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Integrability of the modified generalised Vakhnenko equation is investigated sys-
tematically. Based on binary Bell polynomials, its bilinear representation, N soliton
solutions, bilinear Bäcklund transformation, and Lax pair are succinctly constructed.
Moreover, the conservation laws of the modified generalised Vakhnenko equation are
discussed by using corresponding Lax pair. Furthermore, the quasiperiodic solution
of the modified generalised Vakhnenko equation is presented by applying Hirota di-
rect method and Riemann theta function. The asymptotic behavior of the one periodic
wave is analyzed in details. It is shown that the one periodic wave solution tends to the
one soliton solution under a small amplitude limit λ → 0. Finally, the new N soliton
solutions of the standard Vakhnenko equation are presented. It would be specially
mentioned that all the results of modified generalised Vakhnenko equation can be
reduced to the generalised Vakhnenko equation and standard Vakhnenko equation
under the special case of α = 1 and α = 1, β = 0, respectively. C© 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4764845]

I. INTRODUCTION

In recent years, considerable attention has been paid to the nonlinear evolution equations
(NLEEs) which can describe certain nonlinear phenomena realistically. In Ref. 1, Vakhnenko equa-
tion (VE) is presented

∂

∂x
Du + u = 0, with D := ∂

∂t
+ u

∂

∂x
, (1)

which describes the propagation of shortwave perturbations in a relaxing medium.2 It can be demon-
strated that VE stems from the short wave limit of the following NLEE:3, 4

ut − ut,2x + αux + (β + 1)uux = βux u2x + uu3x (2)

with β = 2 and 3, Eq. (2) can be reduced to the Camassa-Holm equation and Degasperis-Procesi
equation, respectively.

In fact, introducing the time and space variables T and X as follows:

T = εt, X = ε−1x, (3)

where ε is a small positive parameter, and it is easy to get

∂

∂t
= ε

∂

∂T
,

∂

∂x
= ε−1 ∂

∂ X
. (4)

Assuming the expansion

u = ε2(u0 + εu1 + . . .) (5)

a)Author to whom correspondence should be addressed. Electronic mail: ychen@sei.ecnu.edu.cn.

0022-2488/2012/53(12)/123504/20/$30.00 C©2012 American Institute of Physics53, 123504-1

http://dx.doi.org/10.1063/1.4764845
http://dx.doi.org/10.1063/1.4764845
http://dx.doi.org/10.1063/1.4764845
mailto: ychen@sei.ecnu.edu.cn


123504-2 Y. Wang and Y. Chen J. Math. Phys. 53, 123504 (2012)

with ui(i = 0, 1, . . . ) being functions with respect to T and X. Substituting (4) and (5) into (2), we
obtain the following NLEE for u0 at the lowest order in ε:

u0,2X,T − αu0,X + βu0,X u0,2X + u0u0,3X = 0. (6)

Based on the original variables x, t, and u ∼ ε2u0, we can rewrite (6) as

ut,2x − αux + βux u2x + uu3x = 0. (7)

Integrating (7) about x and taking the integral constants as 0, we have

ut,x − αu + β − 1

2
u2

x + uu2x = 0. (8)

When β = 3, (8) can be rewritten as

ut,x − αu +
(u2

2

)
2x

= 0, (9)

which is also called the reduced Ostrovsky equation,5, 6 and when β = 3, α = − 1, it is just to the VE.
The multiple-valued function solutions of VE and an example of a collision of solitons are given.1

The exact two loop soliton solutions and N loop soliton solutions to the VE are also obtained.7, 8

More recently, the interaction of a soliton with a one-mode periodic wave, the interaction of the
solitons and multi-mode periodic waves, and the interaction of the N periodic waves of this equation
are discussed, respectively.9–11

In Ref. 12, the VE was extended to the generalised Vakhnenko equation (GVE),

∂

∂x
(D2u + 1

2
u2 + βu) + Du = 0, (10)

or equivalently

(
∂u

∂x
+ D)(

∂

∂x
Du + u + β) = 0, (11)

where β is an arbitrary constant. If β = 0, Eq. (11) can be transformed to the VE (1). The N soliton
solution to GVE is found by a blend of transformations of the independent variables and Hirota’s
direct method.12 Bäcklund transformation (BT), Lax pair, and conservation laws for the GVE are
discussed and the exact N soliton solutions are obtained via the inverse scattering method.13

Morrison and Parkes14 presented the modified generalised Vakhnenko equation (mGVE),

∂

∂x
(D2u + 1

2
pu2 + βu) + qDu = 0, (12)

where p, q, andβ are arbitrary constants. If p = q = 1, Eq. (12) can be transformed to the GVE (10);
if p = q = 1, β = 0, Eq. (12) can be transformed to the VE (1).

