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Based on reduction of the KP hierarchy, the general multi-dark soliton solutions in Gram
type determinant forms for the (2+1)-dimensional multi-component Maccari system are

constructed. Especially, the two component coupled Maccari system comprising of two

component short waves and single-component long waves are discussed in detail. Besides,
the dynamics of one and two dark-dark solitons are analyzed. It is shown that the colli-

sions of two dark-dark solitons are elastic by asymptotic analysis. Additionally, the two

dark-dark solitons bound states are studied through two different cases (stationary and
moving cases). The bound states can exist up to arbitrary order in the stationary case,

however, only two-soliton bound state exists in the moving case. Besides, the oblique

stationary bound state can be generated for all possible combinations of nonlinearity
coefficients consisting of positive, negative and mixed cases. Nevertheless, the parallel

stationary and the moving bound states are only possible when nonlinearity coefficients

take opposite signs.

Keywords: (2 + 1)-dimensional multi-component Maccari system; reduction of the KP

hierarchy; multi-dark soliton solutions; bound states.

1. Introduction

The study for multi-component nonlinear systems has grown popular rapidly in

recent years, and a lot of novel and interesting physical phenomenons can be gen-

erated by the nonlinear interaction of multiple waves.1–5 Additionally, a variety

of complex systems usually involve more than one component, such as nonlinear

§Corresponding author.
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optical fibers and Bose–Einstein condensates, etc. It is greatly necessary to extend

the corresponding researches to multi-component systems.6–8 There always exist

coupled effects that cross-phase modulation in the multi-component ones, and the

corresponding various solutions cannot be correlated by Galileo transformation.9

Compared to the single-component systems,10,11 affluent exact solutions may ap-

pear in multi-component systems. In Ref. 12, some anomalous Peregrine solitons

were constructed for the coupled Fokas–Lenells equations. Nth-order vector ratio-

nal and semi-rational rogue waves for the three-component nonlinear Schrödinger

(NLS) equations were given by Darboux transformation.13 Utilizing reduction of

the KP hierarchy, hybrid solutions were exhibited in the Mel’nikov system.14 Fur-

thermore, the interactional solutions including higher-order RWs interacting with

multi-soliton (or multi-breather) were constructed in different multi-component

systems.15,16

As one of the hot topics in nonlinear science, dark solitons have been reported

in many documents.17–20 There have been many different methods for constructing

the dark soliton, such as the binary Darboux transformation,17,21,22 the algebraic–

geometry reduction method,19 the dressing-Hirota method20 and reduction of the

KP hierarchy.18,23,24 The main goal of this work is to construct multi-dark soli-

ton solutions for the multi-component Maccari system through reduction of the

KP hierarchy. In 1983, the Kyoto school first developed the KP hierarchy reduc-

tion technique,25 which has been widely applied to generate dark solitons,18,23,24

bright-dark mixed solitons,26–28 general rogue wave solutions29–31 and interactional

solutions14,32 for a lot of integrable nonlinear systems.

In this paper, we focus on the multi-dark soliton solutions for the following

(2 + 1)-dimensional N -component Maccari system, which includes N short wave

components and one long wave component

iφt + φxx + vφ = 0 , (1)

vy = 〈Λφ,φ∗〉x , (2)

where

Λ = diag(σ1, σ2, . . . , σN−1, σN ) ,

φ = (φ(1), φ(2), . . . , φ(N−1), φ(N))T ,

φ∗ = (φ(1)∗, φ(2)∗, . . . , φ(N−1)∗, φ(N)∗)T ,

φ, 0 and φ∗ denote the N -dimensional column vectors. σl = ±1, φ(l) ≡
φ(l)(x, y, t) (l = 1, 2, . . . , N) denote N different complex short wave amplitudes

and v ≡ v(x, y, t) is the real long wave amplitude. Besides, the symbol ∗ denotes

complex conjugation and the subscripted variables x, y and t are the corresponding

partial differentiations. The symbol “diag” denotes the N -order diagonal matrix

and 〈 , 〉 stands for the inner product.

Choosing N = 2 in the above systems (1) and (2), the following two component

coupled Maccari system including two short wave components and one long wave
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component can be written as follows:

iφ
(1)
t + φ(1)

xx + vφ(1) = 0 , (3)

iφ
(2)
t + φ(2)

xx + vφ(2) = 0 , (4)

vy = (σ1φ
(1)φ(1)∗ + σ2φ

(2)φ(2)∗)x , (5)

where σk = ±1(k = 1, 2), φ(1) ≡ φ(1)(x, y, t) and φ(2) ≡ φ(2)(x, y, t) are the complex

short wave amplitudes and v ≡ v(x, y, t) is the real long wave amplitude.

Through a special reduction method, the coupled systems (3)–(5) were first

derived by Maccari.33 Under some special transformations, the above-mentioned

two component coupled Maccari system can be reduced to our known nonlinear

models. When y = x, the coupled systems (3)–(5) becomes two component coupled

NLS equations.34 Choosing φ(1) = φ(2)∗, the Maccari system is reduced to a (2+1)-

dimensional extension of the NLS equation.35 If y = t, we can get the coupled long

wave resonance equations.36 The Maccari system can describe some motions of

isolated waves which are localized in small parts of space in many fields, such as

nonlinear optics, hydrodynamics, plasma physics.37

There have been many papers reported on the coupled Maccari system. The

Painlevé integrability and some special types of the localized excitations were con-

structed in Ref. 38. Some types of doubly periodic propagating wave patterns were

generated by the variable separation approach.39 In Ref. 40, dromion solutions for

the Maccari system were generated. Different types of rational solutions including

multi-rogue waves, lump solitons and interactions between the two were all given

in the Maccari system by bilinear method.37 Additionally, the bright solitons41 and

bright-dark mixed solitons28,42 for the Maccari system were all studied by different

methods. To the best of our knowledge, multi-dark soliton solutions for the coupled

Maccari system (3)–(5) and the corresponding multi-component generalization (1)

and (2) have never been reported up to now. Here, we will construct the multi-dark

soliton solutions for the Maccari system by reduction of the KP hierarchy.

