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ABSTRACT
Due to the fact that the higher-order Kaup–Newell (KN) system has more complex and diverse solutions than the classical second-order flow
KN system, the research on it has attracted much attention. In this paper, we consider a higher-order KN equation with third-order dispersion
and fifth-order nonlinearity. Based on the theory of the inverse scattering, the matrix Riemann–Hilbert problem is established. Through the
dressing method, the solution matrix with simple zeros without reflection is constructed. In particular, a new form of solution is given which
is more direct and simpler than previous methods. In addition, through the determinant solution matrix, the vivid diagrams and dynamic
analysis of single-soliton solution and two-soliton solution are given in detail. Finally, by using the technique of limit, we construct the general
solution matrix in the case of multiple zeros, and the examples of solutions for the cases of double zeros, triple zeros, single–double zeros, and
double–double zeros are especially shown.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0064411

I. INTRODUCTION
In Ref. 1, Abhinav et al. gave the coupled equations

qt = iqxx − (4β + 1)q2rx − 4βqqxr + i
2
(1 + 2β)(4β + 1)q3r2,

rt = −irxx − (4β + 1)r2qx − 4βrrxq − i
2
(1 + 2β)(4β + 1)q2r3.

(1)

System (1) has three famous Schrödinger-type reductions and these three reductions had been widely studied in recent years.
When β = − 1

2 and r = −q∗, system (1) reduces to derivative nonlinear Schrödinger (DNLS) I,

iqt + qxx − i(q2q∗)
x
= 0, (2)

where the symbol “∗” represents the complex conjugate and the subscript of x (or t) represents the partial derivative with respect to x (or t).
Equation (2) is also called the Kaup–Newell (KN) equation.2 In recent years, the KN equation related to spectral problems, exact solutions,
Hamilton structure, Painléve properties, and other properties have been in-depth research.2–8 Equation (2) is a typical dispersion equa-
tion, which is derived from the magnetohydrodynamic equation with Hall effect, especially describing the nonlinear Alfvén waves in plasma
physics.9–11
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When β = − 1
4 and r = −q∗, system (1) reduces to DNLS II,

iqt + qxx − iqq∗qx = 0, (3)

which appears in optical models of ultrashort pulses and is also referred to as the Chen–Lee–Liu (CLL) equation.12

When β = 0 and r = −q∗, system (1) reduces to DNLS III,

iqt + qxx − iq2q∗x +
1
2

q3q
∗2 = 0. (4)

This equation was first discovered by Gerdjikov and Ivanov in Ref. 13, also known as the GI equation.
In Ref. 14, Fan gave the higher-order generalization of Eq. (1),

qt−
1
4
[2qxxx − 6(2β − 1)rq2

x − 6(4β − 1)qqxrx − 6(2β − 1)qrqxx + 6(2β − 1)(4β − 1)q3rrx

+3(8β2 − 12β + 3)q2r2qx + 4β(2β − 1)(4β − 1)q4r3] = 0,

rt−
1
4
[2rxxx + 6(2β − 1)qr2

x − 6(4β − 1)rqxrx + 6(2β − 1)qrrxx + 6(2β − 1)(4β − 1)qr3qx

+3(8β2 − 12β + 3)q2r2rx − 4β(2β − 1)(4β − 1)q3r4] = 0.

(5)

System (5) can be used to describe the higher-order nonlinear effects in nonlinear optics and other fields. System (5) also has three important
Schrödinger-type reductions.

First, when β = 0, x → ix, t → it, and r = −q∗, system (5) becomes

qt = −
1
2

qxxx + (
3i
2
∣q∣2qx)

x
+ (3

4
∣q∣4q)

x
, (6)

which can be viewed as the higher-order DNLS I or higher-order KN equation. Equation (6) also can be derived from the generalized KN
hierarchy15 under n = 3 and proper parameter.

Second, when β = 1
4 and x → ix, t → it, r = −q∗, system (5) becomes

qt = −
1
2

qxxx −
3
4

i∣q∣2qxx −
3
4

iq∗q2
x +

3
8
∣q∣4qx, (7)

which can be viewed as the higher-order DNLS II or higher-order CLL equation.
Third, when β = 1

2 and x → ix, t → it and r = −q∗, system (5) becomes

qt = −
1
2

qxxx +
3
2

iqqxq∗x −
3
4
∣q∣4qx, (8)

which can be regarded as the higher-order DNLS III or higher-order GI equation.
It has been proved in Ref. 14 that Eqs. (6)–(8) have multiple Hamiltonian structures and are Liouville integrable. The

N-soliton solutions of Eqs. (7) and (8) have been studied in Refs. 16 and 17. In this paper, we mainly consider the soliton solutions and
higher-order soliton solution of Eq. (6). In fact, there are several classical methods to obtain the soliton solutions, such as the inverse scat-
tering (IST) method, Hirota bilinear method, Darboux/Bäcklund transform, and Riemann–Hilbert (RH) method.18–23,26 Here, we will use
the RH method to derive the soliton solutions of Eq. (6) since it is more convenient to study the exact long-time asymptotic and large
−n asymptotic.24

The high-order soliton solution of the nonlinear Schrödinger (NLS) type has been widely concerned by many scholars in recent years.
It can be used to describe the weak bound states of solitons, which may appear in the study of soliton train transmission with specific chirp
and almost equal velocity and amplitude.25 There are not many studies on DNLS type higher-order soliton solutions. Recently, Chen’s team
studied the double and triple zeros of the GI equation27 and the double zeros of higher-order KN.28 Here, we study more extensive cases and
give the general form of the solutions with multiple zeros.

The main content of this paper is to construct the general soliton solution matrix of the higher-order KN equation by using RH method.
It is worth noting that we recover the potential q(x, t) as the spectral parameter ζ → 0, it effectively reduces the operation process and avoids
the interference of implicit function, and the matrix form of the soliton solution is more direct. Taking the single soliton solution and the
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two-soliton solution as examples, the properties of the soliton are studied. Then, on the basis of the soliton solution, through a certain limit
technique, the solution matrix of the high-order soliton solution of the multiple zeros is obtained.

The organization of this paper is as follows: In Sec. II, the inverse scattering theory of the spectrum problem and the correspond-
ing matrix Riemann–Hilbert problem (RHP) are established. The N-soliton formula for the higher-order KN equation is derived by
considering the simple zeros in the RHP in Sec. III. In Sec. IV, we construct the higher-order soliton matrix and obtain the general
expression of the higher-order soliton, which corresponds to the multiple zeros in the RHP. Section V is devoted to conclusion and
discussion.