Recently, the Bell polynomials are found to play an important role in the characterization of
integrability of NLEEs.15–31 As is well known, the Hirota direct method32, 33 is a powerful tool for
investigating integrability of the NLEEs. Once bilinear equation of the NLEE is given, one can
construct its corresponding multi-soliton solutions, quasiperiodic solutions, Wronskian solutions,
bilinear Bäcklund transformation, etc. However, the construction of the bilinear equation usually
requires suitable variable transformation and complex calculation. Lambert and his co-workers link
Hitota D-operators to Bell polynomials and provide a quick and natural approach to obtain bilinear
formulisms, bilinear Bäcklund transformations, Lax pairs, and Darboux covariant Lax pairs for the
NLEEs.16–21 More recently, Fan22–25 extend Bell polynomials to variable coefficients NLEEs and
supersymmetric equations and propose a approach to construct infinite conservation laws of NLEEs
through decoupling binary Bell polynomials into a Riccati type equation and a divergence type
equation. We extend this approach to investigate the integrability of generalised Nizhnik-Novikov-
Veselov equation, variable coefficient mKdV equation and some (2+1)-dimensional NLEEs.28–31 The
aim of this paper is to extend the Bell polynomials approach to systematically investigate integrability
of the mGVE. There are many significant properties, such as bilinear form, Lax pair, Bäcklund
transformation, Darboux transformation, Painlevé analysis, infinite conservation laws, Hamiltonian



123504-3 Y. Wang and Y. Chen J. Math. Phys. 53, 123504 (2012)

structure, and infinite symmetries that can characterize integrability of NLEEs. In present paper,
the bilinear formulism, bilinear Bäcklund transformation, Lax pair, and infinite conservation laws
of the mGVE are investigated systematically by using the binary Bell polynomials. The N soliton
solutions and quasiperiodic solution of the mGVE are also presented by applying the Hirota direct
method and Riemann theta function. Specifically, the new N soliton solutions of the standard VE are
presented. In addition, the asymptotic analysis shown that the one periodic wave solution tends to
the one soliton solution under a small amplitude limit λ → 0. It would be specially mentioned that
all the results of mGVE can be reduced to the GVE and standard VE under the special case of α =
1 and α = 1, β = 0, respectively.

The organization of this paper is as follows. In Sec. II, we give a brief introduction about
the binary Bell polynomials. In Sec. III, we systematically construct bilinear formulism, N soliton
solutions, bilinear Bäcklund transformation, Lax pair, and infinite conservation laws of the mGVE.
In Sec. IV, we present the quasiperiodic solution of mGVE by using Hirota direct method and
Riemann theta function. The relation between the one periodic wave solution and the one soliton
solution is analyzed in details. Section V will offer the conclusions which contains the new N soliton
solutions of the standard VE.

II. BELL POLYNOMIALS PRELIMINARY

In 1934, Bell15 proposed three types of exponent-form polynomials which have been success-
fully applied to combinatorics, statistics, and other fields. Lambert and his co-workers link the third
kind Bell polynomials to Hirota D-operator, propose a lucid approach to investigate NLEEs. In the
following, we give a brief introduction of the Bell polynomials.15–21

Definition 1: With the assumption that f = f(x) is a C∞ function of x and fr x = ∂r
x f,

r = 1, 2, . . . , n, then

Ynx ( f ) ≡ Yn( fx , . . . , fnx ) = Yn({ fr x (1 ≤ n)}) = e− f ∂n
x e f , f0x ≡ f, (13)

i.e.,

Yx ( f ) = fx , Y2x ( f ) = f2x + f 2
x , Y3x ( f ) = f3x + 3 fx f2x + f 3

x , . . . (14)

is a polynomial in the derivatives of f with respect to x, which called the one-dimensional Bell
polynomials or Y-polynomials.

Based on the one-dimensional Bell polynomials, the multi-dimensional Bell polynomials are
defined as follows.

