
Chin. Phys. B Vol. 25, No. 9 (2016) 090201
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We study the generalized Darboux transformation to the three-component coupled nonlinear Schrödinger equation.
First- and second-order localized waves are obtained by this technique. In first-order localized wave, we get the interactional
solutions between first-order rogue wave and one-dark, one-bright soliton respectively. Meanwhile, the interactional solu-
tions between one-breather and first-order rogue wave are also given. In second-order localized wave, one-dark-one-bright
soliton together with second-order rogue wave is presented in the first component, and two-bright soliton together with
second-order rogue wave are gained respectively in the other two components. Besides, we observe second-order rogue
wave together with one-breather in three components. Moreover, by increasing the absolute values of two free parameters,
the nonlinear waves merge with each other distinctly. These results further reveal the interesting dynamic structures of
localized waves in the three-component coupled system.

Keywords: localized waves, three-component coupled nonlinear Schrödinger equation, generalized Darboux
transformation

PACS: 02.30.IK, 03.75.Nt, 31.15.–p DOI: 10.1088/1674-1056/25/9/090201

1. Introduction

In the past several years, localized waves including dark
or bright soliton, breather and rogue wave have been of great
interests in nonlinear science. The dark and bright soliton are
special cases of soliton. The breather is localized in time or
space, such as Ma breather (time-periodic breather solution)[1]

and Akhmediev breather (space-periodic breather solution).[2]

While the rogue wave (also called freak wave, monster wave,
killer wave, rabid-dog wave, and other names) is localized
in both time and space, and seems to appear from nowhere
and disappear without a trace.[3–6] There have been many ar-
ticles on rogue waves of single-component systems, such as
the nonlinear Schrödinger (NLS) equation,[7–9] the derivative
NLS equation,[10,11] the Kundu–Eckhaus equation,[12–14] the
Sasa–Satsuma equqtion,[15] the higher-order dispersive NLS
equation,[16] and so on.

However, a variety of complex systems,[17–19] such as
Bose–Einstein condensates and nonlinear optical fibers, usu-
ally involve more than one component. So recent stud-
ies are extended to localized waves in multicomponent cou-
pled systems, and many interesting and appealing results
have been obtained. The bright–dark–rogue solution[20,21]

and other higher-order localized waves[22] are all found in
two-component coupled NLS equation. Some semi-rational,
multi-parametric localized wave solutions are obtained in cou-
pled Hirota equation.[23–25] A four-petaled flower structure

rogue wave is exhibited in three-component coupled NLS
equation.[26]

Motivated by the works of Baronio[27] and Guo,[9,28] we
study the localized wave solutions of the three-component
coupled NLS equation

iq1t +q1xx +2(|q1|2 + |q2|2 + |q3|2)q1 = 0,
iq2t +q2xx +2(|q1|2 + |q2|2 + |q3|2)q2 = 0,
iq3t +q3xx +2(|q1|2 + |q2|2 + |q3|2)q3 = 0,

(1)

where each non-numeric subscripted variable stands for partial
differentiation. Besides, qi (i= 1,2,3) is the complex function
of x and t.

Here we are interested in the interactional solutions be-
tween rogue waves and some nonlinear wave solutions in the
Eq. (1), for example, dark, bright soliton and breather. To the
best of our knowledge, this is not reported in other articles. By
using Darboux-dressing transformation, Baronio et al.[21] has
obtained some semi-rational solutions in two-component cou-
pled NLS equation, which include rogue wave, dark–bright–
rogue wave and breather–rogue wave. But, Baronio’s method
is very complicated and can not obtain higher-order localized
waves. In order to overcome this difficulty, we construct a
specifical vector solution of Lax pair for the vector NLS equa-
tion, which is firstly put forward.[22,24] Combining the gen-
eralized Darboux transformation (DT) with the special vec-
tor solution, we have conveniently obtained several interesting
higher-order localized waves.
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The localized waves, such as second-order dark–bright–
rogue wave and second-order breather–rogue wave, have been
discussed in detail.[22,24] N-component NLS equation has been
solved to get multi-dark soliton.[29] Meanwhile, performing
Hirota bilinear method to Eq. (1), one can obtain two-bright-
one-dark soliton and one-bright-two-dark soliton.[30] Four-
petaled flower structure rogue wave has also been found.[26]