II. INVERSE SCATTERING THEORY OF (6)
The main work of this part is to study the inverse scattering problem of Eq. (6) and construct the corresponding RHP.
Equation (6) is Lax integrable with the linear spectral problem

Yx =MY , M = −iζ2σ3 + ζQ, (9)

Yt = NY , N = −2iζ6σ3 +N1, (10)

where

N1 = 2Qζ5 − iQ2σ3ζ4 + iσ3Qxζ3 +Q3ζ3 − 1
2
(QQx −QxQ)ζ2

− 3
4

iQ4σ3ζ2 − 1
2

Qxxζ +
3i
2
σ3Q2Qxζ +

3
4

Q5ζ,
(11)

σ3 =
⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠

, Q =
⎛
⎜
⎝

0 q

−q∗ 0

⎞
⎟
⎠

, (12)

and it is easy to verify that

Q† = −Q, σ3Qσ3 = −Q,

which plays an important role in symmetry research later, and the symbol “†” represents the conjugate transpose of a matrix. In the following
analysis, we assume that the potential function q, q∗ rapidly tends to zero as x → ±∞. In this case, the solution of the boundary form can be
clearly obtained,

Y ∼ e(−iζ2x−2iζ6t)σ3 as x →∞. (13)

We make the following transformation:

Y = Je(−iζ2x−2iζ6t)σ3 . (14)

The Lax pair of Eqs. (9) and (10) becomes

Jx + iζ2[σ3, J] = ζQJ, (15)

Jt + 2iζ6[σ3, J] = N1J, (16)

where Q, N1 have been given by Eqs. (11) and (12).
In the scattering problem, the Lax equation (16) of time t is ignored temporarily. By solving Eq. (9) with the constant variation method

and using transformation (14), the solution of Eq. (15) can be obtained, which satisfies the following integral equations:

JM = I + ζ∫
x

−∞

eiζ2σ3(y−x)Q(y)JMeiζ2σ3(x−y)dy, (17)

JP = I − ζ∫
+∞

x
eiζ2σ3(y−x)Q(y)JPeiζ2σ3(x−y)dy, (18)
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and these two Jost solutions satisfy the following asymptotics at large distances:

J ∼ I as ∣x∣ ∼ ∞. (19)

In order to analyze the analytical properties of Jost solutions in the ζ plane, we divide the entire ζ plane into two regions, as shown in
Fig. 1,

C13 = {ζ∣ arg ζ ∈ (0,
π
2
) ∪ (π,

3π
2
)}, C24 = {ζ∣ arg ζ ∈ (π

2
,π) ∪ (3π

2
, 2π)}.

Dividing J into columns as J = (J(1), J(2)), due to the structure (12) of the potential Q and Volterra integral equations (17) and (18), we
have the following proposition:

Proposition II.1. The above Volterra integral equations exist and are unique and have the following properties:

● The column vectors J(1)M and J(2)P are analytic for ζ ∈ C13 and continuous for ζ ∈ C13 ∪R ∪ iR.
● The column vectors J(1)p and J(2)M are analytical for ζ ∈ C24 and continuous for ζ ∈ C24 ∪R ∪ iR.

Through Eq. (14), we know that JPE and JME are both solutions of the linear equation (9), so they are linearly related by a matrix S(ζ),

JME = JPES(ζ), ζ ∈ R ∪ iR, (20)

where E = e−iζ2xσ3 and S(ζ) = (sij)2×2. It should be noted that

tr(−iζ2σ3 + ζQ) = 0,

and using Abel’s formula, we can get that

(det Y)x = 0, (21)

considering that transformation (14) has

det J = det Y det(eiζ2xσ3) = det Y .

Reusing Eq. (21) has

(det J)x = 0,

which means that the det J is independent of x, and then from the asymptotic (19), we know

FIG. 1. Definition of the C13 = C1 ∪ C3 and C24 = C2 ∪ C4.
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det J = lim
∣x∣→∞

det J = det( lim
∣x∣→∞

J) = 1.

We take the determinant on both sides of relation (20) to get det S(ζ) = 1.
In order to construct the RHP, we consider the adjoint scattering equation of (15),

Φx = −iζ2[σ3,Φ] − ζΦQ, (22)

and it is easy to see that J−1 is the solution of the adjoint equation (22) and satisfies the boundary condition J−1 → I as x → ±∞, where the
inverse matrices J−1 as a collection of rows,

(JP)−1 = ((J−1
P )(1), (J−1

P )(2))T , (JM)−1 = ((J−1
M )(1), (J−1

M )(2))T . (23)

Due to the structure (12) of the potential Q, we also have the following proposition:

Proposition II.2. According to the properties of the Jost solution, we can deduce that the inverse matrix J−1 has the following properties:

● The row vectors (J−1
P )(1) and (J−1

M )(2) are analytic for ζ ∈ C13 and continuous for ζ ∈ C13 ∪R ∪ iR.
● The rows (J−1

M )(1) and (J−1
P )(2) are analytical for ζ ∈ C24 and continuous for ζ ∈ C24 ∪R ∪ iR.

Furthermore, the analytical properties of the scattering data can be obtained as follows:

Proposition II.3. Suppose that q(x, t) ∈ L1(R), then s11 is analytic on C13, s22 is analytic on C24, and s12 and s22 are not analytic in C13
and C24 but are continuous to the real axis R and imaginary axis iR.

Proof. The scattering matrix can be rewritten as

e−iζ2xσ3 S(ζ)eiζ2xσ3 = J−1
P JM =

⎛
⎜
⎝
(J−1

P )
(1)

(J−1
P )

(2)

⎞
⎟
⎠
(J(1)M , J(2)M ) =

⎛
⎜
⎝
(J−1

P )
(1)

J(1)M (J−1
P )

(1)
J(2)M

(J−1
P )

(2)
J(1)M (J−1

P )
(2)

J(2)M

⎞
⎟
⎠

, ζ ∈ R ∪ iR. (24)

The elements corresponding to the matrices on both sides can be written clearly as

s11 = (J−1
P )

(1)
J(1)M , s12 = (J−1

P )
(1)

J(2)M e2iζ2x,

s21 = (J−1
P )

(2)
J(1)M e−2iζ2x, s12 = (J−1

P )
(2)

J(2)M .

According to Propositions 1 and 2, it is easy to know that s11 is analytic on C13, s22 is analytic on C24, and s12 and s22 are not analytic in C13
and C24 but are continuous to the real axis R and imaginary axis iR. ◻

Hence, we can construct two matrix functions P(ζ, x) that are analytic for ζ ∈ C13 ∪C24,

P(ζ, x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[(J(1)M (ζ, x), J(2)P (ζ, x)], ζ ∈ C13,

[(J−1
M )(1)(ζ, x), (J−1

P )(2)(ζ, x)], ζ ∈ C24,
(25)

and detP = s11 when ζ ∈ C13, detP = ŝ11 and when ζ ∈ C24. ŝ11 is the first element of S−1.
To find the boundary condition of P, we consider the following asymptotic expansion as ζ → 0:

P = P(0) + P(1)ζ + P(2)ζ2 +O(ζ3). (26)

Substituting (26) into (15) and equating terms with like powers of ζ, we find

P(0)x = 0.

