss on the initial and boundary data, the Lossf penalizes
he DNLS not being satisfied on the collocation points, and the Lossa changes the topology of Loss function and improves
he convergence speed and network optimization ability. Moreover, in order to better measure the training error, we
ntroduce L2 norm error, which is defined as follows

L2 Error =

√∑N
i=1

⏐⏐qexact(xi) − qpredict(xi; Θ̄)
⏐⏐2√∑N

i=1

⏐⏐qexact(xi)⏐⏐2 ,

where qpredict(xi; Θ̄) and qexact(xi) represent the model training prediction solution and exact analytical solution at point
xi = (xi, ti), respectively.

In order to understand IPINN approach more clearly, the IPINN algorithm flow model of the DNLS is shown in following.
ig. 1 gives a sketch of IPINN algorithm for the DNLS where one can see the NN along with the supplementary physics-
nformed part. The loss function is evaluated using the contribution from the NN part as well as the residual from the
overning equation given by the physics-informed part. Then, one seeks the optimal values of weights W, biases b and
4
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Fig. 1. (Color online) Schematic of IPINN for the DNLS. The left NN is the uninformed network while the right one induced by the governing equation
s the informed network. The two NNs share hyper-parameters and they both contribute to the loss function.

calable parameter adi in order to minimize the loss function below certain tolerance ε until a prescribed maximum number
f iterations.
In this method, all loss functions are simply optimized by employing the L-BFGS algorithm, which is a full-batch

radient descent optimization algorithm based on a quasi-Newton method [47]. Especially, the scalable parameters in
he adaptive activation function are initialized generally as n = 5, adi = 0.2, unless otherwise specified. In addition, we
select relatively simple multi-layer perceptrons (i.e., feedforward NNs) with the Xavier initialization and the hyperbolic
tangent (tanh) as activation function. All the codes in this article is based on Python 3.7 and Tensorflow 1.15, and all
numerical experiments reported here are run on a DELL Precision 7920 Tower computer with 2.10 GHz 8-core Xeon
Silver 4110 processor and 64 GB memory.

3. The data-driven rational solution and soliton solution of the DNLS

In this section, we numerically reveal two different types of solutions and their corresponding dynamic analysis for
the DNLS by using the IPINN which contains nine hidden layers with each layer having 40 neurons. The accurate rational
solution and soliton solution have been obtained by using the Darboux transformation [33].

3.1. The data-driven rational solution

It is known that Eq. (1.1) admits the explicit rational solution [33]

qrs(x, t) =
4e2i(2t−x)(4i(4t − x) − 1)3

(16(4t − x)2 + 1)2
. (3.1)

In what follows, we will consider the initial condition qrs(x, T0) and Dirichlet boundary condition qrs(L0, t) and qrs(L1, t)
f Eq. (1.1) arising from the rational solution Eq. (3.1). Here we take [L0, L1] and [T0, T1] in Eq. (1.1) as [−5.0, 5.0] and

[−0.08, 0.08], respectively. Then, we focus on the corresponding the Cauchy problem with initial condition q0(x), as shown
below

qrs(x, −0.08) =
4e2i(−0.16−x)(4i(−0.32 − x) − 1)3

(16(−0.32 − x)2 + 1)2
, x ∈ [−5.0, 5.0], (3.2)

and the Dirichlet boundary conditions

qlb(t) = qrs(−5.0, t), qub(t) = qrs(5.0, t), t ∈ [−0.08, 0.08]. (3.3)

We employ the traditional finite difference scheme on even grids in MATLAB to simulate Eq. (3.1) which contains the
initial data (3.2) and boundary data (3.3) to acquire the training data. Specifically, divide spatial region [−5.0, 5.0] into
513 points and temporal region [−0.08, 0.08] into 401 points, rational solution (3.1) is discretized into 401 snapshots
accordingly. We generate a smaller training dataset containing initial–boundary data by randomly extracting Nq = 400
from original dataset and N = 20000 collocation points which are generated by the Latin hypercube sampling method
f

5
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Fig. 2. (Color online) The rational solution q(x, t) based on the IPINN: (a) The density plot of exact rational solution; (b) The density plot of learned
ational solution; (c) The error density plot of the difference between exact and learned rational solution.