In this paper, the N -dark soliton solutions in Gram type determinant for the

multi-component Maccari system are generated through reduction of the KP hier-

archy. Furthermore, the two component coupled case (3)–(5) are discussed in detail

for an example. Some dynamics and figures of one- and two dark-dark solitons are

given. Utilizing the asymptotic analysis technique, the collisions between the two

solitons are proved to be elastic. It can be shown that the two dark-dark solitons

bound states possess two cases consisting of stationary and moving bound states.

The bound states can exist up to arbitrary order in the stationary case, however,

only two-soliton bound states exist in the moving case. Moreover, the oblique sta-

tionary bound state can be generated for all possible combinations of nonlinearity

coefficients consist of positive, negative and mixed cases. Nevertheless, the paral-

lel stationary and the moving bound states are only possible when nonlinearity

coefficients take opposite signs.
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The paper is organized as follows. In Sec. 2, the formulae of N -dark-dark soliton

solutions for the two component coupled Maccari system (3)–(5) are given and

proved. In Sec. 3, some dynamics of one- and two dark-dark solitons are discussed

in detail. In Sec. 4, the dark-dark soliton bound states including stationary and

moving cases are exhibited. In Sec. 5, the uniform formulae of N -dark solitons for

the multi-component generalization (1) and (2) are constructed. The last section

includes some conclusions and discussions.

2. N-Dark-Dark Soliton Solutions for the (2 + 1)-Dimensional

Two Component Coupled Maccari System

Through the dependent variable transformation

φ(1) = k1e
iθ1
h(1)

f
, φ(2) = k2e

iθ2
h(2)

f
, v = 2(ln f)xx , (6)

the two component coupled Maccari system (3)–(5) can be transformed to the

following bilinear forms:

[D2
x + i(Dt + 2α1Dx)]h(1) · f = 0 , (7)

[D2
x + i(Dt + 2α2Dx)]h(2) · f = 0 , (8)

DxDyf · f = σ1k
2
1(h(1)h(1)∗ − f2) + σ2k

2
2(h(2)h(2)∗ − f2) , (9)

where k1 and k2 are arbitrary real constants, f , h(1) and h(2) are all the func-

tions of x, y and t, besides, f is a real function, h(1) and h(2) are two complex

functions. Meanwhile, θi = αix − α2
i t + βi(y)(i = 1, 2), where αi are arbitrary

real constants (α1 6= α2) and βi(y) are arbitrary real functions of y. The opera-

tor D denotes the Hirota’s bilinear differential operator, which can be defined as

follows:

Dl
xD

m
y D

n
t f(x, y, t) · g(x, y, t) =

(
∂

∂x
− ∂

∂x′

)l(
∂

∂y
− ∂

∂y′

)m(
∂

∂t
− ∂

∂t′

)n
× f(x, y, t), g(x′, y′, t′)|x=x′,y=y′,t=t′ . (10)

From the KP theory, the nonlinear models under investigation can be seen as

some special reductions of the integrable equations in the KP hierarchy.7,18 Then

the solutions that are bright, dark and rational solutions for some relative nonlinear

systems can be derived from the τ function in the KP hierarchy under the appro-

priate reductions. Here, the multi-dark soliton solutions for the Maccari system

(3)–(5) can be generated from the reduction of single KP hierarchy consisting of

two copies of shifted singular points.
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Lemma 2.1. Considering the following bilinear equations in the KP hierar-

chy18,23,24

(D2
x1

+ 2aDx1
−Dx2

)τ(k + 1, l) · τ(k, l) = 0 , (11)(
1

2
Dx1Dx−1 − 1

)
τ(k, l) · τ(k, l) = −τ(k + 1, l)τ(k − 1, l) , (12)

(D2
x1

+ 2bDx1
−Dx2

)τ(k, l + 1) · τ(k, l) = 0 , (13)(
1

2
Dx1

Dy−1
− 1

)
τ(k, l) · τ(k, l) = −τ(k, l + 1)τ(k, l − 1) , (14)

where k and l are arbitrary integers, a and b are two complex constants. The above

bilinear equations (11)–(14) have the Gram determinant solutions

τ(k, l) = |m(i,j)(k, l)|1≤i,j≤N , (15)

here, the entries of the determinant τ(k, l) are given as

mi,j(k, l) = cij +

∫
ϕi(k, l)ψj(k, l)dx1 , (16)

ϕi(k, l) = (pi − a)k(pi − b)leηi , (17)

ψj(k, l) =

(
− 1

qj + a

)k (
− 1

qj + b

)l
eζj , (18)

with

ηi =
1

pi − a
x−1 +

1

pi − b
y−1 + pix1 + p2

ix2 + ηi0 ,

ζj =
1

qj + a
x−1 +

1

qj + b
y−1 + qjx1 − q2

jx2 + ζj0 ,

where cij , pi, qj , ηi0 and ζj0 are complex constants.