It can be seen from (17) and (18) that
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J∣(ζ=0) = I,

so we have

P→ I, ζ → 0. (27)

Then, the RHP of the higher-order KN equation is as follows:

Riemann–Hilbert Problem II.4. The matrix function P(ζ; x) has the following properties:

● Analyticity : P(ζ; x, t) is an analytic function in ζ ∈ C13 ∪C24.
● Jump condition:

P+(ζ; x) = P−(ζ; x)G(ζ), ζ ∈ R ∪ iR. (28)

● Normalization : P(ζ; x) = I +O(ζ) as ζ → 0.

Here,

G = E
⎛
⎜
⎝

1 ŝ12

s21 1

⎞
⎟
⎠

E−1. (29)

Next, we consider the symmetric properties of Jost solutions and scattering data so that we can consider interesting reduction.

Proposition II.5. There are two symmetries of the Jost solutions and scattering data:

● The first symmetry reduction:

(J(x, ζ∗))† = J−1(x, ζ), (30)

(P(ζ∗))† = P−1(ζ), (31)

S†(ζ∗) = S−1(ζ). (32)

● The second symmetry reduction:

J(ζ) = σ3J(−ζ)σ3, (33)

P(−ζ) = σ3P(ζ)σ3, (34)

S(−ζ) = σ3S(ζ)σ3. (35)

Proof. For the first symmetric case, we replace ζ with ζ∗ and then take the conjugate transpose of Eq. (15) to get

(J†(x, ζ∗))x = −iζ2[σ3, J†(x, ζ∗)] + ζJ†(x, ζ∗)Q† (36)

owing to Q† = −Q, so the above equation is

(J†(x, ζ∗))x = −iζ2[σ3, J†(x, ζ∗)] − ζJ†(x, ζ∗)Q. (37)

Comparing with Eq. (22), it is found that J−1(x, ζ) and J†(x, ζ∗) satisfy the same equation form, and then according to the boundary conditions
at x → ±∞, we know that

(J(x, ζ∗))† = J−1(x, ζ).

Note that the P we constructed are part of the Jost solutions and therefore have
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(P(ζ∗))† = P−1(ζ).

In addition, in view of the scattering relation (20) between JM and JP, we find that S also satisfies the involution property

S†(ζ∗) = S−1(ζ).

For the second symmetry, replacing ζ with −ζ and both sides of the equation being multiplied by σ3,

σ3Jx(−ζ)σ3 + iζ2[σ3, σ3J(−ζ)σ3] = −ζσ3QJ(−ζ)σ3,

due to σ3Qσ3 = −Q, the above equation can be reduced to

σ3Jx(−ζ)σ3 + iζ2[σ3, σ3J(−ζ)σ3] = ζQσ3J(−ζ)σ3.

It is easy to find that J(ζ) and J(−ζ) satisfy the same equation, so there is

J(ζ) = σ3J(−ζ)σ3, (38)

and it follows that

P(−ζ) = σ3P(ζ)σ3 (39)

and

S(−ζ) = σ3S(ζ)σ3. (40)

◻
From Eqs. (32) and (35), we obtain the relations

s∗11(ζ∗) = ŝ11(ζ), s∗21(ζ∗) = ŝ12(ζ), s∗12(ζ∗) = ŝ21(ζ), ζ ∈ R ∪ iR (41)

and

s11(ζ) = s11(−ζ), s22(ζ) = s22(−ζ), s12(−ζ) = −s12(ζ), s21(−ζ) = −s21(ζ), ζ ∈ R ∪ iR. (42)

Thus, s11(λ) is an even function, and each zero ζk of s11 is accompanied with zero −ζk. Similarly, ŝ11 has two zeros ±ζ∗k .

A. Solvability of RHP
In general, if the det P(ζ) ≠ 0 of the RHP, the RHP is considered to be regular, its solution is unique, and can be given by using the Plemelj

formula.29 However, more often than not they are non-regular, where det P(ζ) = 0, i. e., s11(±ζk) = 0 and ŝ11(±ζ̄k) = 0 at certain discrete
locations, ±ζk and ±ζ̄k are called zeros. Here, we first consider the case of simple zeros {±ζk ∈ C13, 1 ≤ k ≤ N} and {±ζ̄k ∈ C24, 1 ≤ k ≤ N},
where N is the number of these zeros. These zeros are known from relation (41),

s11(ζk) = ŝ∗11(ζ∗k ) = 0, ŝ11(ζ̄k) = 0,

so

ζ̄k = ζ∗k . (43)

In this case, both ker(P(±ζk)) are one-dimensional and spanned by single column vector ∣vk⟩ and single row vector ⟨vk∣, respectively,
and thus,

P(ζk)∣vk⟩ = 0, ⟨vk∣P(ζ∗k ) = 0, ζk ∈ C13, 1 ≤ k ≤ N. (44)

By the symmetry relation (31), it is easy to get
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∣vk⟩ = ⟨vk∣†. (45)

Regarding this non-regular RHP (28) under the canonical normalization condition, its solution is also unique. Here, we mainly use the
dressing method to turn the non-regular problem into the regular problem.30 Next, we construct a matrix function Γ(x, t, ζ) that could cancel
all the zeros of P. From relations (41) and (42), we should construct a matrix Γk whose determinant is

det Γk(ζ) =
ζ2 − ζ2

k
ζ2 − ζ∗2

k
. (46)

From the above properties [(31), (34) and (46)], we could construct the form for the matrix

Γk(ζ) = I + Ak

ζ − ζ∗k
− σ3Akσ3

ζ + ζ∗k
, Γ−1

k (ζ) = I +
A†

k
ζ − ζk

−
σ3A†

kσ3

ζ + ζk
, ζk ∈ C13, k = 1, 2, . . . , N, (47)

where

Ak =
ζ∗2

k − ζ2
k

2

⎛
⎜
⎝
α∗k 0

0 αk

⎞
⎟
⎠
∣wk⟩⟨wk∣, α−1

k = ⟨wk∣
⎛
⎜
⎝
ζk 0

0 ζ∗k

⎞
⎟
⎠
∣wk⟩, (48)

∣wk⟩ = Γk−1(ζk) . . . Γ1(ζk)∣vk⟩, ⟨wk∣ = ∣wk⟩†, (49)

and then det PΓ−1
k ≠ 0 at points ±ζk and det Γ−1

k P ≠ 0 at points ±ζ∗k . Introducing

Γ(ζ) = ΓN(ζ)ΓN−1(ζ) . . . Γ1(ζ), (50)

Γ−1(ζ) = Γ−1
1 (ζ)Γ−1

2 (ζ) . . . Γ−1
N (ζ), (51)

the analytic solutions may be represented as

P = P̃Γ. (52)

Then, the RHP of the higher-order KN equation without singularity is as follows:

Riemann–Hilbert Problem II.6. The matrix function P̃(ζ; x) has the following properties:

● Analyticity: P̃(ζ; x, t) is the analytic function in ζ ∈ C13 ∪C24.
● Jump condition:

P̃+(ζ; x) = P̃−(ζ; x)ΓGΓ−1(ζ), ζ ∈ R ∪ iR. (53)

● Asymptotic behaviors: P̃(ζ; x) = P̃0 +O(ζ), as ζ → 0.

