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Some exact solutions to the inhomogeneous higher-order
nonlinear Schrödinger equation by a direct method∗
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By symbolic computation and a direct method, this paper presents some exact analytical solutions of the one-

dimensional generalized inhomogeneous higher-order nonlinear Schrödinger equation with variable coefficients, which

include bright solitons, dark solitons, combined solitary wave solutions, dromions, dispersion-managed solitons, etc. The

abundant structure of these solutions are shown by some interesting figures with computer simulation.
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1. Introduction

Optical solitons have become one of the most ex-

citing and extremely active areas of research because

of their potential applications in long distance commu-

nication. The optical soliton in a dielectric fibre was

first proposed by Hasegawa and Tappert,[1] and ver-

ified experimentally by Mollenauer et al.[2] The well-

known nonlinear Schrödinger equation (NLSE) can

govern the propagation of picosecond optical solitons

in monomode fibres. However, for subpicosecond or

femtosecond optical soliton control, the higher order

effects influenced by the spatial variations of fibre pa-

rameters should be considered. So the problem can be

described by the generalized inhomogeneous higher-

order NLSE (IHNLSE) with variable coefficients in the

form:

ψz = i(α1(z)ψtt + α2(z)|ψ|2ψ) + α3(z)ψttt

+ α4(z)(|ψ|2ψ)t + α5(z)ψ(|ψ|2)t + Γ (z)ψ, (1)

where ψ(z, t) represents the complex envelope of the

electrical field, z is the normalized propagation dis-

tance, t is the normalized retarded time, and α1(z),

α2(z), α3(z), α4(z), and α5(z) are the distributed

parameters, which are functions of the propagation

distance z, related to the group velocity dispersion,

self-phase-modulation, third-order dispersion, self-

steepening, and the delayed nonlinear response effect,

respectively. Γ (z) denotes the amplification or ab-

sorption coefficient. Equation (1) has been researched

by many authors. Li et al. obtained some exact an-

alytical solutions by the generalized sub-equation ex-

pansion method.[3] Yang et al. gave an exact dark

soliton solution in explicit form for specified soliton

management conditions.[4] Yang et al. explicitly pre-

sented and analysed exact combined solitary wave

solutions that can describe the simultaneous propa-

gation of bright and dark solitary waves in a com-

bined form in inhomogeneous fibre media or in optical

communication links with distributed parameters.[5]

Equation (1) can include some Schrödinger-type equa-

tions, when the distributed parameters are defined.

If a3(z) = a4(z) = a5(z) = Γ (z) = 0, equation (1)

becomes the perturbed nonlinear Schrödinger model;

Tian et al. extended this model by a direct method,

performed symbolic computation and obtained two

families of exact, analytic bright-solitonic solutions,

with and without chirp respectively.[6] If Γ (z) = 0, Li

et al. constructed the darkN -soliton solution by using

the inverse scattering transform under Hirota param-

eter conditions.[7] If a3(z) = a4(z) = a5(z) = 0, equa-

tion (1) becomes an NLS equation with distributed

dispersion; Kruglov et al. obtained a broad class of ex-
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act self-similar solutions.[8] In recent years, the nonlin-

ear Schrödinger-type equation has been analysed from

different points of view and some interesting results

have been obtained by many authors.[9−25]

The motivation of this paper lies in the optical

and physical importance of Eq. (1) and the need to

have some exact analytical solutions. Having some

explicit analytical solutions of Eq. (1) may enable one

to better understand the optical and physical phenom-

ena which it describes. The exact solutions, which are

accurate and explicit, may help physicists and engi-

neers to discuss and examine the sensitivity of the

model to several physical parameters. In Ref. [26], Li

et al. presented an effective direct method, which in-

cludes many sub-equation expansion methods,[27−38]

such as the tanh function method, the project Riccati

equation method,[39] the method proposed in Ref. [5].