We should point out that, Eqs. (11) and (13) are the lowest-degree bilinear

equation in the first modified KP hierarchy,25 Eqs. (12) and (14) are the bilinear

equations for the two dimensional Toda lattice.25,43 The validity of Lemma 1 has

been proved in Eq. (6) in Ref. 18 and we omit the processes of proof here.

In order to get the N -dark-dark soliton solutions of the Maccari system (3)–(5),

we should consider the reduction of the bilinear equations in Lemma 1. Choosing

that a, b and x2 are pure imaginary, x1, x−1, y−1 are real, and fixing the following

relations a = iα1, b = iα2, qj = p∗j , ζj0 = η∗j0, cji = cij = δij (δij is the Kronecker

symbol), the following equalities can be given

ζj = η∗j , τ(k, l) = τ∗(−k,−l) . (19)

Through defining f , h(1), h(2) as

f = τ(0, 0), h(1) = τ(1, 0), h(2) = τ(0, 1) ,

h(1)∗ = τ(−1, 0), h(2)∗ = τ(0,−1) ,
(20)
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the bilinear equations (11)–(14) can be rewritten as

(D2
x1

+ 2iα1Dx1
−Dx2

)h(1) · f = 0 , (21)(
1

2
Dx1Dx−1 − 1

)
f · f = −h(1)h(1)∗ , (22)

(D2
x1

+ 2iα2Dx1
−Dx2

)h(2) · f = 0 , (23)(
1

2
Dx1

Dy−1
− 1

)
f · f = −h(2)h(2)∗ . (24)

If we introduce these independent variable transformations

x1 = x, x2 = it, x−1 = −1

2
σ1k

2
1y, y−1 = −1

2
σ2k

2
2y , (25)

namely

∂x = ∂x1 , ∂t = i∂x2 , ∂y = −1

2
σ1k

2
1∂x−1 −

1

2
σ2k

2
2∂y−1 , (26)

the bilinear equations (21)–(24) can be directly calculated to recast to Eqs. (7)–(9).

Considering both the τ functions in Eq. (20) and the variable transformations (25),

one can directly get the N -dark-dark soliton solution in Gram type determinant

forms.

Theorem 2.1. The N -dark-dark soliton solutions of the two component coupled

Maccari system (3)–(5) can be written as

φ(1) = k1e
iθ1
h(1)

f
, φ(2) = k2e

iθ2
h(2)

f
, v = 2(ln f)xx , (27)

where f , h(1) and h(2) are given in the following Gram determinants:

f =

∣∣∣∣∣δij +
1

pi + p∗j
eξi+ξ

∗
j

∣∣∣∣∣
N×N

, (28)

h(1) =

∣∣∣∣∣δij +

(
− pi − iα1

p∗j + iα1

)
1

pi + p∗j
eξi+ξ

∗
j

∣∣∣∣∣
N×N

, (29)

h(2) =

∣∣∣∣∣δij +

(
− pi − iα2

p∗j + iα2

)
1

pi + p∗j
eξi+ξ

∗
j

∣∣∣∣∣
N×N

, (30)

with

θ1 = α1x− α2
1t+ β1(y), θ2 = α2x− α2

2t+ β2(y) ,

ξi = pix+ ip2
i t−

1

2

(
σ1k

2
1

pi − iα1
+

σ2k
2
2

pi − iα2

)
y + ξi0, (i = 1, 2, . . . , N) ,
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where β1(y) and β2(y) are all arbitrary real functions of y, pi and ξi0 are complex

constants, δij is the Kronecker symbol.

3. Dynamics of the N-Dark-Dark Soliton Solutions

3.1. One dark-dark solitons

In this paper, the long wave component v always possesses bright soliton and we

consider to construct dark solitons in the short wave components. In order to get

one-dark-dark soliton for the two component coupled Maccari system (3)–(5), we

choose N = 1 in the formulae (27)–(30). The concrete expressions in Gram type

determinant forms can be given as

f1 = 1 +
1

p1 + p∗1
eξ1+ξ∗1 , (31)

h
(1)
1 = 1− p1 − iα1

p∗1 + iα1

1

p1 + p∗1
eξ1+ξ∗1 , (32)

h
(2)
1 = 1− p1 − iα2

p∗1 + iα2

1

p1 + p∗1
eξ1+ξ∗1 , (33)

then substituting the above expressions into the dependent variable transformation

(27), the one-dark-dark soliton solutions can read as

φ(1) =
k1

2
eiθ1

[
1 +H

(1)
1 + (H

(1)
1 − 1) tanh

(
ξ1 + ξ∗1 + Θ1

2

)]
, (34)

φ(2) =
k2

2
eiθ2

[
1 +H

(2)
1 + (H

(2)
1 − 1) tanh

(
ξ1 + ξ∗1 + Θ1

2

)]
, (35)

v =
(p1 + p∗1)2

2
sech2

(
ξ1 + ξ∗1 + Θ1

2

)
, (36)

where

eΘ1 =
1

p1 + p∗1
=

1

2m1
, H

(1)
1 = −p1 − iα1

p∗1 + iα1
= −m1 + i(n1 − α1)

m1 − i(n1 − α1)
,

H
(2)
1 = −p1 − iα2

p∗1 + iα2
= −m1 + i(n1 − α2)

m1 − i(n1 − α2)
, ξ1 + ξ∗1 = 2m1x− 4m1n1t

−
(

σ1m1k
2
1

m2
1 + (n1 − α1)2

+
σ2m1k

2
2

m2
1 + (n1 − α2)2

)
y + 2ξ10R ,

here, p1 = m1 + in1, ξ10 = ξ10R+ iξ10I and m1, n1, ξ10R, ξ10I are all real constants.