The form of G has been given by Eq. (29). From Eq. (52), we have

P̃0 = (Γ∣ζ=0)
−1. (54)

B. Scattering data evolution
From the solution of RHP, it can be seen that the minimum scattering data needed for solving RHP and reconstructing potential is

{s21, ŝ12, ζ ∈ R ∪ iR;±ζk,±ζ∗k , ∣vk⟩, ⟨vk∣, 1 ≤ k ≤ N}.

Since J satisfies the temporal equation (16) of the Lax pair and relation (20), then according to the evolution property (20) and Q→ 0, V → 0
as ∣x∣ → ∞, we have

St + 2iζ6[σ3, S] = 0,

and the evolutions of the entries of the scattering matrix S satisfy
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s11,t = s22,t = 0, s12(t; ζ) = s12(0; ζ) exp(−4iζ6t), s21(t; ζ) = s21(0; ζ) exp(4iζ6t). (55)

Differentiating both sides of the first equation of (44) with respect to x and t and recalling the Lax (15) and (16), we have

P(ζk; x)(d∣vk⟩
dx
+ iζ2σ3∣vk⟩) = 0, P(ζk; x)(d∣vk⟩

dt
+ 2iζ6σ3∣vk⟩) = 0, ζk ∈ C13.

It concludes that

∣vk⟩ = e−iζ2
k σ3x−2iζ6

k σ3t ∣vk0⟩,

where vk0 = vk∣x=0.

III. N SOLITON SOLUTIONS
In this part, we mainly obtain the potential q. The expansion of P(ζ) with ζ → 0 is

P(ζ) = I + P(1)ζ + P(2)ζ2 +O(ζ2). (56)

Substituting the expansion into Eq. (15), the potential matrix function can be obtained by comparing the coefficients,

Q = P(1)x , (57)

from this formula, and we can get the potential q(x, t). As we all know, the soliton solutions correspond to the disappearance of the scattering
coefficient, G = I, Ĝ = 0. Therefore, we intend to solve the corresponding RHP (53).

According to Eqs. (52) and (54), we can consider the following expansion form:

P(x, t; ζ) = (Γ∣ζ=0)−1(Γ∣ζ=0 + Γ(1)(x, t)ζ +O(ζ)), (58)

which gives P(1) = (Γ∣ζ=0)−1Γ(1)(x, t). Below, the main effort is to find an explicit expression for (Γ∣ζ=0)−1Γ1(x, t). In fact, the form of Γ from
Eqs. (50) and (51) have a more compact form

Γ(ζ) = I +
N

∑
k=1
[ Bk

ζ − ζ∗k
− σ3Bkσ3

ζ + ζ∗k
] (59)

and

Γ−1(ζ) = I +
N

∑
k=1
[

B†
k

ζ − ζk
−
σ3B†

kσ3

ζ + ζk
], (60)

with Bk = ∣zk⟩⟨vk∣. To determine the form of matrix Bk, we consider Γ(ζ)Γ−1(ζ) = I, we have

Resζ=ζjΓ(ζ)Γ
−1(ζ) = Γ(ζj)B†

j = 0,

and it yields

[I +
N

∑
k=1
( ∣zk⟩⟨vk∣
ζj − ζ∗k

− σ3∣zk⟩⟨vk∣σ3

ζj + ζ∗k
)]∣vj⟩ = 0, j = 1, 2, . . . , N, (61)

it is easy to figure out

∣zk⟩1 =
N

∑
j=1
(M−1)jk∣vj⟩1, (62)

where ∣zk⟩l denotes the lth element of ∣zk⟩ and matrix M is defined as
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Mjk =
⟨vk∣σ3∣vj⟩
ζj + ζ∗k

− ⟨vk∣vj⟩
ζj − ζ∗k

. (63)

Then, we have

(Γ∣ζ=0) = I −
N

∑
j=1

⎡⎢⎢⎢⎣
Bj + σ3Bjσ3

ζ∗j

⎤⎥⎥⎥⎦
,

Γ(1)(x, t) = −
N

∑
j=1

Bj − σ3Bjσ3

ζ∗2
j

.

These equations enable us to have

P(1) = (Γ∣ζ=0)−1Γ(1)(x, t) =
⎛
⎝

I −
N

∑
j=1

⎡⎢⎢⎢⎣
Bj + σ3Bjσ3

ζ∗j

⎤⎥⎥⎥⎦
⎞
⎠

−1 N

∑
j=1

σ3Bjσ3 − Bj

ζ∗2
j

,

and by Eq. (57), we can obtain that the potential function q(x, t) is

q(x, t) =
⎛
⎜
⎝
⎛
⎝

1 −
N

∑
j,k=1

2(M−1)jk∣vk⟩1⟨vj∣1
ζ∗j

⎞
⎠

−1
⎛
⎝

N

∑
j,k=1

−2(M−1)jk∣vk⟩1⟨vj∣2
ζ∗2

j

⎞
⎠
⎞
⎟
⎠

x

, (64)

where M has been given by Eq. (63). Note that M−1 can be expressed as the transpose of M’s cofactor matrix divided by det M. Hence, the
solution (64) can be rewritten as

q(x, t) = ( 2 detF
detM

1 + 2 det G
det M

)
x

= ( 2detF
detM + 2detG

)
x
, (65)

where

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

M11 M12 ⋅ ⋅ ⋅ M1n ∣v1⟩1
M21 M22 ⋅ ⋅ ⋅ M2n ∣v2⟩1

⋮ ⋮
. . . ⋮ ⋮

Mn1 Mn2 ⋅ ⋅ ⋅ Mnn ∣vn⟩1
⟨v1∣2
ζ1
∗2

⟨v2∣2
ζ2
∗2 ⋅ ⋅ ⋅ ⟨vn∣2

ζn
∗2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

M11 M12 ⋅ ⋅ ⋅ M1n ∣v1⟩1
M21 M22 ⋅ ⋅ ⋅ M2n ∣v2⟩1

⋮ ⋮
. . . ⋮ ⋮

Mn1 Mn2 ⋅ ⋅ ⋅ Mnn ∣vn⟩1
⟨v1∣1
ζ1
∗

⟨v2∣1
ζ2
∗
⋅ ⋅ ⋅ ⟨vn∣1

ζn
∗

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

To get the explicit N-soliton solutions, we may take vk0 = (ak, bk)T , and then

∣vk⟩ =
⎛
⎜
⎝

akeθk

bke−θk

⎞
⎟
⎠

, ⟨vk∣ = (a∗k eθ
∗

k b∗k e−θ
∗

k ),

where θk = −iζ2
k x − 2iζ6

k t.
In what follows, we will take single soliton and two-soliton solution as examples to study the properties of solitons in more detail. For

convenience, let ζ j = ζ jR + iζ jI ,

θjR = 2mj(x − (8m2
j − 6β2

j )t), θjI = −βjx − 2(β3
j − 12m2

j βj)t,
mj = ζjRζjI , βj = ζ2

jR − ζ2
jI ,

where ζ jR, ζ jI are the real and imaginary parts of ζ j.
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A. Single-soliton solution
For N = 1, taking the discrete spectrum point ±ζ1 and ±ζ∗1 , then using formula (64) to directly calculate, it can be seen that

q(x, t) = (ζ
2
1 − ζ∗2

1 )
∣ζ1∣2

⎛
⎝

a1b∗1 eθ1−θ∗1

ζ∗1 ∣b1∣2e−(θ1+θ∗1 ) + ζ1∣a1∣2eθ1+θ∗1

⎞
⎠

x

(66)

or equal to

q(x, t) = 8a1b∗1 ζ1Rζ1I
ζ1∣b1∣2e−2θ1R + ζ∗1 ∣a1∣2e2θ1R

(ζ∗1 ∣b1∣2e−2θ1R + ζ1∣a1∣2e2θ1R)2 e2iθ1I . (67)