Definition 2: With f = f(x1, x2, . . . , xl) be a C∞ function with multi-variables and

fr1x1,...,rl xl = ∂r1
x1

. . . ∂rl
xl

f, f0xi ≡ f, (15)

where l denotes arbitrary integer, then

Yn1x1,...,nl xl ( f ) ≡ Yn1,...,nl ({ fr1x1,...,rl xl (1 ≤ ri ≤ ni , 0 ≤ i ≤ l)}) = e− f ∂n1
x1

. . . ∂nl
xl

e f (16)

is a polynomial in the partial derivatives of f with respect to x1, . . . , xl, which called the multi-
dimensional Bell polynomials.

For f = f(x, t), the associated two-dimensional Bell polynomials can be written as

Yx,t ( f ) = fx,t + fx ft , Y2x,t ( f ) = f2x,t + f2x ft + 2 fx,t fx + f 2
x ft , . . . . (17)
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Definition 3: By virtue of above multi-dimensional Bell polynomials, the multi-dimensional
binary Bell polynomials can be defined as follows:

Yn1x1,...,nl xl (v,w) ≡ Yn1x1,...,nl xl ( f )

≡ Yn1,...,nl ({ fr1 x1,...,rl xl })

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
fr1 x1 ,...,rl xl =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vr1x1,...,rl xl ,
l∑

i=1
ri is odd,

wr1x1,...,rl xl ,
l∑

i=1
ri is even,

(18)

where the vertical line means that the elements on the left-hand side are chosen according to the
rule on the right-hand side, v and w are both the C∞ functions of (x1, x2, . . . , xl).

For example, the first few lowest order binary Bell Polynomials are

Yx (v) = vx ,Y2x (v,w) = w2x + v2
x ,Yx,y(v,w) = wx,y + vxvy, (19a)

Y3x (v,w) = v3x + 3vxw2x + v3
x , . . . . (19b)

Proposition 1: The relations between the binary Bell polynomials and the standard Hirota
D-operators can be given by the identity

Yn1x1,...,nl xl (v = ln
F

G
, w = ln FG) = (F · G)−1 Dn1

x1
. . . Dnl

xl
F · G, (20)

where
l∑

i=1
ni ≥ 1, and Hirota D-operators defined by

Dn1
x1

. . . Dnl
xl

F · G = (∂x1 − ∂x ′
1
)n1 . . . (∂xl − ∂x ′

l
)nl F(x1, . . . , xl )G(x ′

1, . . . , x ′
l )
∣∣∣
x ′

1=x1,...,x ′
l =xl .

(21)

In the particular case of F = G, the formula (20) can be rewritten as

F−2 Dn1
x1

. . . Dnl
xl

F · F = Yn1x1,...,nl xl (0, Q = w − v = 2 ln F) =

⎧⎪⎪⎨
⎪⎪⎩

0,
l∑

i=1
ni is odd,

Pn1x1,...,nl xl (Q),
l∑

i=1
ni is even,

(22)

which is also called P-polynomials

Pn1x1,...,nl xl (Q) = Yn1x1,...,nl xl (0, Q = 2 ln F), (23)

where they vanish unless
l∑

i=1
ni is even.

For example, the first few P-polynomials are

P2x (Q) = Q2x , Px,t (Q) = Qx,t , P3x,t (Q) = Q3x,t + 3Qx,t Q2x , . . . . (24)

It has been found that formulas (20) and (22) play an important role in connecting NLEEs with their
corresponding bilinear equations, i.e., once a NLEE can be expressed as a linear combination of the
P-polynomials, then its bilinear equation can be established directly.



123504-5 Y. Wang and Y. Chen J. Math. Phys. 53, 123504 (2012)

Proposition 2: The binary Bell polynomials Yn1x1,...,nl xl (v,w) can be written as the combination
of P-polynomials and Y-polynomials

(F · G)−1 Dn1
x1

. . . Dnl
xl

F · G = Yn1x1,...,nl xl (v,w)
∣∣∣
v=ln F/G,w=ln FG

= Yn1x1,...,nl xl (v, v + Q)
∣∣∣
v=ln F/G,Q=2 ln G

=
∑

n1+...+nl=even

n1∑
r1=0

. . .

nl∑
rl=0

l∏
i=1

(
ni

ri

)
Pn1x1,...,nl xl (Q)Y(n1−r1)x1,...,(nl−rl )xl (v).