By this method, one can obtain abundant exact so-

lutions for Schrödinger-type equations. In this paper,

we extend this direct method to construct some exact

solutions for Eq. (1) by symbolic computation. As a

result, three families of exact solutions for Eq. (1) are

derived. Then, based on these exact solutions, soliton

propagation and soliton interaction are discussed and

simulated by computer.

The paper is organized as follows. In Section 2,

we give abundant exact solutions of Eq. (1), which in-

clude bright solitons, dark solitons, combined solitary

wave solutions, dromions, etc. Then some interesting

solutions are obtained and shown by some figures un-

der some special distributed parameters. In Section 3,

we give the conclusion of the paper.

2. Exact solutions of the IHNLSE

According to the method of Ref. [23], we can as-

sume the solutions of Eq. (1) as follows:

ψ =

[
A0(z) +A1(z)

(δ cosh(ξ) + cos(η))

(cosh(ξ) + δ cos(η))

+ iB1(z)
(α sinh(ξ) + β sin(η))

(cosh(ξ) + δ cos(η))

]
exp(∆i),

ξ = p1(z)t+ q1(z),

η = p2(z)t+ q2(z),

∆ = k2(z)t
2 + k1(z)t+ k0(z), (2)

where A0(z), A1(z), B1(z), p1(z), p2(z), q1(z), q2(z),

k0(z), k1(z), and k2(z) are real functions of z to be

determined, and α, β, δ are real constants. If we set

η = δ = k2(z) = 0, then the method in Ref. [5] can

be recovered. If η = 0, the project Riccati equation

method[35] can be reproduced.

Substituting Eq. (2) into Eq. (1), at first we

remove the exponential terms, and collect coeffi-

cients of (sinhi(ξ) coshj(ξ) sinm(η) cosn(η))tk (i =

0, 1, 2, . . . ; j = 0, 1;m = 0, 1, 2, . . . ;n = 0, 1; k =

0, 1, . . .) and separate the real part and the imagi-

nary part for each coefficient, thus we can obtain a

set of over-determined ordinary differential equations

(ODEs). Solving these ODEs, we find three families

of solution. Then from Eq. (2) and the solutions of the

ODEs, we obtain three families of analytical solutions

of Eq. (1) as follows:

Family 1

ψ = B1(z)β

[
−δ

2M(1− δ2)1/2
+

M

(1− δ2)1/2
(δ cosh(ξ) + cos(η))

(cosh(ξ) + δ cos(η))
+

i sin(η)

cosh(ξ) + δ cos(η)

]
exp(∆i), (3)

a2 =
2C2

5a1
B1(z)2β2

, a4 =
6C2

5a3
B1(z)2β2

, a5 = − 6C2
5a3

B1(z)2β2
, Γ (z) = (ln(B1(z))z,

where

ξ = C5t+
C5

2(1− δ2)

∫
[4C4(δ

2 − 1)a1 + a3(δ
2(C2

5 + 6C2
4 )− 6C2

4 + 2C2
5 )]dz + C3,

η =
MC2

5

(1− δ2)1/2

∫
(a1 + 3a3C4)dz + C1,

∆ = C4t+
1

2(1− δ2)

∫
[a3(2δ

2C3
4 + 3δ2C2

5C4 − 2C3
4 ) + a1(2δ

2C2
4 + δ2C2

5 − 2C2
4 )]dz + C2,

where M = ±1, δ ∈ (−1, 1), β ̸= 0, Ci, i = 1, . . . , 5 are arbitrary constants, a1, a3 and Γ (z) are arbitrary

nonzero functions of the propagation distance z.

If δ = 0, the solution equation (3) reduces to the following bright soliton

ψ =MβB1(z)sech(ξ) exp(i(∆+Mη)), (4)
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where

ξ = C5t+ C5

∫
(C2

5 − 3C2
4 )a3 − 2C4a1dz + C3,

η =MC2
5

∫
(a1 + 3a3C4)dz + C1,

∆ = C4t− C2
4

∫
(a1 + a3C4)dz + C2,

In order to understand the significance of the solu-

tions expressed by this paper, we investigate the main

features of them by using direct computer simulations.