However, three-component and two-component NLS equation
are not exactly the same. Using our method, some meaningful
results can be obtained. From the special seed solutions of Lax
pair, we can get the basic solutions of Eq. (1) with several free
parameters by generalized DT. Then, choosing the appropriate
values of these free parameters, some interesting interactional
solutions are exhibited.

2. Generalized Darboux transformation

In this section, we construct the generalized DT of
Eq. (1). The system (1) admits the following Lax pair

𝜑x =𝑈𝜑= (iλ𝛬+𝑄)𝜑, (2)

𝜑t = 𝑉 𝜑= [3iλ 2𝛬+3λ𝑄+ i𝜎3(𝑄x−𝑄2)]𝜑, (3)

where

𝛬= diag(−2,1,1,1), 𝜎3 = diag(1,−1,−1,−1),

𝑄=


0 q1 q2 q3
−q∗1 0 0 0
−q∗2 0 0 0
−q∗3 0 0 0

 .
Here 𝜑 = (φ ,ϕ,χ,ψ)T, qi (i = 1,2,3) is potential function,
λ is spectral parameter, and q∗i (i = 1,2,3) denotes the com-
plex conjugate of qi. In fact, a direct calculation shows that
the zero-curvature equation, 𝑈t −𝑉x +[𝑈 ,𝑉 ] = 0, is implied
in Eq. (1).

Based on the DT of the Ablowitz–Kaup–Newell–Segur
(AKNS) spectral problem,[28] the generalized DT of Eq. (1)
can be also constructed. In Eq. (2), 𝑈 and 𝑉 are 4× 4
matrixs, so it is more complicated than two-component NLS
equation for getting a special vector solution of Lax pair. Let
𝜑1 = (φ1,ϕ1,χ1,ψ1)

T = 𝜑1(λ1 + δ ) be a solution of Eqs. (2)
and (3) with q1 = q1[0], q2 = q2[0], q3 = q3[0] and λ = λ1+δ ,
then 𝜑1 can be expanded as the Taylor series at δ = 0,

𝜑1 = 𝜑
[0]
1 +𝜑

[1]
1 δ +𝜑

[2]
1 δ

2 + · · ·+𝜑
[N]
1 δ

N + · · · , (4)

where

𝜑
[l]
1 = (φ

[l]
1 ,ϕ

[l]
1 ,χ

[l]
1 ,ψ

[l]
1 )T,

𝜑
[l]
1 =

1
l!

∂ l𝜑1

∂δ l |δ=0 (l = 0,1,2,3 · · ·).

Thus the generalized DT of Eq. (1) can be defined as the fol-
lowing form:

𝜑1[N−1] = 𝜑
[0]
1 +

N−1

∑
l=1

𝑇1[l]𝜑
[l]
1 +

N−1

∑
l=1

l−1

∑
k=1

𝑇1[l]𝑇1[k]𝜑
[2]
1 + · · ·+𝑇1[N−1]𝑇1[N−2] · · ·𝑇1[1]𝜑

[N−1]
1 , (5)

𝜑[N] = 𝑇 [N]𝑇 [N−1] · · ·𝑇 [1]𝜑, 𝑇 [l] = λ𝐼−𝐻[l−1]𝛬l𝐻[l−1]−1, (6)

q1[N] = q1[N−1]+
3i(λ ∗1 −λ1)φ1[N−1]ϕ1[N−1]∗

|φ1[N−1]|2 + |ϕ1[N−1]|2 + |χ1[N−1]|2 + |ψ1[N−1]|2
, (7)

q2[N] = q2[N−1]+
3i(λ ∗1 −λ1)φ1[N−1]χ1[N−1]∗

|φ1[N−1]|2 + |ϕ1[N−1]|2 + |χ1[N−1]|2 + |ψ1[N−1]|2
, (8)

q3[N] = q3[N−1]+
3i(λ ∗1 −λ1)φ1[N−1]ψ1[N−1]∗

|φ1[N−1]|2 + |ϕ1[N−1]|2 + |χ1[N−1]|2 + |ψ1[N−1]|2
. (9)