(25)

Remark 1: In order to obtain the Lax pairs of corresponding NLEEs, we introduce the Hopf-Cole
transformation v = ln ψ , i.e., ψ = F/G, then the Y-polynomials can be written as

Yn1x1,...,nl xl (v)
∣∣∣
v=ln ψ

= ψn1x1,...,nl xl

ψ
, (26)

which provides the shortest way to the associated Lax systems of NLEEs.

III. N SOLITON SOLUTION, BILINEAR BÄCKLUND TRANSFORMATION, LAX PAIR,
AND INFINITE CONSERVATION LAWS OF THE MGVE

A. The transformation process of the mGVE

On the investigation of integrability for mGVE, the key step is to introduce the following
transformations:7

x = θ (X, T ) := T + Z (X, T ) + x0, t = X, Z =
∫ X

−∞
U (X ′, T )d X ′, (27)

where x0 is a constant, u(x, t) = U(X, T).
We next introduce W (X, T ) defined by

WX = U, (28)

where W tends to a constant and its derivatives vanish as |X| → ∞. The dependent variable
transformation (28) means that

u(x, t) = U (X, T ) = WX . (29)

From (27) and (28), it is easy to get

∂

∂ X
= ∂

∂t
+ u

∂

∂x
,

∂

∂T
= φ(X, T )

∂

∂x
, (30)

where

φ(X, T ) = 1 +
∫ X

−∞
UT d X ′ = 1 + WT . (31)

By virtue of (27)–(31), mGVE (12) is transformed into the following version of the shallow
water wave equation:

U2X,T + pUUT + qUX

∫ X

−∞
UT (X ′, T )d X ′ + qUX + βUT = 0. (32)

Some special cases of equation (32) have been studied in the literature.14, 34–36 In present paper, we
focus on the case p = q = α and β an arbitrary non-zero constant, namely,

U2X,T + αUUT + αUX

∫ X

−∞
UT (X ′, T )d X ′ + αUX + βUT = 0 (33)
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or equivalently

W2X,T + αWX (WT + 1) + βWT = 0, (34)

which corresponding to the mGVE,36, 37

∂

∂x
(D2u + 1

2
αu2 + βu) + αDu = 0. (35)

Remark 2: For the case of α = 1, Eq. (34) reduced to the GVE,13

W2X,T + WX (WT + 1) + βWT = 0. (36)

For the case of α = 1, β = 0, Eq. (34) reduced to the standard VE,7, 8

W2X,T + WX (WT + 1) = 0. (37)

B. Bilinearization

Theorem 1: Under the following transformation:

W = 6

α
(ln F)X + 
(T ), (38)

the mGVE (34) can be bilinearized into

G(DX , DT ) =
{

D3
X DT + α[1 + φ(T )]D2

X + βDX DT + αβ

3
φ(T )

}
F · F = 0, (39)

where α 	= 0, φ(T) = 
′(T).

Proof: We introduce a dimensionless potential field Q by setting

W = C Q X + 
(T ), (40)

with C a parameter to be determined.
Substituting (40) into mGVE (34), then mGVE (34) can be rewritten as

H (Q) = C Q3X,T + αC2 Q2X Q X,T + αCφ(T )Q2X + αC Q2X + βC Q X,T + βφ(T ) = 0, (41)

where φ(T) = 
′(T).
According to the formula (23), the C can be identified as 3

α
and thus (41) can be cast into the

combination of P-polynomials

H (Q) = P3X,T (Q) + α[1 + φ(T )]P2X (Q) + β PX,T + αβ

3
φ(T ) = 0. (42)

By virtue of dependent variable transformation

Q = 2 ln F, i.e.,W = 3

α
Q X + 
(T ) = 6

α
(ln F)X + 
(T ), (43)

and the identity (20), the bilinear representation of mGVE (34) can be obtained directly as follows:

G(DX , DT ) =
{

D3
X DT + α[1 + φ(T )]D2

X + βDX DT + αβ

3
φ(T )

}
F · F = 0. (44)

�
Based on (29), (38), and (44) the solutions of the mGVE (35) can be given under the relations

between (x, t) and (X, T),

x = T + 6

α
(ln F)X + 
(T ) + x0, t = X, u(x, t) = U (X, T ). (45)
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Remark 3: For the case of α = 1, bilinear representation (44) of mGVE reduced to the ones of
the GVE,

G(DX , DT ) =
{

D3
X DT + [1 + φ(T )]D2

X + βDX DT + β

3
φ(T )

}
F · F = 0. (46)