For simplicity, we only consider some examples for

each solution with some special parameters.

Figures 1(a) and 1(b) show the evolution of so-

lutions (3) with different parameters. As shown in

Fig. 1(a), the amplitude of bright solitons (3) in-

creases as the propagation distance increases due to

the amplification coefficient Γ (z) = 0.01, while the

time shift and the group velocity of the solitary wave

are changing. From Fig. 1(b), the density of the so-

lution changes periodically: firstly it increases, then

decreases. Figures 1(c) and 1(d) present the evolu-

tion of solutions (4) with different parameters. From

Fig. 1(c), the time shift and the group velocity of the

solitary wave are changing during the propagation of

solitary wave along the fibre. Due to the property of

B1(z) = 2sech(0.01z), the whole trend of the solitary

wave Eq. (4) is that the amplitude first increases then

decreases. Figure 1(d) is a dromion solution.

Fig. 1. Evolution of solutions (3) and (4) with the parameters: (a) C1 = C2 = C3 = 0, C4 = 2, C5 = 0.15,M =

1, δ = 0.3, β = 3, a1 = sin(z), a3 = cos(z), B1(z) = exp(0.01z); (b) C1 = C2 = 8, C3 = 0, C4 = 2, C5 = 1.5,M =

−1, δ = 0.83, β = 10, a1 = sin(z), a3 = cos(z), B1(z) = 0.1 sech(1.8z); (c) C1 = C2 = C3 = 0, C4 = C5 = 1,M =

1, β = 13, a1 = cos(z), a3 = sin(z), B1(z) = 2 sech(0.01z); (d) C1 = 0, C2 = C3 = 1, C4 = 0.1, C5 = 0.1,M = 1, β =

1, a1 = cos(z), a3 = 1, B1(z) = sech(0.05z).

Family 2 When a1 = a3 = 0, we obtain four cases of Eq. (1) below.

Case 1

ψ =

[
−A1(z)δ +

MβB1(z)

δ2 − 1

δ cosh(ξ) + cos(η)

cosh(ξ) + δ cos(η)
+

iB1(z)β sin(η)

cosh(ξ) + δ cos(η)

]
exp(i∆), (5)

a2 =
a4[A1(z)C5(δ

2 − 1)−B1(z)βC4]

A1(z)(1− δ2)
,

a5 = −3

2
a4, Γ (z) = [lnB1(z)]z,

where ξ = C6t+ C3, η = C4t+ C1, ∆ = C5t+ C2, Ci, i = 1, . . . , 6 are arbitrary constants, M = ±1, δ ̸= ±1,

a4, A1(z), B1(z) are arbitrary nonzero functions of z.
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From Fig. 2, we can see that when we set the parameters including in solution (5) as some special functions,

the solution can present a bright soliton, a dark soliton, a special dromion type of breather and a periodical

dispersion-managed soliton.

Fig. 2. Evolution of solutions ψ with the parameters: (a) C1 = C2 = C3 = 1, C4 = 3, C5 = 2, C6 = 5, δ =

2,M = 1, β = 1.5, A1(z) = 0.5 tanh(0.8z), B1(z) = 0.5 sech(9z); (b) C1 = C2 = C3 = 1, C4 = 3, C5 = 2, C6 =

4, δ = 2,M = 1, β = 0, A1(z) = 1.3 sech(1.2z), B1(z) = sech(2z); (c) C1 = 0, C2 = 1, C3 = 0.5, C4 = 0, C5 =

10, C6 = −0.1, δ = 0, A1(z) = 0, B1(z) = (2 sech(0.05z) + 0.05 sin(0.4z))/(1 − 0.2 sin(0.2z)2),M = 1, β = 3; (d)

C1 = 3π/2, C2 = C3 = 1, C4 = 0.1, C5 = 0, C6 = 2, δ = 4, B1(z) = −7 sin(2z)/(1− 0.07 sin(z)2),M = 1, β = 0.3.