The velocity for the single soliton is v = 8ζ2
1Rζ2

1I − 6(ζ2
1R − ζ2

1I)2. The center position for ∣q∣ locates on the line

x − vt − 1
4ζ2

1Rζ2
1I

ln
∣b1∣
∣a1∣
= 0.

The amplitudes associated with ∣q∣2 are given by

A(q) = 64ζ2
1Rζ2

1I

2∣ζ2
1 ∣ + ζ2

1 + ζ∗2
1

.

In Fig. 2(a), we give the 3D graph of the single-soliton solution.

B. Two-soliton solution
When N = 2, the two-soliton solution of the higher-order KN equation has the form of q(x, t) = Δ1/Δ0 with

FIG. 2. Soliton solutions for ∣q∣. (a) Single-soliton solution in the three-dimensional plot, where ζ1 = 1 + 0.25i, a1 = 1, b1 = 0.1 + 0.7i. (b) Two-soliton solution in the three-
dimensional plot, where ζ1 = 1 + 0.25i, a1 = 1, b1 = 0.1 + 0.7i, ζ2 = 1 + 0.5i, a2 = 1, b2 = −0.1 + 0.7i. Single-soliton solution for ∣u∣, where ξ1 = 1, η1 = 0.5, c1 = 1.
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Δ1 = δ1e−2θ1R+2iθ1I−4θ2R + δ2e2θ1R+2iθ1I + δ3e2θ1R+2iθ1I−4θ2R + δ4e−2θ1R+2iθ1I + δ5e−2θ2R+2iθ2I + δ6e4iθ1I−2θ2R−2iθ2I

+ δ7e4θ1R+2θ2R+2iθ2I + δ8e4θ1R−2θ2R+2iθ2I + δ9e2θ2R+2iθ2I + δ10e2θ1R−2iθ1I+4iθ2I + δ11e2θ1R+2iθ1I+4θ2R + δ12e−2θ1R+2iθ1I+4θ2R

+ δ13e4iθ1I+2θ2R−2iθ2I + δ14e−4θ1R−2θ2R+2iθ2I + δ15e−4θ1R+2θ2R+2iθ2I + δ16e−2θ1R−2iθ1I+4iθ2I ,

Δ0 = ρ0 + ρ1e−4θ1R−4θ2R + ρ2e−4θ1R + ρ3e−4θ2R + ρ4e−2θ1R−2iθ1I−2θ2R+2iθ2I + ρ5e−2θ1R+2iθ1I−2θ2R−2iθ2I + ρ6e4θ1R+4θ2R

+ ρ7e4θ1R + ρ8e4θ2R + ρ9e2θ1R−2iθ1I−2θ2R+2iθ2I + ρ10e2θ1R+2iθ1I+2θ2R−2iθ2I + ρ11e4θ1R−4θ2R + ρ12e2θ1R−2iθ1I+2θ2R+2iθ2I

+ ρ13e2θ1R+2iθ1I−2θ2R−2iθ2I + ρ14e−4θ1R+4θ2R + ρ15e−2θ1R−2iθ1I+2θ2R+2iθ2I + ρ16e−2θ1R+2iθ1I+2θ2R−2iθ2I + ρ17e−4iθ1I+4iθ2I

+ ρ18e4iθ1I−4iθ2I .

The coefficients of these exponential terms constituted of a1, a∗1 , a2, a∗2 , b1, b∗1 , b2, b∗2 and ζ1, ζ∗1 , ζ2, ζ∗2 . However, it is tedious to write them
all out, and they can be calculated directly via the computer. Instead of presenting the complex expression, we show the typical solution
behavior in Fig. 2(b). It can be seen from Fig. 2(b) that when t → −∞, the solution consists of two single solitons that are far apart and travel
opposite each other. When they collide together, the interaction weakens. When t → +∞, these are separated into two single solitons, and
there is no change in shape and velocity and no energy radiating to the far field. Therefore, the interaction of these solitons is elastic. However,
it can be observed from the graph that after the interaction, each soliton has a phase shift and a position shift.

Next, we verify the rationality of the above analysis through the expression of the soliton solution. In general, we make the assumption
ξiηi > 0 and v1 < v2. This means that at t → −∞, soliton-2 is on the left side of soliton-1 and moves faster, and the two solitons are in the
moving frame with velocity vi = 8ζ2

iRζ2
iI − 6(ζ2

iR − ζ2
iI)2; noting that θ1R = 2m1(x − v1t), θ2R = 2m2(x − v2t), it yields

m2θ1R −m1θ2R = 2m1m2(v2 − v1)t.

Next, we study the collision dynamics of the two soliton solutions by using the asymptotic analysis technique of Ref. 31. Under different
asymptotic states of θ1R and θ2R, the asymptotic expression of q(x, t) is obtained.

(i) Before collision (as t → −∞).
(a) If ∣θ1R∣ < ∞, then θ2R →∞:

q(x, t) ∼ 8ãM
1 b̃∗M

1 ζ1Rζ1I
ζ1∣b̃M

1 ∣2e−2θ1R + ζ∗1 ∣ãM
1 ∣2e2θ1R

(ζ∗1 ∣b̃M
1 ∣2e−2θ1R + ζ1∣ãM

1 ∣2e2θ1R)2
e2iθ1I , (68)

where ãM
1 = a1(ζ2

2 − ζ2
1), b̃M

1 = b1(ζ∗2
2 − ζ2

1).
(b) If ∣θ2R∣ < ∞, then θ1R → −∞:

q(x, t) ∼ 8ãM
2 b̃∗M

2 ζ2Rζ2I
ζ2∣b̃M

2 ∣2e−2θ2R + ζ∗2 ∣ãM
2 ∣2e2θ2R

(ζ∗2 ∣b̃M
2 ∣2e−2θ2R + ζ2∣ãM

2 ∣2e2θ2R)2
e2iθ2I , (69)

where ãM
2 = a2(ζ2

2 − ζ∗2
1 ), b̃M

2 = b2(ζ2
2 − ζ2

1).
(ii) After collision (as t →∞).