Fig. 3. (Color online) The sectional drawings of rational solution q(x, t) based on the IPINN at (a): t = −0.04, (b): t = 0 and (c): t = 0.04.

LHS) [48]. After giving a dataset of initial and boundary points, the latent rational solution q(x, t) has been successfully
earned by tuning all learnable parameters of the IPINN and regulating the loss function (2.7). The model of IPINN achieves
relative L2 error of 6.042053e−02 in about 1159.0106 s, and the number of iterations is 7448.
In Figs. 2–4, the density plots, the sectional drawing at different times and the iteration number curve plots for the

ational solution q(x, t) under IPINN structure are plotted respectively. Specifically, the density plots of exact dynamics,
earned dynamics and error dynamics have exhibited in detail, and the corresponding peak scale is shown on the right
ide of the density plots in Fig. 2. Specially, from Fig. 2(c), one can obviously find that the error range is about −0.2 to 0.2.
n Fig. 3, we provide the sectional drawings of rational solution q(x, t) based on the IPINN at (a): t = −0.04, (b): t = 0
nd (c): t = 0.04, and infer that the rational solution propagates right along the x-axis. The three-dimensional plot and
ts corresponding contour map of rational solution for the DNLS (1.1) has been given out in the left panel (a) of Fig. 4.
rom the right panel (a) of Fig. 4, we can observe that the Loss curve (red solid line) and the Lossq curve (blue solid line)
onverge smoothly, and the Lossq curve decreases faster. However, the Lossf curve (yellow solid line) fluctuates greatly and
as poor stability. On the contrary, Lossa curve (green solid line) decreases slowly around 0.01 and has a strong stability.

.2. The data-driven soliton solution

The explicit soliton solution has been obtained in Ref. [33], one can be written as below

qss(x, t) =
2i
[
−

1
2 icosh(−6t + 2x) + sinh(−6t + 2x)

]3
e2i

(
−

7
8 t−

3
4 x
)

{
−

5
4 [cosh(−6t + 2x)]2 + 1

}2 . (3.4)

Compared with the nonlinear Schrödinger equation (NLS) [45], the form of the soliton solution for the DNLS is more
omplex, and it is more difficult to recover the soliton solution by NNs. Similarly, considering the initial condition qss(x, T0)
nd Dirichlet boundary conditions qss(L0, t) and qss(L1, t) of Eq. (1.1) arising from the soliton solution Eq. (3.4), we take
L0, L1] and [T0, T1] in Eq. (1.1) as [−3.0, 3.0] and [−0.1, 0.1], respectively. After that, the corresponding Cauchy problem
ith initial condition q0(x) can be written as below

qss(x, −0.1) =
2i
[
−

1
2 icosh(0.6 + 2x) + sinh(0.6 + 2x)

]3
e2i

(
0.0875− 3

4 x
)

{ 5 2
}2 , x ∈ [−3.0, 3.0], (3.5)
− 4 [cosh(0.6 + 2x)] + 1
6
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Fig. 4. (Color online) The rational solution q(x, t) based on the IPINN: (a) The three-dimensional plot; (b) The loss curve figure.

Fig. 5. (Color online) The soliton solution q(x, t) based on the IPINN: (a) The density plot of exact soliton solution; (b) The density plot of learned
soliton solution; (c) The error density plot of the difference between exact and learned soliton solution.

and the Dirichlet boundary conditions in Eq. (1.1) become

qlb(t) = qss(−3.0, t), qub(t) = qss(3.0, t), t ∈ [−0.1, 0.1]. (3.6)

In MATLAB, we discretize the Eq. (3.4) by applying the traditional finite difference scheme on even grids, and obtain
the training data which contains initial data (3.5) and boundary data (3.6) by dividing the spatial region [−3.0, 3.0] into
513 points and the temporal region [−0.1, 0.1] into 401 points. We generate a smaller training dataset containing initial–
boundary data by randomly extracting Nq = 400 from original dataset and Nf = 20000 collocation points which are
generated by employing LHS. After giving a dataset of initial and boundary points, the latent soliton solution q(x, t) has
been successfully learned by tuning all learnable parameters of the IPINN and regulating the loss function (2.7). The model
of IPINN achieves a relative L2 error of 5.745440e−02 in about 1417.7192 s, and the number of iterations is 8472.