Case 2

ψ = A1(z)

[
E7 +

δ cosh(ξ) + cos(η)

cosh(ξ) + δ cos(η)

]
exp(i∆), (6)

a2 = −E4a4, a5 = −3

2
a4, Γ (z) = [lnA1(z)]z,

where ξ = E6t+ E1, η = E5t+ E2, ∆ = E4t+ E3, Ei, i = 1, . . . , 7, δ are arbitrary constants, a4 and A1(z)

are arbitrary nonzero functions of the propagation distance z.

As shown in Fig. 3, when A1(z) is a trigonometric function, the solution equation (6) presents a periodic

dispersion-managed soliton. When A1(z) = −0.4 + sech(0.4z), we obtain a W-shaped soliton.

Fig. 3. Evolution of solutions ψ with the parameters: (a) E1 = 0.4, E2 = E3 = E6 = 0.1, E4 = 1, E5 = 0.2, E7 =

0.3, δ = 0.2, A1(z) = cos(0.2πz); (b) E1 = 0.004, E2 = 0.001, E3 = 0.003, E4 = 0.006, E5 = 0.003, E6 = 0.003, E7 =

8, δ = 2, A1(z) = −0.4 + sech(0.4z).
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Case 3

ψ =
iB1(z)(α sinh(ξ) + β sin(η))

cosh(ξ) + δ cos(η)
exp(i∆), (7)

a2 = −F4a4, a5 = −3

2
a4, Γ (z) = [lnB1(z)]z,

where ξ = (δαF5/β)t + F3, η = F5t + F2, ∆ =

F1t + F4, Fi, i = 1, . . . , 5, δ, α and β ̸= 0 are arbi-

trary constants, a4 and B1(z) are arbitrary nonzero

functions of the propagation distance z.

Case 4

ψ = r(z)G2
1

[
(G2

1 −G2
3)

1/2 cosh(ξ) +G1

G3(G1 cosh(ξ) + (G2
1 −G2

3)
1/2)

+
i sinh(ξ)

(G1 cosh(ξ) + (G2
1 −G2

3)
1/2)

]
exp(i∆), (8)

a2 = G4a4, a5 = −3

2
a4, r(z) = exp

(∫
Γ (z)dz

)
,

where

ξ = G5t+

∫ (
r2(z)a4G

4
1G5

G2
3

)
dz +G2,

∆ = G6t+G2 +

∫ (
a4r

2(z)G4
1(G4 +G6)

G2
3

)
dz,

Gi, i = 1, . . . , 6, are arbitrary constants, a4, Γ (z) and

B1(z) are arbitrary functions of the propagation dis-

tance z.

Family 3 When a3 = a4 = a5 = 0, we obtain

two sets of solutions for Eq. (1).

Case 1

ψ = B1(z)

[
(α2 + β2δ2)

2δM [(α2 + β2)(δ2 − 1)]1/2

+
M(α2 + β2)1/2

(δ2 − 1)1/2
δ cosh(ξ) + cos(η)

cosh(ξ) + δ cos(η)

+ i
(α sinh(ξ) + β sin(η))

cosh(ξ) + δ cos(η)

]
exp(i∆), (9)

a1 = − k2z(z)

4k2(z)2
, a2 = −k2z(z)δ

2C2
4

2α2B1(z)2
,

Γ (z) =
2B1z(z)k2(z)−B1(z)k2z(z)

2k2(z)B1(z)
,

where

ξ =
δβC4k2(z)

α
t+

δC4k2(z)[C4(β
2δ2 − 2β2 − α2) + 2MC5β(α

2 + β2)1/2(δ2 − 1)
1/2

)]