(a) If ∣θ1R∣ < ∞, then θ2R → −∞:

q(x, t) ∼ 8ãP
1 b̃∗P

1 ζ1Rζ1I
ζ1∣b̃P

1 ∣2e−2θ1R + ζ∗1 ∣ãP
1 ∣2e2θ1R

(ζ∗1 ∣b̃P
1 ∣2e−2θ1R + ζ1∣ãP

1 ∣2e2θ1R)2
e2iθ1I , (70)

where ãP
1 = a1(ζ∗2

2 − ζ2
1), b̃P

1 = b1(ζ2
2 − ζ2

1).
(b) If ∣θ2R∣ < ∞, then θ1R →∞:

q(x, t) ∼ 8ãP
2 b̃∗P

2 ζ2Rζ2I
ζ2∣b̃P

2 ∣2e−2θ2R + ζ∗2 ∣ãP
2 ∣2e2θ2R

(ζ∗2 ∣b̃P
2 ∣2e−2θ2R + ζ1∣ãP

2 ∣2e2θ2R)2
e2iθ2I , (71)

where ãP
2 = a2(ζ2

2 − ζ2
1), b̃P

2 = b2(ζ2
2 − ζ∗2

1 ).

It is pointed out that the asymptotic solutions can also be written as the function of solitary waves, and the respective velocities
are v1 and v2, which remain unchanged before and after the collision. This elastic interaction is a remarkable property, which shows
that the higher-order KN equation (6) is integrable. From the above asymptotic solutions, we can get the phase difference of soliton-1
solution,
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Δθ01 =
1
2
(ln
∣b̃P

1 ∣
∣ãP

1 ∣
− ln
∣b̃M

1 ∣
∣ãM

1 ∣
) = ln∣ ζ

2
2 − ζ2

1

ζ∗2
2 − ζ2

1
∣.

Following similar calculations, we can get the phase difference of soliton-2 solution,

Δθ02 =
1
2
(ln
∣b̃P

2 ∣
∣ãP

2 ∣
− ln
∣b̃M

2 ∣
∣ãM

2 ∣
) = ln∣ ζ

2
2 − ζ∗2

1

ζ2
2 − ζ2

1
∣ = −Δθ01.

IV. SOLITON MATRIX FOR MULTIPLE ZEROS
In this section, we will further consider the case of multiple zeros, where the multiplicity of {±ζi,±ζ∗i } is greater than 1, and then the

determinant of P can be written in the following form:

det P(ζ) = (ζ2 − ζ2
1)

n1(ζ2 − ζ2
2)

n2
. . . (ζ2 − ζ2

r )
nrρ(ζ), ζi ∈ C13,

det P(ζ) = (ζ2 − ζ∗2
1 )

n1(ζ2 − ζ∗2
2 )

n2
. . . (ζ2 − ζ∗2

r )
nr ρ̂(ζ), ζ∗i ∈ C24,

where ρ(ζ i) ≠ 0(i = 1, . . ., r) for all ζ ∈ C13 and ρ̂(ζi) ≠ 0 (i = 1, . . . , r) for all ζ ∈ C24.
Compared with the case of simple zeros, the number of kernel functions with multiple zeros is related to the multiplicity of zeros. For

example, for the discrete spectral point {ζ1, ζ∗1 }, its kernel function is

P(ζ1)∣vj⟩ = 0, ⟨vj∣P(ζ∗1 ) = 0, ζ1 ∈ C13, 1 ≤ j ≤ n1, (72)

∣vj⟩ is linearly independent. For the case of multiple zeros, the corresponding Γ and Γ−1 can be given by using the following theorem:

Theorem IV.1 (Ref. 32, Lemma 3). Consider a pair of higher order zeros of order nj( j = 1, . . ., r): {ζ j,−ζ j} in C13 and {ζ∗j ,−ζ∗j } in C24.
Then, the corresponding soliton matrix Γj(ζ) and its inverse can be cast in the following form:

Γ−1
j (ζ) = I + (∣ϕj,1⟩, . . . , ∣ϕ̃j,nj⟩)Ξj(ζ)

⎛
⎜⎜⎜⎜
⎝

⟨φ̃j,nj ∣
⋮
⟨φj,1∣

⎞
⎟⎟⎟⎟
⎠

,

Γj(ζ) = I + (∣φ̄j,nj⟩, . . . , ∣ ¯̃φj,1⟩)Ξj(ζ)
⎛
⎜⎜⎜⎜
⎝

⟨ϕ̄j,1∣
⋮
⟨ ¯̃ϕj,nj ∣

⎞
⎟⎟⎟⎟
⎠

,

(73)

where the matrices Ξj(ζ) and Ξj(ζ) are defined as

Ξj(ζ) =
⎛
⎜
⎝
D+(ζ − ζj) 0n×n

0n×n D+(ζ + ζj)

⎞
⎟
⎠

, Ξj(ζ) =
⎛
⎜
⎝
D−(ζ − ζ∗j ) 0n×n

0n×n D−(ζ + ζ∗j )

⎞
⎟
⎠

,

D+(γ),D−(γ) are upper-triangular and lower-triangular Toeplitz matrices defined as

D+(γ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

γ−1 γ−2 ⋅ ⋅ ⋅ γ−n

0
. . .

. . . ⋮

⋮
. . . γ−1 γ−2

0 ⋅ ⋅ ⋅ 0 γ−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, D−(γ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

γ−1 0 ⋅ ⋅ ⋅ 0

γ−2 γ−1 . . . ⋮

⋮
. . .

. . . 0

γ−n ⋅ ⋅ ⋅ γ−2 γ−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and vectors ∣ϕj,i⟩, ∣ϕ̃j,i⟩, ⟨ ¯̃ϕj,i∣, ⟨φj,i∣, ⟨φ̃j,i∣, ∣ ¯̃φj,i⟩(i = 1, . . . , nr) are independent of ζ.
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Hence,

Γ(ζ) = Γr(ζ)Γr−1(ζ) . . . Γ1(ζ), (74)

Γ−1(ζ) = Γ−1
1 (ζ)Γ−1

2 (ζ) . . . Γ−1
r (ζ). (75)

The rest of the vector parameters in (73) can be derived by calculating the residue of each order in the identity Γ̃(ζ)Γ̃−1(ζ) = I at ζ = ζ j
and ζ = −ζ j,

Γ̃(ζj)
⎛
⎜⎜⎜⎜
⎝

∣ϕj,1⟩
⋮
∣ϕj,nr ⟩

⎞
⎟⎟⎟⎟
⎠
= 0, Γ̃(−ζj)

⎛
⎜⎜⎜⎜
⎝

∣ϕ̃j,1⟩
⋮

∣ϕ̃j,nr⟩

⎞
⎟⎟⎟⎟
⎠
= 0, (76)

where

Γ̃(ζ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Γ(ζ) 0 ⋅ ⋅ ⋅ 0
d
dζ
Γ(ζ) Γ(ζ)

. . . ⋮

⋮
. . .