In Figs. 5–7, the density plots, the sectional drawing at different times and the iteration number curve plots for the
soliton solution q(x, t) under IPINN structure are plotted respectively. Specifically, the density plots of exact dynamics,
learned dynamics and error dynamics have exhibited in detail, and the corresponding peak scale is shown on the right side
of the density plots in Fig. 5. Similar to Fig. 2(c), it is obvious that the error range is also about −0.2 to 0.2 from Fig. 5(c).
In Fig. 6, the sectional drawings with different time point for soliton solution q(x, t) have been given out respectively.
Similarly with Section 3.1, when the increase of time t , the soliton solution propagates from left to right along the x-axis.
The left panel (a) of Fig. 7 exhibits the three-dimensional plot and its corresponding contour map of soliton solution for
the DNLS (1.1). From the right panel (b) of Fig. 7, one can observe that the Loss curve (red solid line) and the Lossq curve
(blue solid line) converge smoothly, and the Lossq curve decreases faster. On the other hand, the Lossf curve (yellow solid
line) fluctuates greatly and has poor stability. Similarly, Lossa curve (green solid line) decreases slowly around 0.01 and
has a strong stability.

Comparing the rational solution with the soliton solution, we can find that the two solutions have different forms,
in which the initial and boundary conditions of the rational solution is simpler, but the shapes of the two solutions are
similar. Through a large number of numerical training experiments, we find that it is more difficult to simulate the rational
solution and the soliton solution for the DNLS than the NLS equation, and the range of time t should not be too large,
otherwise the training error will become large.
7
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Fig. 6. (Color online) The sectional drawings of soliton solution q(x, t) based on the IPINN at (a): t = −0.05, (b): t = 0 and (c): t = 0.05.

Fig. 7. (Color online) The soliton solution q(x, t) based on the IPINN: (a) The three-dimensional plot; (b) The loss curve figure.

4. The data-driven periodic wave, rogue wave and rogue periodic wave of the DNLS

It is well known that periodic waves and rogue waves are very significant waves in nonlinear integrable systems, and
the periodic wave and rogue wave of the DNLS have been also widely studied [29,30,32–35,37–39,46]. However, to the
best of our knowledge, the mixtures of periodic solutions and rogue-wave solutions for the DNLS were not considered
up to now by utilizing deep learning method based on NNs. Thus, it is interesting and necessary to find the data-driven
rogue periodic wave solution describing the behavior of rogue waves on a periodic background. In Ref. [46], Pu et al. have
investigated the rational solutions and two order rogue wave solution for another form of the DNLS by classical PINN and
IPINN, and pointed out the IPINN has more advantages about the overall effect, especially in simulation of the complex
rogue wave solutions. Furthermore, as far as we know, the periodic wave and one order rogue wave of the DNLS have
also not been investigated yet by employing PINNs technique. Therefore, in this section, we will devote to investigate the
data-driven periodic wave, rogue wave and rogue periodic wave of the DNLS with the aid of IPINN, which consists of nine
hidden layers and each layer has 40 neurons.

4.1. The data-driven periodic wave solution

From Ref. [38], the explicit periodic wave solution of the DNLS can be obtained as

qpw(x, t) =

[
(
√
5 + 2)e

√
5
2 ix

+

(
−

1
2 −

√
5
2

)
e

√
5
2 i(t−x)

+

(
−

3
2 −

√
5
2

)
e

√
5
4 it
]
e−ix[

e
√
5
4 ix

+

(
3
2 +

√
5
2

)
e

√
5
4 i(t−x)

]2 . (4.1)

