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By means of the reductive perturbation method, three types of generalized (241)-dimensional Kadomtsev—

Petviashvili (KP) equations are derived from the baroclinic potential vorticity (BPV) equation, including the modified

KP (mKP) equation, standard KP equation and cylindrical KP (cKP) equation. Then some solutions of generalized

cKP and KP equations with certain conditions are given directly and a relationship between the generalized mKP

equation and the mKP equation is established by the symmetry group direct method proposed by Lou et al. From the

relationship and the solutions of the mKP equation, some solutions of the generalized mKP equation can be obtained.

Furthermore, some approximate solutions of the baroclinic potential vorticity equation are derived from three types of

generalized KP equations.
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1. Introduction

In recent years, the study of nonlinear partial dif-
ferential equations (PDEs) have become one of the
most exciting and extremely active areas of research.
Many methods can be used to obtain solutions of
PDEs, such as symmetry reductions, the general di-
rect method and the extended Jacobi elliptic function

(1-10] However,

rational expansion method, and so on.
there are many difficulties in obtaining solutions of
baroclinic potential vorticity (BPV) equation!l by
these methods. Luckily, the reductive perturbation
method can make an intricate equation become an-
other new equation, then the intricate equation can
be researched more succesfully with the help of a new
equation. This method has been used in many fields.
Lou et al.'? derived coupled KdV equations from two-

1.13] obtained the variable coef-

layer fluids. Tang et a
ficient KdV equation from the Euler equation with an

earth rotation term. According to the KdV equation,

they obtained the approximate solution of the Euler
equation with an earth rotation term. Gao et al.'4
presented a coupled variable coefficient modified KAV
equation from a two-layer fluid system. The main pur-
pose of this paper is to obtain the approximate solu-
tions of the BPV equation. The paper is organized as
follows. In Section 2, we obtain generalized modified
Kadomtsev—Petviashvili (mKP), KP and cylindrical
KP (cKP) equations from the BPV equation by means
of the reductive perturbation method. Some KP equa-
tions have been studied by some authors. Li et al.l'?!
obtained soliton-like solution and periodic form solu-
tion of a KP equation. Liul'®l gained a solution of
the cKP equation by auto-Backliind transformation.
Wazwaz!'7l obtained multiple-soliton solutions of the
mKP equqtion by the Hirota’s bilinear method. In
Section 3, under certain conditions we obtain the so-
lutions of the generalized cKP and KP equation di-
rectly, and then get an approximate solution of the
BPV equation. In Section 4, by making use of the
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symmetry group direct method proposed by Lou et

[18—21]

al., we establish a relationship between the gen-

eralized mKP equation and mKP equation, and then
based on this relationship we obtain an approximate
solution of the BPV equation by complex and tedious
calculations. In the last section, we give the conclu-
sion of the paper.

2. Generalized mKP, KP and
cKP equations from (3+1)-

dimensional BPV equation

The (3 + 1)-dimensional BPV equation may be
written as

q + wmQy - qugn + By, =0, (1)

q=Vze + wyy + Y2z, (2)

where f is constant, ¥ = ¢(z,y, 2,t), ¢ = q(x,y, 2, ),

and subscripts z, y, z, t represent partial derivatives.

First, by substituting Eq. (2) into Eq. (1), BVP
equation becomes:

wta:w + '(/)tyy + '(/Jtzz + ¢w¢xmy + wwwyyy + wﬁwyzz
- @/}y@/}zzx - ¢y¢myy - 'l/)y'l/)mzz + ﬁ% =0. (3)
Now we use the long wave approximation in the z-

direction and z-direction and assume the stream func-
tions ¥ to be

¥ =1o(y,t) + ¢1(z,y, 2, ). (4)
We introduce the stretched variables
X =elx—cot), Z=¢e*(z—cit), T=¢€% (5)

where X = X(z,t), Z = Z(z2,t), T = T(t), ¢y and
c1 are constants, € is a small parameter. In general,
the base field 1 (y,t) is often taken only as a linear
function of y, ¥1(x,y, z,t) is expanded as