Here

(φ1[N−1],ϕ1[N−1],χ1[N−1],ψ1[N−1])T = 𝜑1[N−1], 𝑇k[l] = λk𝐼−𝐻[l−1]𝛬l𝐻[l−1]−1,

𝐻[l−1] =


φ1[l−1] ϕ1[l−1]∗ ψ1[l−1]∗ 0
ϕ1[l−1] −φ1[l−1]∗ 0 0
χ1[l−1] 0 0 ψ1[l−1]∗

ψ1[l−1] 0 −φ1[l−1]∗ −χ1[l−1]∗

 , 𝛬l =


λ1 0 0 0
0 λ ∗1 0 0
0 0 λ ∗1 0
0 0 0 λ ∗1

 ,1 6 l 6 N.

Here, 𝐼 is the 4× 4 identity matrix. We can see that

Eqs. (7)–(9) give rise to the N-order localized waves solutions

of Eq. (1). If we iterative above procedures, some higher-order

localized waves solutions may be obtained. Certainly, the de-

terminant representation of the high-order localized wave so-

lutions can be derived by Crum theorem.[31] In order to avoid

cumbersome calculation of determinant of high order matrix,

we prefer to iterative the DT of degree one. Besides, it is

very convenient to figure out these expressions through some

computer softwares.[32] By choosing appropriate eigenfunc-
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tion φ1, we can get some interesting localized waves solutions
of Eq. (1) by the above formulas.

3. Localized waves solutions
We begin with the nontrivial seed solution of Eq. (1)

q1[0] = d1 e iθ , q2[0] = d2 e iθ , q3[0] = d3 e iθ . (10)

Here, θ = 2(d2
1 + d2

2 + d2
3)t, and d1,d2,d3 are three arbitrary

real constants, which denote the backgrounds where nonlinear
localized waves emerge. For convenience, we choose the seed
solutions as periodic plane waves without independent vari-
able x. Then the special vector solution of Lax pair of Eq. (1)
with λ at q1[0], q2[0], and q3[0] can be written as

𝜑1

=


(c1 eM1+M2 − c2 eM1−M2)e

iθ
2

ρ1(c1 eM1−M2 − c2 eM1+M2)e−
iθ
2 − (αd2 +βd3)eM3

ρ2(c1 eM1−M2 − c2 eM1+M2)e−
iθ
2 +αd1 eM3

ρ3(c1 eM1−M2 − c2 eM1+M2)e−
iθ
2 +βd1 eM3

 ,

(11)

where

c1 =

(
3λ −

√
9λ 2 +4(d2

1 +d2
2 +d2

3)
) 1

2√
9λ 2 +4(d2

1 +d2
2 +d2

3)
,

c2 =

(
3λ +

√
9λ 2 +4(d2

1 +d2
2 +d2

3)
) 1

2√
9λ 2 +4(d2

1 +d2
2 +d2

3)
,

ρ1 =
d1√

d2
1 +d2

2 +d2
3

, ρ2 =
d2√

d2
1 +d2

2 +d2
3

,

ρ3 =
d3√

d2
1 +d2

2 +d2
3

, M1 =−
i
2

λ (x+3tx),

M2 =
i
2

√
9λ 2 +4(d2

1 +d2
2 +d2

3)

(
x+3tx+

N

∑
k=1

sk f 2k

)
,

M3 = iλ (x+3λ t).