Choosing m1 > 0, we can get the nonsingular one-dark-dark soliton solutions.

From Eqs. (34)–(36), we can directly calculate that the two short wave compo-

nents’ intensity functions |φ(1)|, |φ(2)| and the long wave component’s amplitude v

move at velocity 2n1 along the x-direction, and at −4n1
σ1k

2
1

m2
1+(n1−α1)2

+
σ2k

2
2

m2
1+(n1−α2)2

along
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the y-direction. When x, y → ±∞, we can derive that |φ(1)| → |k1|, φ(2)| → |k2|
and v → 0.

The two complex constants H
(1)
1 and H

(2)
1 can be written as the following forms

H
(1)
1 = e2iψ

(1)
1 and H

(2)
1 = e2iψ

(2)
1 (−π2 ≤ ψ

(1)
1 , ψ

(2)
1 ≤ π

2 ). With x and y vary-

ing from −∞ to +∞, the phase shifts of the two short wave components φ(1)

and φ(2) are 2ψ
(1)
1 and 2ψ

(2)
1 , respectively, but the phase shift of the long wave

component v equals zero. Choosing ξ1 + ξ∗1 + Θ1 = 0, we can directly calculate

the intensities of the center for the three solitons as |φ(1)|center = |k1| cosψ
(1)
1 ,

|φ(2)|center = |k2| cosψ
(2)
1 and vcenter = 2m2

1. For the two short wave components, it

can be shown that the center intensities |φ(i)|center = |ki| cosψ
(i)
1 are smaller than

the plane background |ki| and these two solitons are dark solitons. However, the

soliton in the long wave component is bright. Additionally, the degrees of the dark-

ness in the dark solitons in the two short wave components are controlled by the

corresponding phase shifts 2ψ
(1)
1 and 2ψ

(2)
1 .

According to the expressions of H
(1)
1 and H

(2)
1 , we can discuss the degrees of

the darkness for the two dark solitons in two different cases.

(i) When α1 = α2, then H
(1)
1 = H

(2)
1 and ψ

(1)
1 = ψ

(2)
1 . In this case, the two short

wave components φ(1) and φ(2) have the same degrees of darkness and they are

proportional to each other. At this moment, the dark-dark solitons of the coupled

Maccari system including two short waves are same as a scalar dark soliton in the

Maccari system with one short wave. It can be seen as a degenerate case similar

to the coupled NLS,18 YO,23 Mel’nikov24 equations. The degenerate case for the

dark-dark solitons is shown in Fig. 1, then we can find that the valleys for the two

dark solitons reach the zero plane and the long wave component possesses bright

soliton.

(ii) When α1 6= α2, then H
(1)
1 6= H

(2)
1 and ψ

(2)
1 6= ψ

(2)
1 . At this point, the long

wave component v still owns bright soliton and the valley of the dark soliton in

(a) (b)

Fig. 1. (Color online) One dark-dark solitons in the degenerate case at the fixed time t = 0 with
the parameters chosen by k1 = 1, k2 = 2, m1 = 1, n1 = 1, α1 = 1, α2 = 1, σ1 = 1, σ2 = −1,

β1 = 0, β2 = 0, ξ10R = 0.
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Multi-dark soliton solutions for the (2 + 1)-dimensional multi-component Maccari system

(a) (b)

Fig. 2. (Color online) One dark-dark solitons in the non-degenerate case at the fixed time t = 0

with the parameters chosen by k1 = 1, k2 = 2, m1 = 1, n1 = 1, α1 = 1, α2 = 2, σ1 = 1, σ2 = −1,

β1 = 0, β2 = 0, ξ10R = 0.

φ(1) component reaches the bottom, but the one in φ(2) does not reach the bottom

(which can also be called grey soliton), see Fig. 2. This is the non-degenerate case.

From Fig. 2(a), it is shown that the two short wave components φ(1) and φ(2) have

different degrees of darkness, and they are no longer proportional to each other.

Furthermore, it is greatly different from the dark soliton in the Maccari system

including one short wave component.

3.2. Two dark-dark solitons

Similarly, the two dark-dark solitons for the Maccari system (3)–(5) can be directly

calculated with N = 2 in Eqs. (27)–(30). The two dark-dark solitons can be written

as follows:

φ(1) = k1e
i(α1x−α2

1+β1(y))h
(1)
2

f2
, φ(2) = k2e

i(α2x−α2
2+β2(y))h

(2)
2

f2
, v = 2(ln f2)xx ,

(37)

where

f2 = 1 + eξ1+ξ∗1+Θ1 + eξ2+ξ∗2+Θ2 + Λ12e
ξ1+ξ∗1+ξ2+ξ∗2+Θ1+Θ2 ,

(38)

h
(1)
2 = 1 +H

(1)
1 eξ1+ξ∗1+Θ1 +H

(1)
2 eξ2+ξ∗2+Θ2 +H

(1)
1 H

(1)
2 Λ12e

ξ1+ξ∗1+ξ2+ξ∗2+Θ1+Θ2 ,

(39)