oo o0

wl(xvyazvt):Z€i¢i(Xay7ZaT)EZ€i¢i' (6)

i=1 i=1

We also have the expansion
Yoly,t) = Uo(y) + > €Ui(y, T). (7)
i=1

Then substituting Egs. (5), (6) and (7) into Eq. (3),
we obtain

Mye? + Mye® + Mze* + O(€) = 0, (8)

where

My = —Uoy(y)b1xyy + Uoyyy (y)d1x

— coPixyy + Bo1x,

My = ¢1x P1yyy — coP2xyy — Uy (y, T)P1xyy
— P1xyyP1y — C1P1yyz + Utyyy (v, T)d1x
— Uoy(y)p2xyy + Uoyyy (y)d2x + Bo2x,

M3 = ¢axPryyy — c0Paxyy + Utyyy(y, T)ax
+ Bosx + d11yy — Uny(y)d1x x x
+ Uoyyy(Y)p3x — Uzy(y, T)d1xyy — coP1xxx
— Uoy(y)baxyy — Ury(y, T)paxyy — c1024y2
+ UsyyyP1x + d1xb2yyy + Uryyr(y, 1)

- ¢2ny¢1y - ¢1ny¢2y-

Vanishing the €2 of Eq. (8) by Maple, we get a special
solution

61 = A(X, Z,T)G(y. T) = AG, 9)
where G is determined by
Uoyyy (¥)G — Uoy (y)Gyy — coGyy + BG = 0. (10)
Then vanishing the €3 of Eq. (8), we have
¢2 = G1(y, T)A(X,Z,T)* + Ga(y, T)A(X, Z,T)
+ Gs(y,T) /AZ(X, Z,T)dX

= G1A2+G2A+G3/AZdX7 (11)
where GG, G2 and G3 should satisfy

—GyyGy + GGyyy + 2Unyyy (y)G1 — 2U0y (y) Gy,
— 2c0Ghyy +2B8G1 =0,
Utyyy (4, T)G = Uy (y, T)Gyy + BG2 + Unyyy (y) G2
— Uoy(y)Gayy — coGayy = 0,
Uoyyy(y)G3 — Uoy(y)Gayy — coGayy — c1Gyy
+ BG3 = 0. (12)
Substituting the solutions of Egs. (10), (12) and ¢3 =

0 into M3, integrating the result with respect to y from
0 to yo, then we obtain

a1 A1 + asAxxx +a3AAx + asAAz + a5A2AX
+a6Ax/Ade+a7/Azde
+agAx +agAz + apA+ann =0, (13)

where a; = a;(T),1=1,2,...,11

Yo Y1
a1 = / nydydyla
0 0
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- COG) dydyh

. /0 /0y1<—U0y(y>G

Yo Y1
as = /0 /0 [2U1yyy(va)G1 —2U1y(y, T)G1yy
- GyG?yy + nyyG2 + GG2yyy
- nyGQy]dydyla

Yo Y
a4 = / / (GyyyGs = 201Gy — GyGyyy)dyduyn,
o Jo

Yo Y1
as = /O /0 (—2G,G1yy + 2Gyyy G1 + GGy,
- nyGly)dydyh

Yo Y1
ag = / / (GGsyyy — GyyGay)dydyn,
0o Jo

Yo Y1
a7 = / / (—c1Gsyy)dydy,
o Jo

Yo Y1
ag = / / [—U2y(y, T)Gyy + Uzyyy(y, T)G
- Uly y, G2yy + Ulyyy(y» )GQ]dydyla

Yo Y1
ag = / / Ulyyy y, T GS &1 G2yy

- Ulu Y, )G3yy]dydy1a

Y1
ailp = / / nyTdydyla
Yo Cat
ai :/ / Uryyr(y, T)dydys.
0 0

Equation (13) contains the following important
cases:

(i) fag =0,a5 =0,a56 =0, a5 =0, ag = 0,
aip = 0, a;; = 0, equation (13) becomes a generalized
KP equation

a1 At + a2Axxx +a3AAx

+ a7/Azde =0. (14)