Here sk = mk + ink, and α,β ,mk,nk(1 6 k 6 N) are real free
parameters. Let τ = d2

1 + d2
2 + d2

3 and λ = 2
√

τ i(1+ f 2)/3
with a small parameter f . So we can expand the vector func-
tion 𝜑1( f ) at f = 0 as[8]

𝜑1( f ) = 𝜑
[0]
1 +𝜑

[1]
1 f 2 +𝜑

[2]
1 f 4 +𝜑

[3]
1 f 6 + · · · , (12)

where

φ
[0]
1 =

1
2
(−1+ i)(4iτt +2

√
τx+1)

τ
1
4

eξ1 , (13)

ϕ
[0]
1 = −(αd2 +βd3)eξ2

− 1
2
(1+ i)(2i

√
τx−4τt− i)d1

τ
3
4

eξ3 , (14)

χ
[0]
1 = −1

2
(1+ i)(2i

√
τx−4τt− i)d2

τ
3
4

eξ3 +αd1 eξ2 , (15)

ψ
[0]
1 = −1

2
(1+ i)(2i

√
τx−4τt− i)d3

τ
3
4

eξ3 +βd1 eξ2 , (16)

φ
[1]
1 = τ

− 1
4

[
1

24
(1− i)

(
96τ

5
2 t2x+64iτ3t3−96iτ

3
2 tx

− 8τ
3
2 x3−48iτ2tx2 +112τ

2t2−24i
√

τn1−76iτt

− 20τx2−10
√

τx−24
√

τm1 +3
)]

eξ1 , (17)

ϕ
[1]
1 =

1
3
(8iαtτd2 +8iβ tτd3 +2αx

√
τd2

+ 2βx
√

τd3)eξ2 +Ωd1 eξ3 , (18)

χ
[1]
1 = −2

3
αd1(4iτt +

√
τx)eξ2 +Ωd2 eξ3 , (19)

ψ
[1]
1 = −2

3
βd1(4iτt +

√
τx)eξ2 +Ωd3 eξ3 , (20)

· · · · · ·

with

ξ1 =
5
3

iτt +
1
3
√

τx,

ξ2 = −2
3
√

τ(2i
√

τt + x),

ξ3 = −1
3

iτt +
1
3
√

τx,

Ω =
1
24

1

τ
3
4

(1+ i)(96iτ
5
2 t2x−8iτ

3
2 x3−64τ

3t3 +16iτ2t2

+ 48τ
2tx2 +4iτx2−2i

√
τx−24i

√
τm1

+ 24
√

τn1 +44τt−3i).

Here 𝜑
[k]
1 = (φ

[k]
1 ,ϕ

[k]
1 ,χ

[k]
1 ,ψ

[k]
1 )T (1 6 k 6 N). It is

straightforward to calculate that the vector function 𝜑
[0]
1 is a

solution of the Lax pair Eq. (1) at q1 = q1[0],q2 = q2[0],q3 =

q3[0], and λ = λ1 = 2i
√

τ/3. Hence, by using Eqs. (7)–(9),
we can arrive at

q1[1] = d1 e iθ +
4τF1d1 e iθ +4τ

7
4 G1 e3iτt−

√
τx

D1 +2τ
3
2 D2 e−2

√
τx

, (21)

q2[1] = d2 e iθ +
4τd2F1 e iθ +4τ

7
4 αG2 e3iτt−

√
τx

D1 +2τ
3
2 D2 e−2

√
τx

, (22)

q3[1] = d3 e iθ +
4τd3F1 e iθ +4βτ

7
4 G2 e3iτt−

√
τx

D1 +2τ
3
2 D2 e−2

√
τx

, (23)

where

F1 = −16t2
τ

2 +8itτ−4τx2 +1,

G1 = (1− i)(4iτt +2
√

τx+1)(αd2 +βd3),

D1 = 16τ
3t2 +4(4t2d2

1 +4t2d2
2 +4t2d2

3 + x2)τ2

+ 4τ
3
2 x+(4x2d2

1 +4x2d2
2 +4x2d2

3 +1)τ
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− 4x(d2
1 +d2

2 +d2
3)
√

τ +d2
1 +d2

2 +d2
3 ,

D2 = α
2(d2

1 +d2
2)+β

2(d2
1 +d2

3)+2αβd2d3,

G2 = −4td1(1+ i)τ +2xd1(i−1)
√

τ +d1(i−1).