For the case of α = 1, β = 0, bilinear representation (44) of mGVE reduced to the ones of the
standard VE,

G(DX , DT ) =
{

D3
X DT + [1 + φ(T )]D2

X

}
F · F = 0. (47)

C. N soliton solutions

In this section, we give the N soliton solution of the mGVE by using the Hirota direct method.
For convenience to derived the N soliton solution, taking φ(T) = 0, which indicates that 
(T) to be
arbitrary constant C1, then bilinear equation (39) can be rewritten as

G(DX , DT ) =
[

D3
X DT + αD2

X + βDX DT

]
F · F = 0. (48)

Based on Hirota direct method, we expand F(X, T) as exponential functions

F(X, T ) = 1 + F (1)ε + F (2)ε2 + . . . + F ( j)ε j + . . . , (49)

where ε is a constant called the perturbation parameter.
Inserting the expression (49) into (48) and by using (29), the N soliton solution of the mGVE

(35) can be obtained as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x = T + 3ω1
α

[
1 + tanh η1

2

]
+ x1, with x1 = C1 + x0,

u(x, t) = 6
α

[
ln (

∑
μ=0,1

e

n∑
j=1

μ j η j +
n∑

1≤ j<l
μ j μl A jl

)
]

2X
, ι j = − αω j

β+ω2
j
, β + ω2

j 	= 0,

(50)

where

eA jl = (ω j − ωl)2(ω2
j − ω jωl + ω2

l + 3β)

(ω j + ωl)2(ω2
j + ω jωl + ω2

l + 3β)
, η j = ω j X + ι j T + δ j , ( j < l, j, l = 1, 2, 3, . . .),

(51)
and

∑
μ=0,1

indicates the summation over all possible combination of μj = 0, 1(j = 1, 2, . . . ).

For example, the single soliton solution takes the form⎧⎪⎨
⎪⎩

x = T + 3ω1
α

{
1 + tanh

[
ω1t
2 − αω1

2(β+ω2
1)

T + δ1
2

]}
+ x1,

u = 3ω2
1

2α
sech2

[
ω1t
2 − αω1

2(β+ω2
1)

T + δ1
2

]
, β + ω2

1 	= 0.

(52)

Taking x1 = − 3ω1
α

, the single soliton solution (52) can be rewritten as⎧⎪⎨
⎪⎩

x = T + 3ω1
α

tanh
[

ω1t
2 − αω1

2(β+ω2
1)

T + δ1
2

]
,

u = 3ω2
1

2α
sech2

[
ω1t
2 − αω1

2(β+ω2
1)

T + δ1
2

]
, β + ω2

1 	= 0.

(53)

Fixing α = 1, t = 0, δ1 = 0, and by choosing different values for parameter β, we get three shape
types of single-soliton solution which are shown in Fig. 1,

β = −11, ω1 = −4, (54a)

β = −11, ω1 = −5, (54b)
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FIG. 1. The single soliton solution (53) with α = 1, t = δ1 = 0, and (a) (54a); (b) (54b); (c) (54c); (d) (54d); (e) (54e);
and (f) (54f). And these figures demonstrates that the parameter β have strong impacts on the shapes of the soliton solution
of the mGVE. The parameter β determines the shape types of the single solution, namely, loop-like soliton solution, cusp-
like soliton solution, and hump-like soliton solution, while the soliton solution obviously varies in the amplitudes with the
different ω1.

β = 10, ω1 = −4.5, (54c)

β = 10, ω1 = −4, (54d)

β = 20, ω1 = −3.5, (54e)

β = 20, ω1 = −2. (54f)

Two soliton solution is⎧⎪⎨
⎪⎩

x = T + 6
α

(
ln F

)
X

+ x2, x2 = C1 + x0,

u = 6
α

(
ln F

)
2X

,

(55)

where F = 1 + eη1 + eη2 + eη1+η2+A12 , η j = ω j X + ι j T + δ j , β + ω2
j 	= 0( j = 1, 2), and eA12 can

be obtained directly from (50) and (51).
By setting α = 1, t = 2, x2 = δ1 = δ2 = 0, and choosing different values for parameters ω1,

ω2, and β, six shapes of the two soliton solutions are shown in Fig. 2 and the interaction process of
cusp-loop-like and loop-loop-like soliton solutions are shown in Fig. 3,

ω1 = 2, ω2 = 5, β = 2, (56a)

ω1 = 2, ω2 = 5, β = 4, (56b)

ω1 = 2, ω2 = 2.1, β = 5, (56c)

ω1 = 5, ω2 = 6, β = 6, (56d)

ω1 = 2, ω2 = 5, β = 15, (56e)
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FIG. 2. The two soliton solution (55) with α = 1, t = 2, x2 = δ1 = δ2 = 0, and (a) cusp-loop-like (56a); (b) hump-loop-like
(56b); (c) hump-hump-like (56c); (d) loop-loop-like (56d); (e) hump-cusp-like (56e); and (f) cusp-cusp-like (56f).