(11) Ifa4:0, as :0, a6:0, (Ig:O, Clg:O,

aip = 0, equation (13) becomes a generalized cKP
equation

a1 Ar + a2Axxx +a3AAx
+a7/Azde+a,11A:0. (15)

(111) If as = 0, ay = 0, ag = 0, ag = 0, aip = 0,
a;; = 0, equation (13) becomes a generalized mKP

equation

a1 At + ayAx xx + as A Ax
+ aGAx/Ade+a7/Azde =0. (16)
In the next section, we discuss the solutions of Eq. (3)

with the help of Eqgs. (14), (15) and (16) by a direct
method and symmetry group direct method.

3. The solutions of BPV equation
from generalized KP and cKP

equations

In this section, we divide into two parts to obtain
approximate solutions of the BPV equation with the
help of the generalized KP and cKP equations.

First, we set about the generalized KP equation
to obtain the approximate solution of Eq. (3). We
know that equation (14) should satisfy

as =as = ag = as = ag = aip = a11 = 0,

Uoyyy (1) AxG — Uy (y) AxGyy — coAxGyy =0,

= GyyGy + GGyyy + 2U0yyy(y)G1 - QUOy(y)Glyy

— 2c9Ghyy =0,
Uoyyy (y)G3 — Uoy (y)G3yy —
Utyyy(y, T)G — Ury(y, T)Gyy + p1G
+ Uoyyy (¥)G2 — Uoy(y)Gayy — coGayy = 0. (17)

According to Eq. (17), we obtain G(y,k), G1(y, k),

GQ(yvk)v Gg(y,]f), UO(y), Ul(y,k) and UQ(y,k) after
complicated computing process

CQGgyy — Cley = 0,

G = Cg, G1 07, G2 ( )(C’ly + CQ)
Gz = c1 F3(T) + Fu(T)(Cry + Ca),
1 1
Uoly) = —Eﬂy?’ + §C4y2 + Csy + Cé,
1
Ui(y,T) = 501y2+02y+03+F1(T)a (18)
where C; (i = 1,2,...,8) are arbitrary constants,
Fy(T), F5(T) and Fy(T) are arbitrary functions with
respect to time. At the same time, we can obtain aq,
asz, az and az:

1 1 1
az = 5Cy (mﬁyé" - §C4y3’ — Csyg — 60y§> :

ay = Cy, az = 2C1Cryo,
ar = —c1(a1 F3(T) + Fu(T)(Cryo + C2)).  (19)

Then we discuss the solution of Eq. (14), the balanc-

ing procedure yields n = 2 for Eq. (14), therefore, we

may choose
A = f(Z,T)+ f1(T)sech(W(T)X + Wy(T)Z
+ Ws(T)) + f2(T)sech(W1(T) X
+ Wa(T)Z + Ws(T))?,
(20)
Substituting Eq. (20) into Eq. (14), we can get

H(Z.T), A(T), f2(T), Wi(T), Wa(T), and W5(T) b
vanishing sech,
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Y
FZT) = i(T)Z + go(T), i(T) =0, fo(T) = 120/
3

Choat/® —azg1 (T)WA(T)

Wi(T) = ;017/‘;7 WQ(T):/%dTﬂLCm
_ C2W2(T)2F3(T) 61W2( ) (T) 61W2(T)2F4(T)02 2

W) = | ( o Toamm Wt amm e

_ 2W(T)C1Cryoga(T)

Cs

1
+ 2Wh(T)?coys — 6W1(T)3ﬁyé + 2W1(T)305y8> dT +Cn,  (21)
where g1(T), g2(T) are arbitrary functions of T', Cy, C19 and Cy; are arbitrary constants. Then, we have

1203ay"°

A= gi(T)Z + go(T) + ——2522—sech(W1 (T) X + Wa(T)Z + W;(T))?. (22)
as
According to Egs. (20) and (21), we can obtain one possible approximate solution of Eq. (3) in the form

¢~ Ug(y) + eUr(y, T) + edy + 2o

Uo(y) + eUr(y,T) + €AG + € (G1A2 + G A+ G3/Ade> ,

where A, G, G1, Gz, G3, Up(y) and Uy (y, k) satisfy Eqs.(18)—(22).