The validity of Eqs. (21)–(23) can be directly verified by
putting them back into Eq. (1). At this point, we get first-order
localized wave solutions of Eq. (1) with two free parameters α

and β , which play important role in controlling the dynamics
of these localized waves. Next, we discuss the dynamics of
these solutions through three different cases.

(i) When α = 0 and β = 0, q1, q2, and q3 are proportional
to each other, and they are first-order rogue waves. We can find
that these solutions shown in Fig. 1 are similar to the standard
NLS equation.

(ii) When α 6= 0, β 6= 0, d1 6= 0, and d2 = d3 = 0, the

first-order dark–bright–rogue wave solution can be gained. In
Fig. 2, we can see the interaction between first-order rogue
wave and one-dark, one-bright soliton respetively. Figure 2(a)
reveals that q1 component has the first-order one-dark-rogue
wave solution. Meanwhile, q2 and q3 both have similar struc-
ture, i.e., first-order one-bright-rogue wave solution, which
can be seen in Figs. 2(b) and 2(c). The maximum amplitude
of first-order rogue wave in Figs. 2(b) and 2(c) are very small,
because they appear at the zero-amplitude background crest
and are very difficult to observe.

(iii) When α 6= 0, β 6= 0, d1 6= 0, d2 6= 0, and d3 6= 0, the
first-order one-breather–rogue wave solution can be obtained.
In Fig. 3, we can observe that q1,q2, and q3 have the similar
solution structure.

0.8

1.2

1.0

0.6

0.4

-4

-4

-2

-2
2

2
4

4

0

0
q



t

x

1.6

1.4

1.2

1.0

-4

-4

-2

-2
2

24
4

0

0

q



t

x

1.6

2.4

2.0

1.2

0.8

-4

-4

-2

-2
2

2
4

4

0

0

q



t

x

(a) (b) (c)

Fig. 1. (color online) Evolution of the first-order rogue wave of the three-component coupled NLS equation by choosing d1 = 1, d2 =−1, and d3 =−0.5.
Three component q1 (a), q2 (b) and q3 (c) have the similar structure.
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Fig. 2. (color online) Evolution of the first-order dark–bright–rogue wave of the three-component NLS equation by choosing α = 1/10,β =−1/10, d1 = 1,
and d2 = d3 = 0.
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Here, we give a classification about values of parameters
α,β , and di (i = 1,2,3) corresponding to different types of
first-order local wave solutions.

Case 1: When α 6= 0 and β 6= 0, the solutions qi(i =

1,2,3) are all first-order rogue wave (RW).
Case 2: One of these two parameters α and β is 0, for

convenience, we consider the case of α = 0,β 6= 0. The clas-
sification is shown in Table 1.

Table 1. Classification of first-order local wave solutions generated by the first-step generalized DT.

di q1 q2 q3
d1 6= 0,d2 = d3 = 0 RW and one-dark soliton 0 RW and one-bright soliton

d1 = 0,d2 6= 0,d3 = 0 0 RW 0
d1 = 0,d2 = 0,d3 6= 0 RW and one-bright soliton 0 RW and one-dark soliton
d1 6= 0,d2 6= 0,d3 = 0 RW and one-dark soliton RW and one-dark soliton RW and one-bright soliton
d1 6= 0,d2 = 0,d3 6= 0 RW and one-breather 0 RW and one-breather
d1 = 0,d2 6= 0,d3 6= 0 RW and one-bright soliton RW and one-dark soliton RW and one-dark soliton
d1 6= 0,d2 6= 0,d3 6= 0 RW and one-dark soliton RW and one-breather RW and one-breather

Case 3: When α 6= 0 and β 6= 0, the classification is shown in Table 2.