4αM(α2 + β2)1/2(δ2 − 1)1/2
,

η = k2(z)C4t+
C4k2(z)[C4(β

3δ2 + 2βδ2α2 − α2β) + 2MC5(α
2 + β2)1/2(δ2 − 1)

1/2
)]

4α2M(α2 + β2)1/2(δ2 − 1)1/2
,

∆ = k2(z)t
2 + C5k2(z)t+

k2(z)[C4(α
2 + β2δ2)2 + 2α2C2

5 (α
2 + β2)(δ2 − 1)]

8α2(α2 + β2)(δ2 − 1)
,

where α ̸= 0, δ > 1, β, Ci, i = 1, . . . , 5, are arbitrary constants, M = ±1, k2(z) and B1(z) are arbitrary

nonzero functions of the propagation distance z.

The evolutions of solution Eq. (9) with some special parameters are shown in Figs. 4(a) and 4(b).

Fig. 4. Evolution of solutions ψ with the parameters: (a) G1 = 2, G2 = G3 = 1, G4 = 3, G5 = 0.8, k2(z) =

7 sech(0.01z),M = 1, δ = 0.01, β = 3, B1(z) = −0.4 sin(2z)/(1 − 0.8 sin(z)2); (b) G1 = 0.6, G2 = 10, G3 = 1, G4 =

0.4, G5 = 24,M = 1, δ = 0.8, k2(z) = 1− 0.2 sin(0.15z), β = 3, B1(z) = 20 sech(0.02z)/(sech(0.1z) + tanh(0.7z)2).
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Case 2

ψ = B1(z)

[
− δβ

2M(1− δ2)1/2
+

Mβ(δ cosh(ξ) + cos(η))

(1− δ2)1/2(cosh(ξ) + δ cos(η))
+

iβ sin(η)

cosh(ξ) + δ cos(η)

]
exp(i∆), (10)

a1 = − k2z(z)

4k2(z)2
, a2 = − G2

5k2z(z)

2B1(z)2β2
, Γ (z) =

2B1z(z)k2(z)−B1(z)k2z(z)

2k2(z)B1(z)
,

where

ξ = G5t+
1

2
G5G4 ln(k2(z)) +G3, η =

G2
5

4(1− δ2)1/2Mk2(z)
+G1,

∆ = k2(z)t
2 +G4k2(z)t+

2G2
4k2(z)

2(δ2 − 1)− δ2G2
5 + 8G2k2(z)(δ

2 − 1)

8k2(z)(δ2 − 1)
,

δ ∈ (−1, 1), β ̸= 0, Gi, i = 1, . . . , 5, are arbitrary constants, M = ±1, k2(z) and B1(z) are arbitrary nonzero

functions of the propagation distance z.

The evolutions of solution (10) with some different parameters are shown in Figs. 5(a) and 5(b).

Fig. 5. Evolution of solutions ψ with the parameters: (a) G1 = G4 = 2, G2 = G3 = 1, G5 = 0.4, δ = 0.1, β =

1.3,M = 1, k2(z) = 1.5 sin(z), B1(z) = −0.4 sin(2z)/(1 − 0.8 sin(z)2); (b) G1 = 2, G2 = 1, G3 = 10, G4 = 6, G5 =

14, δ = 0.9,M = −1, β = 0.3, k2(z) = 1− 0.2 sin(0.1z), B1(z) = 2 sech(0.002z)/(sech(0.1z) + tanh(0.7z)2).

3. Summary and discussion

In this paper, we have obtained some interesting soliton solutions of the one-dimensional generalized

IHNLSE with variable coefficients by a direct method. As shown in the figures produced by computer simula-

tion, these solutions possess abundant structures when arbitrary parameters are selected as some special forms,

which present bright solitons, dark solitons, combined solitary wave solutions, dromions, dispersion-managed

solitons, etc. These results may be useful in ultra-high-speed optical telecommunication.
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