When we define uncertain parameters, some new soliton solutions can be obtained as shown in Figs
and 1(b).
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Fig. 1. Evolution of solutions (23) with the parameters: C1 =1, 8=1,y0 =8,e=0.1,¢c1 =1,c0 =1, 1(T) =T,
Ce =0, Cy =0, g2(T) =0, F1(T) =

Cy =0, Fy(T) = 1/T, Cs = 0..

T,C3=1,C4=1,C5=1,Cr =1/12, C11 =0, C10 = 36/1062/3, F3(T) =1
Next, we discuss the solution of Eq. (3) with the generalized cKP equation. In a similar way, equation (15)
should satisfy

ay =a5 =a¢ =ag =ag =ayp =0

Uoyyy (y)Ax G — Uy (y) Ax Gyy — coAxGyy =0
=Gy Gy + GGyyy + 2Unyyy (y)G1 — 2Uoy (y)G1yy —
Uoyyy (y)Gs — Uoy (y)Gayy — coGayy — c1Gyy =0

Ulyyy(yv )G — Uly(?/» T)ny +5G + UOyyy(y)G2 - UOU( )Gayy

QCoGlyy = 0,

- C()Ggyy = 0, (24)

0202014
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We obtain the solution of Eq. (24) by tedious cal- ag = ip5 (T)P4(T) D12 (By2 — 4Dsyo
culations, 24
— 1260 — 12D5),
Gl = P5(T), G3 = Clpg(T) + P4(T)(D1y + DQ), as = P5(T)(P4(T)P3<T)D% + 2D1y0 _ 2D2)7
G = P5(T)f4(T)D11, G2 = P3(T)(D1y + Do), a7 = —2P3(T) — 1 Po(T)(Dyyo + D),
Uo(y) = =58y’ + 5Day” + Dsy + D, a1y = Psp(T)Py(T)Dy + P5(T)Pyr(T)Dy.  (26)
1
Uiy, T) = §D192 + Doy + D3 + Pi(T), Now we discuss the solution of Eq. (15). If we let
Ui(y, T) =0 (i>2), 25
(v, T) (i>2) (25) AT = —2(Dyyo — D2)
where D;,i = 1,2,...,6 are arbitrary constants, Dy(—=1+ P3(T)Dy)’
Py(T),i = 1,3,...,5 are arbitrary functions of 7. D, — 1(-24- 12coyg + By — 12Dsy5) (27)
Then we obtain 1Ty Yo ’
a1 = P5(T)Py(T)Ds, and P5(T), P5(T) satisty
|
lei(=aPy(T)Dy + 1 P3(T)* D7 — 2D%yg +2D3) 307
2 Dy P5(T)(D1yo — D2) T2’
(=Ps7(T) + Psp(T)P3(T)Dy — Ps(T)P3r(T) D) _ 1 (28)
(=14 P5(T)Dy)P5(T) 2T’

where 02 = +1, which also arises in water waves. The
cKP equation is known to be completely integrable.[2?
According to Egs. (27) and (28), equation (15) be-

comes
Ar + Axxx + AAx

30% 1
— z7 + —A= 2
T2 /A dX 3T 0, (29)

_|_

we know the solution!*! of Eq. (49):

A = 3)\%sech?(¢),

1 Aoy T 22
= — X—i
E=32 12
T(M — A6Z + 30962
A A "2)+7], (30)

where o9 = £1, A, J, v are integral constants. Then
we obtain an approximate solution of Eq. (3):

¢~ Up(y) + eUr(y, T) + epr + €2
= Uo(y) + eUr(y,T) + €AG

Lo (G1A2 + G A+ Gy / AZdX> . (31)

where Up(y), U1 (y,T), G, G1, Ga2, G3 and A satisfy
Egs. (25)—(28) and (30).