. . . 0
1

(nr − 1)!
dnr−1

dζnr−1 Γ(ζ) ⋅ ⋅ ⋅ d
dζ
Γ(ζ) Γ(ζ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (77)

Using this method, the process of solving the soliton solution is very complex. Next, the corresponding Γ can be constructed by using the
method of Ref. 33, and the dressing matrix of multiple zeros is derived by the unipolar limit method. The results are given by the following
theorem:

Theorem IV.2. Suppose ζ = ζ i is the zero of geometric multiplicity nj( j = 1, . . ., r) and ∑r
j=1 nj = N; then, the modified matrix can be

expressed as

Γ(ζ) = Γ[nr−1]
r . . . Γ[0]r . . . Γ[n1−1]

1 . . . Γ[0]1 , Γ−1(ζ) = (Γ[0]1 )
−1 . . . (Γ[n1−1]

1 )−1 . . . (Γ[0]r )−1 . . . (Γ[nr−1]
r )−1,

where

Γ[j]i (ζ) = I + A[ j]
i

ζ − ζ∗i
− σ3A[ j]

i σ3

ζ + ζ∗i
, (Γ[ j]

i )
−1(ζ) = I + A†[ j]

i
ζ − ζi

− σ3A†[ j]
i σ3

ζ + ζi
,

A[ j]
i =

ζ∗2
i − ζ2

i

2

⎛
⎜
⎝
α∗[ j]

i 0

0 α[ j]
i

⎞
⎟
⎠
∣v[ j]

i ⟩⟨v
[ j]
i ∣, (α[ j]

i )
−1 = ⟨v[ j]

i ∣
⎛
⎜
⎝
ζi 0

0 ζ∗i

⎞
⎟
⎠
∣v[ j]

i ⟩,

∣v[ j]
i ⟩ = lim

δ→0

(Γ[nj−1]
i . . . Γ[0]i . . . Γ[n1−1]

1 . . . Γ[0]1 )∣ζ=ζi+δ

δ j ∣vi⟩(ζi + δ),

⟨v[j]i ∣ = lim
δ→0
⟨v1∣(ζ∗i + δ)

(Γ[0]−1
1 . . . Γ[n1−1]−1

1 . . . Γ[0]−1
i . . . Γ[nj−1]−1

i )∣ζ=ζ∗i +δ
δ j .

Then, we can get

P(1) =
⎛
⎝

I −
r

∑
i=1

ni−1

∑
j=0

⎡⎢⎢⎢⎢⎣

B[j]i − σ3B[j]i σ3

ζ∗i

⎤⎥⎥⎥⎥⎦

⎞
⎠

−1
r

∑
i=1

ni−1

∑
j=0

σ3B[j]i σ3 − B[j]i
ζ∗2

i
,

which leads to
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q(x, t) =
⎛
⎝

2 det F̃
det M̃

1 + 2 det G̃
det M̃

⎞
⎠

x

= ( 2det F̃
det M̃ + 2det G̃

)
x
, (78)

where

F̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

M̃[11] M̃[12] ⋅ ⋅ ⋅ M̃[1r] χ̃1

M̃[21] M̃[22] ⋅ ⋅ ⋅ M̃[2r] χ̃2

⋮ ⋮
. . . ⋮ ⋮

M̃[r1] M̃[r2] ⋅ ⋅ ⋅ M̃[rr] χ̃r

ψ̃1 ψ̃2 ⋅ ⋅ ⋅ ψ̃r 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, M̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

M̃[11] M̃[12] ⋅ ⋅ ⋅ M̃[1r]

M̃[21] M̃[22] ⋅ ⋅ ⋅ M̃[2r]

⋮ ⋮
. . . ⋮

M̃[r1] M̃[r2] ⋅ ⋅ ⋅ M̃[rr]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

G̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

M̃[11] M̃[12] ⋅ ⋅ ⋅ M̃[1r] χ̃1

M̃[21] M̃[22] ⋅ ⋅ ⋅ M̃[2r] χ̃2

⋮ ⋮
. . . ⋮ ⋮

M̃[r1] M̃[r2] ⋅ ⋅ ⋅ M̃[rr] χ̃r

τ̃1 τ̃2 ⋅ ⋅ ⋅ τ̃r 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

with

M̃[ij]kl =
1

(k − 1)!(l − 1)!
∂k+l−2

∂ζ∗k−1∂ζ l−1
⟨vj∣σ3∣vi⟩
ζ + ζ∗ −

⟨vj∣vi⟩
ζ − ζ∗ ∣ζ=ζi ,ζ∗=ζ∗j ,

χ̃i = (∣vi⟩[0]1 , ∣vi⟩[1]1 , . . . , ∣vi⟩[ni−1]
1 )

T
, ∣vi⟩[j] =

1
( j)!

∂ j

∂(ζ)j ∣vi⟩∣ζ=ζi ,

ψ̃i =
⎛
⎝
(⟨vi∣2
ζi
∗2 )

[0]

,(⟨vi∣2
ζi
∗2 )

[1]

, . . . , (⟨vi∣2
ζ1
∗2 )

[ni−1]⎞
⎠

, ( ⟨vi∣
ζi
∗2 )

[j]

= ( 1
( j)!

∂ j

∂(ζ)j (
⟨vi∣
ζ∗2 )∣ζ=ζ∗i ),

τ̃i = ((
⟨vi∣1
ζi
∗
)
[0]

,(⟨vi∣1
ζi
∗
)
[1]

, . . . , (⟨vi∣1
ζi
∗
)
[ni−1]

), (⟨vi∣
ζi
∗
)
[j]

= ( 1
( j)!

∂ j

∂(ζ)j (
⟨vi∣
ζ∗
)∣ζ=ζ∗i ).

FIG. 3. (a) The double-zero soliton solution for ∣q∣ with n1 = 2, ζ = 1 + i, a1 = b1 = 1. (b) Density plot of double zeros. (c) The triple-zero soliton solution for ∣q∣ and n1 =
3, ζ = 1 + i, a1 = b1 = 1. (d) Density plot of triple zeros.
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FIG. 4. (a) Mixed solution of double zeros and single zero for ∣q∣ with n1 = 2, n2 = 1, ζ1 = 1 + i, a1 = b1 = 1, ζ2 = 1
2
+ i, a2 = b2 = 1. (b) Density plot of single–double

zeros. (c) Mixed solution of double zeros and double zeros for ∣q∣ with n1 = 2, n2 = 2, ζ1 = 1 + i, a1 = b1 = 1, ζ2 = 1 + 1
2

i, a2 = b2 = 1. (d) Density plot of double–double
zeros.

Hence, formula (78) gives the general expression of high-order solitons with multiple zeros. Because the spectral parameters here cannot be
pure real or pure virtual, the expression of the high-order soliton is relatively complex, but different nj and appropriate parameters can be
selected, and the graphics of mixed high-order solitons solution can be given by using mathematical software such as Maple and Mathematica.
Here, we give several representative mixed solutions. In Fig. 3, let n1 = 2, nj = 0 ( j = 2, . . ., r), in Eq. (78), which represents the double
zeros case, and n1 = 3, nj = 0( j = 2, . . ., r), in Eq. (78) is the triple zeros case. In Fig. 4, take n1 = 2, n2 = 1, nj = 0( j = 3, . . ., r), that is, a
mixed solution of a double zeros and a single zero, and take n1 = 2, n2 = 2, nj = 0( j = 3, . . ., r), which means a mixed solution of two double
zeros.