Eq. (4.1) is a periodic wave solution which is periodic in space x, and it is obvious that the period is 3 when x ∈ [−6, 12],
he amplitude of each wave crest and trough of wave is 2 and 0, respectively. Since the waveforms of periodic waves on
oth sides of time t = 0 are the same, the range of time t does not need to be symmetric about t = 0. Therefore, one
an take [L0, L1] and [T0, T1] in Eq. (1.1) as [−6.0, 12.0] and [0.0, 2.0] in this subsection, respectively. The corresponding
auchy problem with the initial condition q (x) of Eq. (1.1) arising from the periodic wave solution Eq. (4.1) can be written
0
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Fig. 8. (Color online) The periodic wave solution q(x, t) based on the IPINN: (a) The density plot of exact periodic wave solution; (b) The density
plot of learned periodic wave solution; (c) The error density plot of the difference between exact and learned periodic wave solution.

Fig. 9. (Color online) The sectional drawings of periodic wave solution q(x, t) based on the IPINN at (a): t = 0.50, (b): t = 1.00 and (c): t = 1.50.

s below

qpw(x, 0.0) =

[
(
√
5 + 2)e

√
5
2 ix

+

(
−

1
2 −

√
5
2

)
e−

√
5
2 ix

−
3
2 −

√
5
2

]
e−ix[

e
√
5
4 ix

+

(
3
2 +

√
5
2

)
e−

√
5
4 ix
]2 , x ∈ [−6.0, 12.0], (4.2)

nd the Dirichlet boundary conditions q(L0, t) and q(L1, t) in Eq. (1.1) become as following

qlb(t) = qpw(−6.0, t), qub(t) = qpw(12.0, t), t ∈ [0.0, 2.0]. (4.3)

Similarly, discretizing Eq. (4.1) via the aid of the traditional finite difference scheme on even grids, and obtain the
riginal training data which contain initial data (4.2) and boundary data (4.3) by dividing the spatial region [−6.0, 12.0]
nto 513 points and the temporal region [0.0, 2.0] into 401 points. Then, one can generate a smaller training dataset that
ontaining initial–boundary data by randomly extracting Nq = 100 from original dataset and Nf = 10000 collocation
points which are produced by the LHS. After that, the latent periodic wave solution q(x, t) has been successfully learned
by tuning all learnable parameters of the IPINN and regulating the loss function (2.7). The model of IPINN achieves a
relative L2 error of 2.035710e−02 in about 2827.0457 s, and the number of iterations is 20157.

In Figs. 8–10, the density plots, the sectional drawing at different times and the Loss curve plots for the periodic wave
solution q(x, t) under IPINN structure are plotted respectively. Specifically, the density plots of exact dynamics, learned
dynamics and error dynamics have exhibited in detail, and the corresponding peak scale is shown on the right side of
the density plots in Fig. 8. From the striped density map, it is obvious that the periodic wave has three periods and the
amplitude is the same. Specially, according to Fig. 8(c), one can obviously find that the error range is about −0.1 to 0.1, this
rror range is lower than that of the two data-driven solutions in Section 3. In Fig. 9, we provide the sectional drawings
f rational solution q(x, t) based on the IPINN at (a): t = 0.50, (b): t = 1.00 and (c): t = 1.50, and infer that the periodic
ave solution propagates right along the x-axis as time t increases. The three-dimensional plot and its corresponding
ontour map of periodic wave solution for the DNLS (1.1) has been given out in the left panel (a) of Fig. 10. From the
ight panel (b) of Fig. 10, we can observe that the Loss curve (red solid line) and Lossq curve (blue solid line) converge
moothly, in which the Lossq curve decreases faster. However, the Lossf curve (yellow solid line) fluctuates violently in
he first 100 iterations and converges smoothly in the later iterations, the convergence rate of Lossf is between the Loss

urve and the Lossq curve. Here, Lossa curve (green solid line) decreases slowly around 0.01 and has a strong stability.

9



J. Pu, W. Peng and Y. Chen Wave Motion 107 (2021) 102823

E
a
a

Fig. 10. (Color online) The periodic wave solution q(x, t) based on the IPINN: (a) The three-dimensional plot; (b) The loss curve figure.