h
(2)
2 = 1 +H

(2)
1 eξ1+ξ∗1+Θ1 +H

(2)
2 eξ2+ξ∗2+Θ2 +H

(2)
1 H

(2)
2 Λ12e

ξ1+ξ∗1+ξ2+ξ∗2+Θ1+Θ2 ,

(40)

with

eΘj =
1

pj + p∗j
=

1

2mj
, H

(1)
j = −pj − iα1

p∗j + iα1
= −mj + i(nj − α1)

mj − i(nj − α1)
, (41)
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H
(2)
j = −pj − iα2

p∗j + iα2
= −mj + i(nj − α2)

mj − i(nj − α2)
,

Λ12 =

∣∣∣∣p1 − p2

p1 + p∗2

∣∣∣∣2 =
(m1 −m2)2 + (n1 − n2)2

(m1 +m2)2 + (n1 − n2)2
, (42)

ξj + ξ∗j = 2mjx− 4mjnjt−

(
σ1k

2
1mj

m2
j + (nj − α1)2

+
σ2k

2
2mj

m2
j + (nj − α2)2

)
y + 2ξj0R

≡ Ljxx+ Ljtt+ Ljyy (j = 1, 2) , (43)

here, pj = mj + inj , ξj0 = ξj0R + iξj0I and mj , nj , α1, α2, ξj0R, ξj0I are real

constants.

From the above expression of Λ12, we find that the denominator becomes zero

with the parameters chosen by m1 = −m2, n1 = n2. At this point, the two solitons

interaction exists as Y -shape, which is called the resonant solitons.23,24 When Λ12

exists, we discuss the asymptotic analysis for the two solitons as follows.

(i) Before the interaction (x, y → −∞):

Soliton 1 s1 (ξ1R ' 0, ξ2R → −∞)

φ
(1)−
1 ' k1

2
eiθ1

[
(1 +H

(1)
1 + (H

(1)
1 − 1)) tanh

(
ξ1 + ξ∗1 + Θ1

2

)]
,

φ
(2)−
1 ' k2

2
eiθ2

[
(1 +H

(2)
1 + (H

(2)
1 − 1)) tanh

(
ξ1 + ξ∗1 + Θ1

2

)]
,

v−1 '
(p1 + p∗1)2

2
sech2

(
ξ1 + ξ∗1 + Θ1

2

)
,

Soliton 2 s2 (ξ2R ' 0, ξ1R → +∞)

φ
(1)−
2 ' k1H

(1)
1

2
eiθ1

[
(1 +H

(1)
2 ) + (H

(1)
2 − 1) tanh

(
ξ2 + ξ∗2 + Θ2 + ln Λ12

2

)]
,

φ
(2)−
2 ' k2H

(2)
1

2
eiθ2

[
(1 +H

(2)
2 ) + (H

(2)
2 − 1) tanh

(
ξ2 + ξ∗2 + Θ2 + ln Λ12

2

)]
,

v−2 '
(p2 + p∗2)2

2
sech2

(
ξ2 + ξ∗2 + Θ2 + ln Λ12

2

)
,

(ii) After the interaction (x, y → +∞):

Soliton 1 s1 (ξ1R ' 0, ξ2R → +∞)

φ
(1)+
1 ' k1H

(1)
2

2
eiθ1

[
(1 +H

(1)
1 ) + (H

(1)
1 − 1) tanh

(
ξ1 + ξ∗1 + Θ1 + ln Λ12

2

)]
,
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Multi-dark soliton solutions for the (2 + 1)-dimensional multi-component Maccari system

φ
(2)+
1 ' k2H

(2)
2

2
eiθ2

[
(1 +H

(2)
1 ) + (H

(2)
1 − 1) tanh

(
ξ1 + ξ∗1 + Θ1 + ln Λ12

2

)]
,

v+
1 '

(p1 + p∗1)2

2
sech2

(
ξ1 + ξ∗1 + Θ1 + ln Λ12

2

)
,

Soliton 2 s2 (ξ2R ' 0, ξ1R → −∞)

φ
(1)+
2 ' k1

2
eiθ1

[
(1 +H

(1)
2 ) + (H

(1)
2 − 1) tanh

(
ξ2 + ξ∗2 + Θ2

2

)]
,

φ
(2)+
2 ' k2

2
eiθ2

[
(1 +H

(2)
2 ) + (H

(2)
2 − 1) tanh

(
ξ2 + ξ∗2 + Θ2

2

)]
,

v+
2 '

(p2 + p∗2)2

2
sech2

(
ξ2 + ξ∗2 + Θ2

2

)
,

where ξj = ξjR + iξjI(j = 1, 2), φ
(1)−
j , φ

(2)−
j denotes the two solitons for the

two short wave components before collision, and v−j are the two solitons for long

wave component before collision. Conversely, φ
(1)+
j , φ

(2)+
j and v+

j stand for the two

solitons in the corresponding components after collision.