V. CONCLUSION AND DISCUSSION
In a word, the inverse scattering method is applied to the higher-order KN equation with vanishing boundary at infinity, and the soliton

matrix is constructed by studying the corresponding RHP. Using RHP regularization of finite simple zeros, the determinant form of general
N-solitons of the higher-order KN equation without reflection is obtained, which is different from the soliton solution form of the previous
KN system. In the process of inverse scattering, the potential function is recovered when the spectral parameter tends to zero, which effectively
avoids the appearance of the implicit function.28 At the same time, the properties of the single-soliton solution and the collision dynamics and
asymptotic behavior of the two-soliton solution are investigated.

In addition, the multiple zeros of RHP are considered, and the higher-order soliton matrix of the higher-order KN equation is obtained
by the limit technique. Several typical graphs are given, including the graphs of the double zero soliton solution, triple zero soliton solution,
single–double zero soliton solution, and double–double zero soliton solution. It provides a good basis for future experimental observation.

In this context, we merely consider the solutions of the zero boundary condition at infinity. For solutions with non-zero boundary
conditions at infinity, the long-term behavior and asymptotic stability need to be further studied.
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11A. Biswas, Y. Yıldırım, E. Yaşar, Q. Zhou, S. P. Moshokoa, and M. Belic, “Sub pico-second pulses in mono-mode optical fibers with Kaup–Newell equation by a couple
of integration schemes,” Optik 167, 121–128 (2018).
12H. H. Chen, Y. C. Lee, and C. S. Liu, “Integrability of nonlinear Hamiltonian systems by inverse scattering method,” Phys. Scr. 20, 490–492 (1979).
13V. S. Gerdjikov and M. I. Ivanov, “A quadratic pencil of general type and nonlinear evolution equations. II. Hierarchies of Hamiltonian structures,” Bulg. J. Phys. 10,
130–143 (1983).
14E. Fan, “Integrable systems of derivative nonlinear Schrödinger type and their multi-Hamiltonian structure,” J. Phys. A: Math. Gen. 34, 513–519 (2001).
15G. S. França, J. F. Gomes, and A. H. Zimerman, “The algebraic structure behind the derivative nonlinear Schrödinger equation,” J. Phys. A: Math. Theor. 46(30), 305201
(2013).
16J. Hu, J. Xu, and G. F. Yu, “Riemann-Hilbert approach and N-soliton formula for a higher-order Chen-Lee-Liu equation,” J. Nonlinear Math. Phys. 25(4), 633–649
(2018).
17J. Y. Zhu and Y. Chen, “High-order soliton matrix for the third-order flow equation of the Gerdjikov-Ivanov hierarchy through the Riemann-Hilbert method,”
arXiv:2105.08412.
18A. Kundu, “Exact solutions to higher-order nonlinear equations through gauge transformation,” Physica D 25, 399–406 (1987).
19X. J. Chen and W. K. Lam, “Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions,” Phys. Rev. E 69,
066604 (2004).
20K. Imai, “Generalization of the Kaup-Newell inverse scattering formulation and Darboux transformation,” J. Phys. Soc. Jpn. 68, 355–359 (1999).
21B. Guo and L. Ling, “Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation,” J. Math. Phys. 53, 073506 (2012).
22L. Ling and Q. P. Liu, “Darboux transformation for a two-component derivative nonlinear Schrödinger equation,” J. Phys. A: Math. Theor. 43, 434023 (2010).
23M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems,” Stud. Appl. Math. 53, 249–315
(1974).
24D. Bilman, R. Buckingham, and D.-S. Wang, “Far-field asymptotics for multiple-pole solitons in the large-order limit,” J. Differ. Equations 297, 320–369 (2021).
25L. Gagnon and N. Stiévenart, “N-soliton interaction in optical fibers: The multiple-pole case,” Opt. Lett. 19, 619–621 (1994).
26A. B. Shabat, “One dimensional perturbations of a differential operator and the inverse scattering problem,” in Problems in Mechanics and Mathematical Physics (Nauka,
Moscow,, 1976), pp. 279–296.
27W. Q. Peng and Y. Chen, “Double and triple poles solutions for the Gerdjikov-Ivanov type of derivative nonlinear Schrödinger equation with zero/nonzero boundary
conditions,” arXiv:2104.12073.
28J. C. Pu and Y. Chen, “Riemann-Hilbert approach and double-pole solutions for the third-order flow equation of the Kaup-Newell system with zero/nonzero boundary
conditions,” arXiv:2105.06098.
29J. K. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2010).
30V. E. Zakharov and A. B. Shabat, “Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II,” Funct. Anal. Appl. 13, 166–174
(1979).
31T. Xu and B. Tian, “Bright N-soliton solutions in terms of the triple Wronskia for the coupled nonlinear Schrödinger equations in optical fibers,” J. Phys. A: Math. Gen.
43, 245205 (2010).
32V. S. Shchesnovich and J. Yang, “Higher-order solitons in the N-wave system,” Stud. Appl. Math. 110, 297–332 (2003).
33B. Guo, L. Ling, and Q. P. Liu, “High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations,” Stud. Appl. Math. 130,
317–344 (2012).

J. Math. Phys. 62, 123501 (2021); doi: 10.1063/5.0064411 62, 123501-17

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp
https://doi.org/10.1007/s13324-020-00464-2
https://doi.org/10.1007/s13324-020-00464-2
https://doi.org/10.1016/0167-2789(94)90155-4
https://doi.org/10.1016/j.physd.2010.11.004
https://doi.org/10.1088/0305-4470/36/7/309
https://doi.org/10.1143/jpsj.41.265
https://doi.org/10.1143/jpsj.41.265
https://doi.org/10.1088/0031-8949/40/2/013
https://doi.org/10.1016/j.ijleo.2018.04.063
https://doi.org/10.1088/0031-8949/20/3-4/026
https://doi.org/10.1088/0305-4470/34/3/313
https://doi.org/10.1088/1751-8113/46/30/305201
https://doi.org/10.1080/14029251.2018.1503443
http://arxiv.org/abs/2105.08412
https://doi.org/10.1016/0167-2789(87)90113-8
https://doi.org/10.1103/PhysRevE.69.066604
https://doi.org/10.1143/jpsj.68.355
https://doi.org/10.1063/1.4732464
https://doi.org/10.1088/1751-8113/43/43/434023
https://doi.org/10.1002/sapm1974534249
https://doi.org/10.1016/j.jde.2021.06.016
https://doi.org/10.1364/ol.19.000619
http://arxiv.org/abs/2104.12073
http://arxiv.org/abs/2105.06098
https://doi.org/10.1007/bf01077483
https://doi.org/10.1088/1751-8113/43/24/245205
https://doi.org/10.1111/1467-9590.00240
https://doi.org/10.1111/j.1467-9590.2012.00568.x