Table 2. Classification of first-order local wave solutions generated by the first-step generalized DT.

di q1 q2 q3
d1 6= 0,d2 = d3 = 0 RW and one-dark soliton RW and one-bright soliton RW and one-bright soliton

d1 = 0,d2 6= 0,d3 = 0 RW and one-bright soliton RW and one-dark soliton RW and one-bright soliton
d1 = 0,d2 = 0,d3 6= 0 RW and one-bright soliton 0 RW and one-dark soliton
d1 6= 0,d2 6= 0,d3 = 0 RW and one-breather RW and one-breather RW and one-bright soliton
d1 6= 0,d2 = 0,d3 6= 0 RW and one-breather RW and one-bright soliton RW and one-breather
d1 = 0,d2 6= 0,d3 6= 0 RW and one-bright soliton RW and one-dark soliton RW and one-dark soliton
d1 6= 0,d2 6= 0,d3 6= 0 RW and one-breather RW and one-breather RW and one-breather

Next, we consider the following limit:

lim
f→0

𝑇 [1]|
λ=

2i
3
√

τ(1+ f 2)
𝜑1

f 2

= lim
f→0

( 2i
3
√

τ f 2 +𝑇1[1])𝜑1

f 2

=
2i
3
√

τ𝜑
[0]
1 +𝑇1[1]𝜑

[1]
1 ≡ 𝜑1[1], (24)

𝑇1[1]

= λ1𝐼−𝐻[0]𝛬1H[0]−1

= (λ1−λ
∗
1 )

(
𝐼−

𝜑
[0]
1 𝜑

[0]†
1

𝜑
[0]†
1 𝜑

[0]
1

)

=
4i
3
√

τ

(
𝐼−

𝜑
[0]
1 𝜑

[0]†
1

𝜑
[0]†
1 𝜑

[0]
1

)
, (25)

where † denotes the transposition and conjugation of a matrix
(vector), and 𝜑

[1]
1 = ∂ 2𝜑1/∂ f 2| f=0. We can obtain a special

solution of the Lax pair (2) and (3) with q1[1], q2[1], q3[1], and

λ = λ1 = 2i
√

τ/3. Using Eqs. (7)–(9), the explicit expres-
sions of second-order localized wave solutions can be figured
out. Considering the complexity of the explicit expressions of
q1[2],q2[2], and q3[2], we only give their expressions in the
simplest case of α = β = 0. For the case of α 6= 0 and β 6= 0,
we omit writing down these expressions since they are rather
cumbersome. Besides, it isn’t difficult to verify the validity
of these solutions q1[2],q2[2], and q3[2] by putting them into
Eq. (1) using Maple.

(i) α = β = 0. Letting d1 = 1,d2 =−1,d3 = 2, m1 = 100,
and n1 = 0, we can get

q1[2] = 3e12it 32it−192t2−8x2 +1
576t2 +24x2 +1

+
i p1 + p2

r
e12it , (26)

q2[2] =−3e12it 32it−192t2−8x2 +1
576t2 +24x2 +1

− i p1 + p2

r
e12it , (27)

q3[2] = 6e12it 32it−192t2−8x2 +1
576t2 +24x2 +1

+2
i p1 + p2

r
e12it , (28)

r =
√

6[10616832x10 +1019215872x8t2 +38220595200x6t4 +697143656448x4t6

+ 6164217593856x2t8 +21134460321792t10 +5308416
√

6x9 +509607936
√

6x7t2

+ 15543042048
√

6x5t4 +183458856960
√

6x3t6 +733835427840
√

6xt8 +3096576x8

+ 1130692608x6t2 +24524881920x4t4 +165112971264x2t6 +330225942528t8 +(1061683200

− 884736
√

6)x7 +(98205696
√

6−50960793600)x5t2 +(3163815936
√

6−1681706188800)x3t4

+ (20384317440
√

6−11007531417600)xt6 +(221184000
√

6−511488)x6− (530841600
√

6

+ 14929920)x4t2 +(578617344−140142182400
√

6)x2t4 +(12867600384−1223059046400
√

6)t6

− (154828800+11520
√

6)x5− (6598656
√

6+530841600)x3t2 +(7962624
√

6+31850496000)xt4
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+ (26542106688−15667200
√