From the above expressions of asymptotic analysis, we can directly calculate

that

A
(1)−
1 = A

(1)+
1 = |k1|

1−

√
1
3m

2
1 + (n1 − α1)2

m2
1 + (n1 − α1)2

 ,

A
(2)−
1 = A

(2)+
1 = |k2|

1−

√
1
3m

2
1 + (n1 − α1)2

m2
1 + (n1 − α1)2

 ,

A
(1)−
2 = A

(1)+
2 = |k1|

1−

√
1
3m

2
2 + (n2 − α1)2

m2
2 + (n2 − α1)2

 ,

A
(2)−
2 = A

(2)+
2 = |k2|

1−

√
1
3m

2
2 + (n2 − α2)2

m2
2 + (n2 − α2)2

 ,

A(1)−
v = A(1)+

v =
(p1 + p∗1)2

2
= 2m2

1, A(2)−
v = A(2)+

v =
(p2 + p∗2)2

2
= 2m2

2 , (45)

where A
(j)−
1 , A

(j)+
1 (j = 1, 2) denote the amplitude of the soliton j (sj) in the short

wave component φ(1) before and after collision, respectively. Analogously, A
(j)−
2 ,

A
(j)+
2 are the amplitudes of the soliton j in the short wave component φ(2) before

and after collision. Additionally, the amplitudes of the corresponding soliton sj in

the long wave component v can be written as A
(j)−
v (before collision) and A

(j)+
v

(after collision). From the asymptotic analysis, we can make a conclusion that the

amplitude and velocity of each soliton remain unchanged during the interaction
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(a) (b) (c)

Fig. 3. (Color online) Two dark-dark solitons at the fixed time t = 0 with the parameters chosen

by k1 = 1, k2 = 2, m1 = 1, n1 = 2, m2 = 2, n2 = 1
3

, α1 = 1, α2 = 2, σ1 = 1, σ2 = −1, β1 = 0,

β2 = 0, ξ10R = 0, ξ20R = 0.

except for some phase shifts, and the collisions in the three components are all

elastic.

From Eq. (38), we can easily get a series of nonsingular two dark-dark soliton

solutions with the parameters chosen by mj > 0 (j = 1, 2). Meantime, the collision

of two dark-dark solitons is exhibited in Fig. 3. It is shown that the two solitons

interact with each other without any change of amplitude, darkness and velocity

in the three components after collision. There is no energy exchange between the

two short wave components or two dark solitons in the same component after in-

teraction. This kind of transmission of energy of dark-dark soliton solutions occurs

in all possible cases of nonlinearity coefficients σ1 and σ2 (all positive, all negative

and mixed).

For the two bright solitons in the long wave component v, we can differentiate

them into two types (O-type and P-type) according to asymptotic analysis. From

Eq. (45), we can find that the amplitudes of the two solitons s1 and s2 for the long

wave component in the asymptotic analysis are 2m2
1 and 2m2

2, respectively. Ac-

cording to the classifications of the soliton solutions in the Kadomtsev–Petviashvili

(KP) equation,44,45 the two bright solitons in v can be classified as O-type (“O”

for original) and P-type (“P” for physical) soliton interactions.

(i) When m1m2 < 0, then Λ12 > 1, this type is called O-type soliton interaction.

The two asymptotic soliton amplitudes 2m2
1 and 2m2

2 for the long wave component

v can be equivalent when m1 = −m2. It is found that the maximum of v (inter-

action peak) is always bigger than the sum of the asymptotic soliton (s1 and s2)

amplitudes.

(ii) When m1m2 > 0, then 0 < Λ12 < 1, this type is called P-type soliton

interaction. The following equality that 2m2
1 = 2m2

2 (m1 6= m2) is not possible in

this case. It is shown that the maximum of v (interaction peak) is always smaller

than the sum of the asymptotic soliton amplitudes. The two bright solitons in

Fig. 3(c) are just P-type solitons interaction.

It should be noted that the two different types of soliton interactions do not

depend on the imaginary parts of p1 and p2 (namely n1 and n2). The above-

mentioned Y -shape soliton solution can be constructed through using a limiting
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Multi-dark soliton solutions for the (2 + 1)-dimensional multi-component Maccari system

process n1 → n2 in the O-type two solitons. Similar with the cases in one- and

two dark-dark solitons, the higher-order dark-dark solitons for the Maccari system

(3)–(5) can also be discussed and we omit them here.

4. Soliton Bound States

In the following contents, we will consider the soliton bound states in the three

components φ(1), φ(2) and v. In order to construct the bound states for the Maccari

system (3)–(5), the solitons of the short and long wave components should possess

the same velocities along the x- and y-direction. From the concrete expressions

(37)–(40) of two dark-dark solitons, we can directly calculate the two velocities Vjx
(along the x-direction) and Vjy (along the y-direction) as follows (j = 1, 2 denote

the two different solitons)

Vjx = 2nj , Vj,y = − 4nj
σ1k21

m2
j+(nj−α1)2

+
σ2k22

m2
j+(nj−α2)2

(j = 1, 2) . (46)

When Vjx = Vjy = 0, we can get the stationary dark-dark soliton bound states.

From Eq. (46), it only requires that n1 = n2 = 0. There are no other constrains

for the nonlinear coefficients, then all values of σ1,σ2 (all positive, all negative and

mixed) can satisfy this condition. However, the relative constrains only exist when

the nonlinearity coefficients take opposite signs in the coupled NLS equations18 and

YO equations.23 The higher-order stationary dark-dark soliton bound states only

require that n1 = n2 = · · · = ni(3 ≤ i ≤ N), and we can make a conclusion that

the bound states can exist up to arbitrary order in the stationary case.

According to the relationship between the coefficients Ljx and Ljy in Eq. (43),

the stationary bound states can be classified as two types — oblique and parallel.