4.2. The data-driven rogue wave solution

From Ref. [34], the rogue wave solution of the DNLS can be derived as

qrw(x, t) =
[−2t2 − 2x2 − 1 − i(−2t + 2x)][2t2 + 2x2 − 3 + i(6t + 2x)]eix

[−2t2 − 2x2 − 1 + i(−2t + 2x)]2
. (4.4)

Similarly, considering the initial condition qrw(x, T0) and Dirichlet boundary condition qrw(L0, t) and qrw(L1, t) of
q. (1.1) arising from the rogue wave solution Eq. (4.4), the [L0, L1] and [T0, T1] in Eq. (1.1) are taken as [−10.0, 10.0]
nd [−1.0, 1.0], respectively. After that, the corresponding the Cauchy problem with initial condition q0(x) can be written
s below

qrw(x, −1.0) =
[−2 − 2x2 − 1 − i(2 + 2x)][2 + 2x2 − 3 + i(−6 + 2x)]eix

[−2 − 2x2 − 1 + i(2 + 2x)]2
, x ∈ [−10.0, 10.0], (4.5)

and the Dirichlet boundary condition evolve into

qlb(t) = qrw(−10.0, t), qub(t) = qrw(10.0, t), t ∈ [−1.0, 1.0]. (4.6)

Similar to Section 4.1, we discretize the Eq. (4.4) by applying the traditional finite difference scheme on even grids
with the help of Matlab, and obtain the training data which contain initial data (4.5) and boundary data (4.6) by dividing
the spatial region [−10.0, 10.0] into 513 points and the temporal region [−1.0, 1.0] into 401 points. A smaller training
dataset containing initial–boundary data will be generated by randomly extracting Nq = 400 from original dataset and
Nf = 20000 collocation points via LHS. After giving a dataset of initial and boundary points, the latent rogue wave solution
q(x, t) has been successfully learned by tuning all learnable parameters of the IPINN and regulating the loss function (2.7).
The model of IPINN achieves a relative L2 error of 7.459070e−02 in about 2833.9749 s, and the number of iterations is
18138.

In Figs. 11–13, the density plots, the sectional drawing at different times and the iteration number curve plots for
the rogue wave solution q(x, t) under IPINN structure are plotted respectively. Specifically, the density plots with the
corresponding peak scale for exact dynamics, learned dynamics and error dynamics have exhibited in Fig. 11. Specially,
by analyzing Fig. 11(c), one can obviously find that the error range is about −0.4 to 0.4, the error range is obviously
larger than that in Section 3. In Fig. 12, the sectional drawings for rogue wave solution q(x, t) based on the IPINN at (a):
t = −0.50, (b): t = 0 and (c): t = 0.50 have been provide, and inferring that the amplitude of the rogue wave solution
reaches the maximum at time t = 0, and the waveform of the profiles at time t = −0.50 and t = 0.50 are symmetrical.
The three-dimensional plot with corresponding contour map of rogue wave solution for the DNLS (1.1) has been given
out in the left panel (a) of Fig. 13. From the right panel (b) of Fig. 13, we can observe that the Loss curve (red solid line)
converge smoothly, and the Lossq curve (blue solid line) decreases faster. However, when the number of iterations is less
than 2500, the Lossf curve (yellow solid line) fluctuates greatly and has poor stability. Once the number of iterations is
greater than 2500, the descent speed of Lossf curve is almost the same as that of Lossq curve. The same as before, Lossa
curve (green solid line) decreases slowly around 0.01 and has a strong stability.

4.3. The data-driven rogue periodic wave solution

Compared with the traditional rogue wave which is on plane wave background, the rogue periodic wave is the rogue

wave solution on the periodic wave background. From Ref. [34], the rogue periodic wave solution of the DNLS can be

10
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Fig. 11. (Color online) The rogue wave solution q(x, t) based on the IPINN: (a) The density plot of exact rogue wave solution; (b) The density plot
f learned rogue wave solution; (c) The error density plot of the difference between exact and learned rogue wave solution.

Fig. 12. (Color online) The sectional drawings of rogue wave solution q(x, t) based on the IPINN at (a): t = −0.5, (b): t = 0 and (c): t = 0.5.