ω1 = 5, ω2 = 6, β = 16. (56f)

Three soliton solution is⎧⎪⎨
⎪⎩

x = T + 6
α

(
ln F

)
X

+ x3, x3 = C1 + x0,

u = 6
α

(
ln F

)
2X

,

(57)

FIG. 3. The interaction process of cusp-loop-like and loop-loop-like soliton solutions. (a) The time t from left to right are
t = − 2, − 0.5, 2. (b) The time t from left to right are t = − 1.5, 0.2, 2. The two figures show that both of cusp-loop-like
and loop-loop-like soliton would collide but preserve their individual shapes and speeds. In fact, the other shape types
soliton solutions including hump-loop-like, hump-cusp-like, cusp-cusp-like, hump-hump-like soliton solutions also have the
characteristic.
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FIG. 4. The three soliton solution (57) with α = 1, t = 3, x3 = δ1 = δ2 = δ3 = 0, and (a) cusp-loop-loop-like (58a); (b)
loop-loop-loop-like (58b); (c) cusp-cusp-cusp-like (58c); and (d) hump-hump-hump-like (58d).

where F = 1+eη1+eη2+eη3+eη1+η2+A12+eη1+η3+A13+eη2+η3+A23+eη1+η2+η3+A12+A13+A23 , β + ω2
j

	= 0 and η j , eA jl ( j < l, j, l = 1, 2, 3) can also be obtained directly from (50) and (51).
By setting α = 1, t = 3, x3 = δ1 = δ2 = δ3 = 0, and choosing different values for parameters

ω1, ω2, ω3, and β, four shapes of the three soliton solutions are shown in Fig. 4 and the interaction
process of loop-loop-cusp-like soliton solution is shown in Fig. 5,

ω1 = 2, ω2 = 5, ω3 = 3, β = 1.9, (58a)

ω1 = 5, ω2 = 5.4, ω3 = 5.2, β = 5, (58b)

ω1 = 5, ω2 = 5.4, ω3 = 5.2, β = 15, (58c)

ω1 = 3, ω2 = 3.5, ω3 = 4, β = 22. (58d)

Remark 4: The transformation X → 1
α

X, β → α2β with α 	= 0 reduces Eq. (34) to the GVE
(36). Therefore, for the corresponding figures, it is necessary to consider the case with α = 1 only.

FIG. 5. The interaction process of loop-loop-cusp-like soliton solutions. The time t from left to right are t = − 3, − 0.5,
4. This figure shows that loop-loop-cusp-like soliton collide but preserve their individual shapes and speeds. As similar to
the two soliton solutions, the other shape types three soliton solutions including loop-loop-loop-like, cusp-cusp-cusp-like,
hump-hump-hump-like, and so on also have the characteristic.
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FIG. 6. One periodic wave-(96) of Eq. (12) with parameters: p = q = α = 1, β = 2, κ = 0.025, x0 = γ = 0. (a) Perspective
view of the wave; (b) Overhead view of the wave, with contour plot shown. The bright lines are crests and the dark lines are
troughs; (c) Wave propagation pattern of the wave along the x axis.

D. Bilinear Bäcklund transformation and associated Lax pair

Bilinear Bäcklund transformation and Lax pair are two important tools in soliton theory and in-
tegrable systems. The next couple of problems are searching for the bilinear Bäcklund transformation
and associated Lax pair of mGVE (34).

Theorem 2: If F is a known solution of the bilinear equation (39), then G satisfying{
D3

X + βDX − τ
}

F · G = 0, (59a){
3DX DT − 3ς DX + α[1 + φ(T )]

}
F · G = 0 (59b)

is a novel solution of mGVE (34), where τ and ς are arbitrary parameters. Thus system (59) is
called a bilinear Bäcklund transformation for mGVE (34).