6)x4− (5990400+2211839552
√

6)x3− (26541778944
√

6

+ 254361600)xt2 +(552962744−192000
√

6)x2 +(13271120832−14745600
√

6)t2 +(288000

+ 46079916
√

6)x+11520039−9600
√

6],

p1 = 192
√

6t[−36691771392t8−7644119040t6x2−573308928t4x4−18579456t2x6−221184x8

+ 92160
√

6x7 +5750784
√

6t2x5 +116785152
√

6t4x3 +764411904
√

6t6x−32256x6

+ 15261696x4t2 +321159168x2t4 +1528823808t6 +(44236800+768
√

6)x5 +(2617344
√

6

+ 530841600)x3t2 +34062336
√

6t4x+(5529600
√

6−2496)x4 +(594432−66355200
√

6)t2x2

+ (12165120−2123366400
√

6)t4 +2144
√

6x3 +(2211840−60672
√

6)xt2 +(276480024

− 422400
√

6)x2 +(331775078−5529600
√

6)t2− (38400+23039948
√

6)x−3200
√

6−5759959],

p2 = −3522410053632t8x−733835427840t6x3−55037657088t4x5−1783627776t2x7

− 21233664x9−1769472
√

6x8−488374272
√

6x6t2−24970788864
√

6x4t4−452531847168
√

6x2t6

− 2641807540224
√

6t8 +6635520x7 +424673280x5t2−183458856960t6x−13504610304t4x3

+ (626688
√

6−530841600)x6 +(157483008
√

6−82811289600)x4t2 +3078881280
√

6x2t4

+ 11007531417600t6 +(165888+398131200
√

6)x5 +(87146496+5308416000
√

6)x3t2

+ (1571291136−50960793600
√

6)t4x− (44544
√

6+11059200)x4 +(2985984
√

6

− 1061683200)x2t2 +(104398848
√

6−70071091200)t4 +(26542022400+9216000
√

6)x3

+ (76947200
√

6+318500204544)xt2 +(1105921728
√

6−16588800)x2 +(53083975680
√

6

− 254361600)t2− (552961632+153600
√

6)x−172800+72
√

6.

Here, q2[2] and q1[2] are opposite, and q3[2] is the dou-
ble of q1[2]. Thus, they are the second-order rogue wave

of Eq. (1). Besides,we can find that these three components
q1,q2, and q3 have the similar structure from Fig. 4.
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Fig. 4. (color online) Evolution of the second-order rogue wave of the three-component NLS equation by choosing α = 0,β = 0, d1 = 1,d2 =−1,d3 = 2,
m1 = 100, and n1 = 0.

(ii) α 6= 0,β 6= 0, d1 6= 0, and d2 = d3 = 0. We can get the
interactional solution between second-order rogue wave and
dark–bright soliton. Furthermore, we can observe that one-
dark-one-bright soliton and two-bright soliton together with
the second-order rogue wave of fundamental pattern and trian-
gular pattern present in the second-order localized wave solu-
tion respectively in Figs. 5 and 6. Figures 5(a) and 6(a) show
that q1 component is an interactional solution between one-
dark-one-bright soliton and second-order rogue wave.

The solution q1 here is greatly distinct from that in
Ref. [22], which is an interactional solution between two-dark

soliton and second-order rogue wave. Owing to the zero-
amplitude background crest, homoplastically, it is difficult to
observe the rogue wave in q2 and q3 component. Besides, in
the expressions of this solutions, α and β are greatly impor-
tant free parameters. In Fig. 7, with increasing the absolute
values of α and β , we can find that the dark–bright soliton
merge with the rogue wave distinctly.