(i) If
L1y

L1x
6= L2y

L2x
, namely

σ1k
2
1

m2
1+α2

1
+

σ2k
2
2

m2
1+α2

2
6= σ1k

2
1

m2
2+α2

1
+

σ2k
2
2

m2
2+α2

2
, this is the

oblique stationary bound state, see Fig. 4. Here, it is shown that the coefficients

of the independent variable t are all zero in the expressions of two dark-dark soli-

tons, and these two solitons do not propagate along time t. Moreover, the oblique

(a) (b) (c)

Fig. 4. (Color online) The stationary two dark-dark soliton bound states in the oblique case with
the parameters chosen by k1 = 1, k2 = 2, m1 = 1, n1 = 0, m2 =

√
3, n2 = 0, α1 = 1, α2 = 1

3
,

σ1 = 1, σ2 = 1, β1 = 0, β2 = 0, ξ10R = 0, ξ20R = 0.

1950390-13

M
od

. P
hy

s.
 L

et
t. 

B
 2

01
9.

33
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n 

12
/2

9/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 6, 2019 14:55 MPLB S0217984919503901 page 14

T. Xu, Y. Chen & Z.-J. Qiao

(a) (b) (c)

Fig. 5. (Color online) The stationary two dark-dark soliton bound states in the parallel case

with the parameters chosen by k1 = 1, k2 = 2, m1 = 1, n1 = 0, m2 = 1
33

√
671, n2 = 0, α1 = 1

3
,

α2 = 1, σ1 = 1, σ2 = −1, β1 = 0, β2 = 0, ξ10R = 0, ξ20R = 0.

stationary bound state can be generated for all possible combinations of nonlinear-

ity coefficients σ1, σ2 consisting of positive, negative and mixed cases.

(ii) If
L1y

L1x
=

L2y

L2x
, namely

σ1k
2
1

m2
1+α2

1
+

σ2k
2
2

m2
1+α2

2
=

σ1k
2
1

m2
2+α2

1
+

σ2k
2
2

m2
2+α2

2
, this is the parallel

stationary bound state, see Fig. 5. From Eq. (38), one of the constraint conditions

for constructing the nonsingular two dark-dark solitons is that m1 > 0,m2 > 0.

Given the following function f(x) =
σ1k

2
1

x2+α2
1

+
σ1k

2
1

x2+α2
2

(x > 0), and the parallel

stationary bound state exists if and only if f(m1) = f(m2) by choosing appropriate

values of σ1, σ2, k1, k2, α1, α2. Besides, the function f(x) is monotonous in the

interval x > 0 when the nonlinearity coefficients σ1, σ2 take the same signs (all

positive or all negative). Considering the above condition m1 > 0, m2 > 0, it is not

possible that f(m1) = f(m2) when m1 6= m2, σ1σ2 > 0. Based on the above facts,

we find that the parallel stationary is only possible when nonlinearity coefficients

σ1, σ2 take opposite signs.

When Vjx = Vjy 6= 0, the moving two dark-dark soliton bound states can be

constructed. From Eq. (46), the following restricted conditions for constructing

moving bound states can be written as

Vjx: n1 = n2 6= 0 ,

Vjy:
σ1k

2
1

m2
1 + (n1 − α1)2

+
σ2k

2
2

m2
1 + (n1 − α2)2

(47)

=
σ1k

2
1

m2
2 + (n1 − α1)2

+
σ2k

2
2

m2
2 + (n1 − α2)2

.

Similar with the case in parallel stationary bound state, we can also construct

the function g(x) =
σ1k

2
1

x2+(n1−α1)2 +
σ2k

2
2

x2+(n1−α2)2 (x > 0). The function g(x) is

monotonous in the interval x > 0 with fixed parameters k1, k2, n1, α1, α2 when

nonlinearity coefficients σ1, σ2 take the same signs. Considering the nonsingular

condition m1 > 0, m2 > 0, it is not possible that g(m1) = g(m2) (m1 6= m2)

if σ2σ2 > 0. It is shown that the moving bound states are only possible when

nonlinearity coefficients σ1, σ2 take opposite signs.
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(a) (b) (c)

Fig. 6. (Color online) (a), (b): The moving two dark-dark soliton bound states at time t = −8

in the two short wave components; (c) the profile of two bright-bright soliton bound states with

y = 10 at t = −8 in the long wave component.

(a) (b) (c)

Fig. 7. (Color online) (a), (b): The moving two dark-dark soliton bound states at time t = 0
in the two short wave components; (c) the profile of two bright-bright soliton bound states with

y = 10 at t = 0 in the long wave component.

Assuming that the moving bound states can exist up to three dark solitons,

and we have n1 = n2 = n3, g(m1) = g(m2) = g(m3)(m1,m2,m3 > 0). From the

expression of g(x), we can find that g(x) is the equation with one independent

variable x whose degree is four, and the equation g(x) = c has two positive roots

at most. Based on the above facts, it is not possible that g(m1) = g(m2) = g(m3)

with m1, m2, m3 > 0. A conclusion can be made that only two-soliton bound state

exists in the moving case. Additionally, the figures of the moving two dark-dark

solitons are shown in Figs. 6–8 at three different times with the parameters chosen

by

k1 = 1, k2 = 2, m1 = 1, n1 = 1, m2 =
5

52

√
39, n2 = 1, α1 = 1 ,

α2 =
1

4
, σ1 = 1, σ2 = −1, β1 = 0, β2 = 0, ξ10R = 0, ξ20R = 0 .

We find that it is not easy to observe the moving two bright-bright solitons in the

long wave component v, and we give the corresponding two-dimensional diagrams

at y = 10 in Figs. 6(c)–8(c).