Fig. 13. (Color online) The rogue wave solution q(x, t) based on the IPINN: (a) The three-dimensional plot; (b) The loss curve figure.

obtained as follows

qrpw(x, t) =
Ω2

11

Ω2
21

eix + 2i
Ω11Ω12

Ω2
21

, (4.7)

here

Ω11 =
1

15625

{[
(2498it − 2498ix − 2502t2 − 2502x2 − 1251)

√
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]
e
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√
1562501

3125000 −
ix
2

}
−

4
625[(

it + ix − t2 − x2 +
1
)

√
1562501 + 2it + 2500ix + 1251

]
e

i(t−1250x)
√
1562501
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ix
2 ,
2
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−
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}
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nd

Ω21 =
1

15625

{[
(−2498it − 2502t2 − 2502x2 + 2498ix − 1251)

√
1562501 − 3119998it+

3129998ix − 3125002(t2 + x2) − 1567501
]
e
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2
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+

4
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e
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√
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Similarly, considering the initial condition qrpw(x, T0) and Dirichlet boundary conditions qrpw(L0, t) and qrpw(L1, t) of
q. (1.1) arising from the rogue periodic wave solution Eq. (4.7), we set [L0, L1] and [T0, T1] in Eq. (1.1) as [−20.0, 20.0]
nd [−0.5, 0.5], respectively. After that, the corresponding the Cauchy problem with initial condition q0(x) can be written
s below

qrpw(x, −0.5) =
Ω ′2

11

Ω ′2
21

eix + 2i
Ω ′

11Ω
′

12

Ω ′2
21

, x ∈ [−20.0, 20.0], (4.8)

here
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1

15625

{[
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√
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e
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The Dirichlet boundary condition is

qlb(t) = qrpw(−20.0, t), qub(t) = qrpw(20.0, t), t ∈ [−0.5, 0.5]. (4.9)

Here, applying the same data discretization method in Section 4.1, and producing the training data which consists of
initial data (4.8) and boundary data (4.9) by dividing the spatial region [−20.0, 20.0] into 513 points and the temporal
region [−0.5, 0.5] into 401 points. We generate a smaller training dataset that containing initial–boundary data by
randomly extracting Nq = 600 from original dataset and Nf = 20000 collocation points which are generated by the
Latin hypercube sampling method. After giving a dataset of initial and boundary points, the latent rogue periodic wave
solution q(x, t) has been successfully learned by tuning all learnable parameters of the IPINN and regulating the loss
function (2.7). The model of IPINN achieves a relative L2 error of 8.766380e−02 in about 3862.2879 s, and the number
of iterations is 22414.
12
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Fig. 14. (Color online) The rogue periodic wave solution q(x, t) based on the IPINN: (a) The density plot of exact rogue periodic wave solution; (b)
he density plot of learned rogue periodic wave solution; (c) The error density plot of the difference between exact and learned rogue periodic
ave solution.

Fig. 15. (Color online) The sectional drawings of rogue periodic wave solution q(x, t) based on the IPINN at (a): t = −0.5, (b): t = 0 and (c): t = 0.5.

In Figs. 14–16, the density plots, the sectional drawing at different times and the iteration number curve plots for the
rogue periodic wave solution q(x, t) under IPINN structure are plotted respectively. Specifically, the density plots of exact
dynamics, learned dynamics and error dynamics have exhibited in detail, and the corresponding peak scale is shown on
the right side of the density plots in Fig. 14. Specially, from Fig. 14(c), one can obviously find that the error range is
about −0.2 to 0.2. In Fig. 15, we provide a comparison between the exact rogue periodic wave solution and the predicted
solution based on the IPINN at different instants (a): t = −0.25, (b): t = 0 and (c): t = 0.25, and infer that the amplitude
f the rogue wave solution reaches the maximum at time t = 0, and the waveform of the profiles at time t = −0.25
nd t = 0.25 are symmetrical. The three-dimensional plot and its corresponding contour map of rogue periodic wave
olution for the DNLS (1.1) has been given out in the left panel (a) of Fig. 16. From the right panel (b) of Fig. 16, it is
bvious that the Loss curve (red solid line), Lossq curve (blue solid line) and Lossf curve (yellow solid line) arise oscillation
efore about 10000 iterations, especially Lossf curve oscillates most violently. After 10000 iterations, the three kinds of
urves converge smoothly, and Lossq converges the fastest. Due to characteristics of Lossa, the Lossa curve (green solid
ine) decreases steadily and slowly around 0.01.