. Fig. 2. Evoluti f solution (31) with the parameters:
When we define uncertain parameters, some new '8 volution of solution (31) wi pataineten

. . _ ) P(T)=0,A=1,el=—-1,e=01,6=1,v=1, D3 =0,
soliton solutions can be obtained. The evolution of so- co=1,Ds=0,y0=1,8=0, Dy = 1, Dg = 0, Ds = 0,

lution (31) with some different parameters are shown Dy = —0.1.
in Figs. 2(a) and 2(b).
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4. The solution of BPV equa-

tion from generalized mKP

equation by symmetry group
method

As is well known, the generalized mKP equation
is a universal model for the propagation of weakly non-
linear dispersive long waves which are essentially one
directional with weak transverse effects. There are
many difficulties in obtaining the solution of the gen-
eralized mKP equation, but it is easier to find the
solution of the mKP equation than that of the gener-
alized mKP equation. So we give a theorem to change
the generalized mKP equation into the mKP equation
by a generalized symmetry group method first, then
we can find a more preferable research BPV equation
with the help of the theorem.

First, let

A(X,Z,T) = vx, (32)

where v = v(X, Z,T). Substituting Eq. (32) into the
|

generalized mKP equation, we have

2
avxT + VX XXX + a5Vx xVx

+ agux xvz + arvzz = 0. (33)
Secondly, let
v=a+V(EnT)=a+V, (34)

where «, v, &, 7, and 7 are functions of {X,Z, T}, V
satisfies the following equation

Veeee +diVer + d3V§§V§2
+ d4V§§Vn + d5V7m =0, (35)

where dy, d3, dy and ds are non-zero arbitrary con-
stants. Substituting Eq. (34) into Eq. (33), then elim-
inating Veeee by using Eq. (35), from that, the re-
mained determining equations of the functions &, 7,
T, a, v can be obtained by vanishing the coefficients
of V' and its derivatives. Then the general solution
of the determining equations are found out by tedious
calculations. The result reads

1/3 2/3
aiTor ds as o (a1Tor dyZ
- X + — =5,/ — |9 G2
5 C2 < dl > 603 T T0, Y a57 n dg Cy ( dl ) a65 Mo,

o =

2 2
(—2a1asa1710r — 207as5TorT + 3aiasTToT)

d5d3a§af/37'§7/«3d1/3

1
SediZ? + 62+ 6,

4 1 oT

1 agozdy’* X

1/3_1/3
202(11 Tor 05

+Oéo7

a = 1 /01/371/3 a?sfgzdid}/:s +402§0Ta;1/37()1%3a5di N
TOTa5dia1a6

4a§§§zd3d5di/3> A3 az
2 1 €2
TOTa5d4a1a6

where 79 = 79(T), o = §(Z,T), & = &(T), &2 = &(T), no = no(T), ap = ag(T), § = £1 , and ¢ = 1,
1 V3. 1 V38

5 + g b 5 Ti' At the same time, it should satisfy four conditions:

a7a5di — d5d3a?j = 0,
6a1m0r/ d3a5a<235(a170T)1/3df/3d4 + (—Gafag,ToniaGT + 4a1a5dia6a1T70T + 40%0,5(14210,67'0717*
+ 3afTonia5Ta6)c§Z + 12d5d3a2§0262a?/?’qu/ﬁdi/?’ = 0,
drorarrasdsds — 3ardirorasr + 2diTorasair + 2a1diasTort + 4airorrasdsds = 0,
3agfozdid5d3a§/375;¢3d1/3fozz + 12d§d§agfoza?/37€ﬁd}/35022 + 3rordiaicoasréozas
+ 3rordiaicsasozras — Tordiarcaaséozasarr — diaicaaséozasTorT
— 3rordiaicaastozast + 6catoréozralasdidsdzas = 0. (37)

In summery, we obtain the following theorem.