For the two-soliton bound states (stationary and moving cases), it is interesting

that the two short wave components φ(1) and φ(2) have some phase shifts but the

long wave component v undergoes no phase shift with x and y varying from −∞
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(a) (b) (c)

Fig. 8. (Color online) (a), (b): The moving two dark-dark soliton bound states at time t = 8

in the two short wave components; (c) the profile of two bright-bright soliton bound states with

y = 10 at t = 8 in the long wave component.

to +∞. Additionally, the sum of the phase shifts of each short wave component

are equal to the sum of the individual ones of the two dark solitons. Whereas the

phase shift of the long wave component is still zero. Setting that H
(1)
j = e2iψ

(1)
j ,

H
(2)
j = eiψ

(2)
j , then the phase shifts of the corresponding components can be written

as φ
(1)
phase shift = 2ψ

(1)
1 + 2ψ

(1)
2 , φ

(2)
phase shift = 2ψ

(2)
1 + 2ψ

(2)
2 and vphase shift = 0.

5. N-Dark Soliton Solutions for the Multi-Component

Generalization

If the isolated waves localized in small parts of space are more than two, the Maccari

system (3) and (5) should be generalized to multi-component case. In fact, the

previous results for the two component case can be extended to the N -component

Maccari system (1) and (2). Furthermore, the multi-dark soliton solutions for the

N -component Maccari system can be generated from the reduction of single KP

hierarchy consisting ofN copies of shifted singular points. Similar with the processes

in the two component coupled Maccari system (3) and (5), we can directly calculate

the N -dark soliton solutions for the N -component Maccari system (1) and (2). Here,

we only give the main results and omit some complicated calculation procedures.

The N -component Maccari system (1) and (2) consisting of N short wave com-

ponents and single long wave component can be transformed into the following

bilinear forms:

[D2
x + i(Dt + 2αlDx)]h(l) · f = 0 (1 ≤ l ≤ N) , (48)

DxDyf · f =
∑N
l=1 σlk

2
l (h(l)h(l)∗ − f2) , (49)

through these dependent variable transformations

φ(l) = kle
iθl
h(l)

f
(1 ≤ l ≤ N), v = 2(ln f)xx, (50)

where h(l)(1 ≤ l ≤ N) are the complex functions of x, y, t, f is the real function of

x, y, t. Besides, θl = αlx− α2
l t+ βl(y), kl, αl are arbitrary real constants and βl(y)

are the arbitrary functions of y.
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Similar to the reductions in Sec. 2, one can construct the N -dark soliton solu-

tions in Gram type determinant forms for the multi-component Maccari system (1)

and (2) as follows:

φ(l) = kle
iθl
h(l)

f
, v = 2(ln f)xx , (51)

f =

∣∣∣∣∣δij +
1

pi + p∗j
eξi+ξ

∗
j

∣∣∣∣∣
N×N

, (52)

h(l) =

∣∣∣∣∣δij − pi − iαl
p∗j + iαl

1

pi + p∗j

∣∣∣∣∣
N×N

(1 ≤ l ≤ N) , (53)

where ξi = pix + ip2
i − 1

2

∑N
l=1

σlk
2
l

pi−iαl y + ξi0, θl = αlx − α2
l t + βl(y), βl(y) are the

arbitrary functions of y, pi, ξi0 are complex constants and kl, αl are real constants,

δij is the Kronecker symbol.

6. Conclusions

Utilizing reduction of the KP hierarchy, the N -dark-dark soliton solutions for the

two component coupled Maccari system (3)–(5) consisting of two short wave com-

ponents and one long wave component are given in Gram determinant forms. There

exist some connections between the researched Maccari system and some equations

in the KP hierarchy. Here, the related equations are the two-dimensional Toda lat-

tice (Eqs. (11) and (13)) in KP hierarchy and the lowest-degree bilinear equation

(Eqs. (12) and (14)) in the first modified KP hierarchy. Based on the above facts,

the N -dark solitons for the Maccari system (3)–(5) can be constructed by the com-

plex conjugate reductions and the independent variable transformations in the KP

hierarchy. Similar to the N -dark-dark soliton in the two component case, the N

dark solitons for the N -component Maccari system including N short wave com-

ponents and one long wave component can also be generated. This kind of dark

soliton in two-dimensional multi-component system has also been reported for the

YO system23 and Mel’nikov system.24

In this paper, the dynamics of the dark solitons for the two component coupled

Maccari system are discussed in detail. For one-dark-dark solitons, the degrees

of the darkness can be controlled by the parameter αj (j = 1, 2) and they are

classified as two types (degenerate and non-degenerate cases). From the asymptotic

analysis, it is shown the amplitude and velocity of each soliton in the two-soliton

solutions remains unchanged during the interaction, then the collisions in the three

components are all elastic. The long wave component v always possesses bright

soliton and the two bright soliton interactions are O-type and P-type. Additionally,

the two dark-dark solitons bound states are discussed in stationary and moving

cases. For the stationary bound states, the bound states can exist up to arbitrary

order. However, only two-soliton bound state exists in the moving case. There are
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two types (oblique and parallel) in the stationary bound states. The oblique case can

be generated for all possible combinations of nonlinearity coefficients. Nevertheless,

the parallel case is only possible when nonlinearity coefficients take opposite signs.

We expect that the N -dark soliton obtained in this paper will be verified and

controlled in the physical experiments in the future.
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