(iii) α 6= 0,β 6= 0, d1 6= 0,d2 6= 0 and d3 6= 0. The inter-
actional solutions[33] between one-breather and second-order
rogue wave of triangular pattern can be obtained. q1 compo-
nent clearly shows that the triangular pattern rogue wave and
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breather coexist in Fig. 8(a). But, in Figs. 8(b) and 8(c), the
triangular pattern is not obvious. Analogously, if we increase
the absolute values of α and β , we can also see the breather
solution and the rogue wave merge with each other distinctly.
Here, we do not give the figures in this case.

In Eq. (11), there are two important parameters α and β .
In Ref. [22], except for the parameters d[1] and d[2], there is
only one parameter α . Thus these two parameters, α and β

here, determine greatly different structures of localized waves
in three-component NLS equation.
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Fig. 5. (color online) Evolution of the second-order dark–bright–rogue wave of the three-component NLS equation by choosing α = 1/1000,β =−1/1000,
d1 = 1,d2 = 0,d3 = 0, m1 = 0, and n1 = 0.
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Fig. 6. (color online) Evolution of the second-order dark–bright–rogue wave of the three-component NLS equation by choosing α = 1/1000,β =−1/1000,
d1 = 1,d2 = 0,d3 = 0, m1 = 100, and n1 = 0.
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Fig. 7. (color online) Evolution of the second-order dark–bright–rogue wave of the three-component NLS equation by choosing α = 10,β = −10, d1 =
1,d2 = 0,d3 = 0, m1 = 100, and n1 = 0.
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Fig. 8. (color online) Evolution of the second-order breather–rogue wave of the three-component NLS equation by choosing α = 1/100,β = −1/100,
d1 = 1,d2 =−1,d3 =−1, m1 = 100, and n1 = 0.

4. Conclusion
We give some interesting localized waves of three-

component NLS equation by the generalized Darboux trans-
formation. With a fixed spectral parameter and a special vector
solution of Lax pair of Eqs. (2) and (3), we apply the Taylor
series expansion to Eq. (1), and give the generalized Darboux
transformation.[34] Applying the formula (7)–(9),[35] the inter-
actions between rogue wave and some nonlinear waves (dark,
bright solitions and breather) are obtained. In the expressions
of these solutions, some parameters play an important role in
dynamic properties, such as α,β , di(i = 1,2,3), and s1.

We mainly discuss the dynamics of these solutions
through three different cases. (i) When α = 0 and β = 0, the
first- and second-order rogue wave are given, which are simi-
lar to one-component and two-component NLS equation. (ii)
When α 6= 0,β 6= 0, d1 6= 0, d2 = 0, and d3 = 0, the first-order
one-dark-rogue and one-bright-rogue wave can be gained.
Meanwhile, the second-order one-dark-one-bright-rogue wave
and two-bright-rogue wave are also presented. The parameter
s1 determines the shape of rogue wave, such as fundamental
pattern and triangular pattern. (iii) When α 6= 0,β 6= 0, and
di 6= 0 (i = 1,2,3), the first- and second-order one-breather–
rogue wave are observed.[36] With increasing the absolute val-
ues of α and β , we can observe that rogue wave and those
other nonlinear waves merge distinctly.

The localized waves of three-component coupled NLS
equation are not absolutely identical with ones of two-
component coupled NLS equation.[22] Second-order one-
dark-one-bright-rogue wave can be obtained in q[1] compo-
nent, instead of second-order two-dark-rogue wave in the two-
component case. Furthermore, we get second-order rogue
wave which contains four fundamental ones and this type
of rogue wave interacts with one-dark-one-bright soliton,
which is different with the case of two-component. We can
only get one-breather–rogue wave solution, which is not the
two-breather–rogue wave ones in two-component NLS equa-

tion. Through considering both two-component and three-
component NLS equation, we may well understand the local-
ized waves of the multi-component NLS equation.[37]
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