Theorem If U =U(X,Z,T) is a solution of the mKP equation (35), then

u=oa+~yU(n,T)

020201-6
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is the solution of the generalized mKP equation (33)
on the conditions of Eq. (37), where «, v, &, 1, 7, §
and ¢ are given by Eq. (36).

According to the Theorem, we will research the
BPV equation easier with the help of the mKP and
generalized mKP equation.

Next, we will write down some types of solutions
of Eq. (3) with the help of the known solutions for the
(24+1)-dimensional mKP equation.

As known to all, mKP equation is

—Ur +UXXX — 6uXu2 76UX/Ude

+3 [uzzax =0, (33)
where v = u(X, Z,T).
Let
di=-1, d3=—6, dy=—6, ds =3, (39)

and replace V(X, Z,T) with V(&,n,7), equation (35)
|

becomes

Vxxxx — Vxr — 6Vxx Vg
—6VxxVy+3Vzz =0, (40)

equation (40) is equivalent to Eq. (38) under the trans-
formation u = Vx. So we discuss Eq. (40) firstly in
the following.

We know that the mKP equation possesses the
following solution:

u = b(1 — tanh(b(X — 2bZ — 16b°T))),  (41)

where b is a non-zero arbitrary constant. According
to the transformation v = Vx and Eq. (41), we obtain
the solution of Eq. (40):

V = bX + In(sech(b(—X + 2bZ + 166°T)), (42)

according to the Theorem and Eq. (32), we obtain the
solution of the generalized mKP equation,

1
A= ————{6V66\/abciamo(—a17m0) Y ag[tanh(b(— X + 20Z + 16b°T)) + 1]
6a6a17'062a5
— 262(11(152((11’1"7’0 + CL17'0TT) — 3510,(23(70417'0)2/3}, (43)

where a5 is a non-zero arbitrary constant. In order
to obtain the solution of Eq. (3), we need to know
Uo(y), U1(y,T), G, Gy, G2 and G3, which should sat-
isfy a3 =0, a4 =0, a8 =0, ag =0, a19p =0, a1 =0,
Egs. (10), (12) and (37). After tedious calculations,
we obtain:

G =Ky + K+ Qs(T), G1=Qe(T),

G2 = Q2(T)Ks, G3 = c1Q2(T) + Qu(T) K,

Uo(y) = —%Byg + %Kng + Kyy + Ks,

Ur(y, T) = Koy + K7 + Q1(T),

Uy, T) =0 (i = 2), (44)
where Q;(T),i = 1,2,4,5,6 are arbitrary function of

T, K;,v=1,2,...,7 are arbitrary constants. Then we
get

1 1
az = EﬂKlyS’ + ﬂyé(ﬁKz —2K3K))

1
— gyg(COKl + K4 K1 + KgKg)

1
- §K2y§(co + Ka),

a1 = Kiyo + K2, a5 = 4K3,

\
ag = —2K1(c1Q2(T) 4+ Q4(T) Ks),
a7 = —c1(a1Q2(T) + Qu(T) Ks). (45)

From that we obtain an approximate solution of
Eq. (3)

(8

Q

Uo(y) + eUr(y,T) + ed1 + € ¢
Uo(y) + €U (y, T) + eAG

+ 2 (G1A2 + G2 A+ GB/AZdX) , (46)

where A, G, G1, Ga, Gs, Up(y) and Ui (y, k) satisfy
Eqgs. (37), (43)—(44).

5. Summary and discussion

In summary, by the reductive perturbation
method the generalized (2+1)-dimensional modi-
fied Kadomtsev—Petviashvili (mKP), Kadomtsev—
(KP) and

Petviashvili (cKP) equations are derived from the

Petviashvili cylindrical Kadomtsev—
baroclinic potential vorticity (BPV) equation. Some
solutions of the KP, mKP and cKP equations are de-
rived by a direct method and symmetry group direct

method. Thus the solution of the generalized mKP

020201-7



Chin. Phys. B Vol. 19, No. 2 (2010) 020201

equation can be obtained from the mKP equation.

Furthermore, some approximate solutions of the BPV

equation are obtained from three types of generalized

KP equations.
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