. Conclusion

Increasing the performance of deep learning algorithms is significant in order to design fast and accurate machine
earning techniques. An IPINN framework for extracting localized wave solutions dynamics of (1 + 1)-dimensional
onlinear time-dependent systems has been introduced from the spatiotemporal data. Specifically, we outline the flow-
rocess diagram of DNLS equation based on the IPINN in detail. In this paper, we are committed to research the data-driven
ocalized wave solutions which contain rational solution, soliton solution, periodic wave solution, rogue wave solution and
ogue periodic wave solution for the DNLS by employing IPINN approach under the condition of small sample data set.
he results show that the IPINN model could recover the different dynamical behaviors of localized wave solutions for
NLS fairly well.
Compared with the nonlinear Schrödinger equation and Chen–Lee–Liu equation, the DNLS has more nonlinear terms, so

t is more difficult to recover data-driven solutions of the DNLS than the nonlinear Schrödinger equation and Chen–Lee–Liu
quation [42,45,46]. As we can see from the Sections 3 and 4, it can be found that the L2 norm error cannot reach the
rder of magnitude e−03 by using IPINN method to recover the data-driven localized wave solutions with corresponding
nitial and boundary conditions. Moreover, we find that the data-driven localized wave solutions cannot be recovered
ell when the temporal region t is too wide. Therefore, we can find that more nonlinear terms have a greater impact on
13



J. Pu, W. Peng and Y. Chen Wave Motion 107 (2021) 102823

t
v
d
a
a
v
t
t
r
t
a

f
f
a
f
u
t
b
r
r

C

W
&

D

a

A

t
M

Fig. 16. (Color online) The rogue periodic wave solution q(x, t) based on the IPINN: (a) The three-dimensional plot; (b) The loss curve figure.

the performance of the neural network. Although higher order dispersion terms also have an impact on the performance
of the neural network, the impact is not as violent as the nonlinear terms.

Compared with the classical PINN method, the influence of Lossq and Lossf on Loss of IPINN approach is negligible due
o the introduction of Lossa. Generally speaking, from Sections 3 and 4, it is obvious that the curve of lossf fluctuates
iolently when the number of iterations is small, while the Lossa in all models decreases steadily around 0.01, which is
etermined by its slope mathematical structure. In the training process by employing IPINN method, the values of Lossq
nd Lossf are usually far less than the value of Lossa, so their mathematical sum is mainly dominated according to Lossa
nd the Eq. (2.7), and Lossa is very stable , which ensures the overall topological stability of loss function. Although the
alues of Lossq and Lossf are larger than that of Lossa when simulating some complex solutions, for example, one can see
hat although the loss curve has obvious fluctuation in the early stage of training, the overall decline trend is stable and
he decline is more and more stable after the iteration times are larger in Section 4.3. Apparently, Lossa plays an important
ole in the IPINN model, we can control the slope stability interval of Loss by controlling the size of Na. If Na is too small,
he overall Loss target value is too large. Conversely, if Na is too large, Lossa cannot lead the loss function well, which will
ffect the stability of Loss curve.
Compared with the traditional numerical methods, the IPINN has no limitation of grid size and large data set, and gives

ull play to the advantages of computer science and neural network. Moreover, the IPINN approach is trained with just
ew data, fast convergence speed and has a better physical interpretability by applying the physical constraints and locally
daptive activation function. The IPINN method showcases a series of results of various problems in the interdisciplinary
ield of applied mathematics and computational science, and opens a new path for using deep learning to simulate
nknown solutions and correspondingly discover the parametric equations in scientific computing. It also provides a
heoretical and practical basis for solving some high-dimensional scientific and big data space–time problems that cannot
e solved before. However, for the nonlinear integrable systems which contain high order nonlinear term is an unavoidable
esearch hotspot. How to use the theory of integrable systems to improve IPINN model is a problem that needs further
esearch in the future.
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