Proof: First, with the assumption that Q′ and Q be two different solutions of Eq. (42), and
introduce two new variables

v = Q′ − Q

2
= ln

F

G
, w = Q′ + Q

2
= ln FG, (60)

which means that function H invariant under the two-field Q′ and Q,

H (Q′) − H (Q) = H (w + v) − H (w − v)

= 2
{
v3X,T + 3w2XvX,T + 3wX,T v2X + α[1 + φ(T )]v2X + βvX,T

}
= 2∂T [Y3X (v,w) + βYX (v,w) − τ ] + R(v,w) = 0,

(61)

whereR(v,w) = 6 Wronskian
{
YX,T (v,w) + α

3 [1 + φ(T )],YX (v)
}

and τ is an arbitrary parameter.
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In order to obtain the bilinear Bäcklund transformation of mGVE (34), it is essential to rewrite
R(v,w) as the T-derivative of a combination of Y-polynomials or 0. A suitable constraint may be

YX,T (v,w) + α

3
[1 + φ(T )] − ςYX (v,w) = 0, (62)

where ς is an arbitrary parameter. Under constraint condition (62), a coupled system of Y-
polynomials can be obtained as follows:

Y3X (v,w) + βYX (v,w) − τ = 0, (63a)

YX,T (v,w) + α

3
[1 + φ(T )] − ςYX (v) = 0, (63b)

which is very useful to construct conservation laws.
By virtue of the identity (20), the system (63) immediately leads to the bilinear Bäcklund

transformation as follows:{
D3

X + βDX − τ
}

F · G = 0,
{

3DX DT − 3ς DX + α[1 + φ(T )]
}

F · G = 0. (64)

�
Remark 5: For the case of α = 1, bilinear BT (59) of mGVE reduced to the ones of the GVE,{

D3
X + βDX − τ

}
F · G = 0,

{
3DX DT − 3ς DX + αφ(T )

}
F · G = 0. (65)

For the case of α = 1, β = 0, bilinear BT (59) of mGVE reduced to the ones of the VE,{
D3

X − τ
}

F · G = 0,
{

3DX DT − 3ς DX + αφ(T )
}

F · G = 0. (66)

Bilinear BT can be used to construct new exact solutions of NLEEs. Next, we apply the system
(59) to deduce the associated Lax paix of mGVE (34).

Theorem 3: Under the conditions (63), mGVE (34) admits a Lax pair

ψ3X + αWXψX + βψX − τψ = 0, (67a)

ψX,T + α

3
(WT + 1)ψ − ςψX = 0, (67b)

where W is a solution of the mGVE (34).

Proof: By means of Hopf-Cole transformation v = ln ψ , (25) and (26), we obtain

YX (v,w) = ψX

ψ
,YX,T (v,w) = ψX,T

ψ
+ Q X,T ,Y3X (v,w) = ψ3X

ψ
+ 3Q2XψX

ψ
, (68)

which make the system (63) linearized into a pair of equations with double parameters τ and ς ,

L1ψ = (∂3
X + 3Q2X∂X + β∂X − τ )ψ = 0, (69a)

L2ψ = [∂X∂T + Q X,T + α

3
+ α

3
φ(T ) − ς∂X ]ψ = 0, (69b)

which is equivalent to

ψ3X + αWXψX + βψX − τψ = 0, ψX,T + α

3
(WT + 1)ψ − ςψX = 0 (70)

with W = 3
α

Q X + 
(T ).
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It is easy to check that the integrability condition of Eq. (69) yields the condition[
W2X,T + αWX (WT + 1) + βWT

]
X

= 0 (71)

or

W2X,T + αWX (WT + 1) + βWT + h(T ) = 0, (72)

where h(T) is an arbitrary function of T.
In Refs. 10 and 38, Vakhnenko and Parkes investigated the VE by using the inverse scattering

method and indicated that the following system:

ψ3X + WXψX − λψ = 0, 3ψX,T + (WT + 1)ψ = 0 (73)

can be considered as the Lax pair for the VE (37). Correspondingly, according to the idea in
Refs. 10 and 38, the similar processing steps for the mGVE indicate that h(T) is to be identically zero
as |X| → ∞. Thus, the pair of equations (69) can be considered as the Lax pair for the mGVE (34). �

Remark 6: For the case of α = 1, Lax pair (67) of mGVE reduced to the ones of the GVE,

ψ3X + WXψX + βψX − τψ = 0, ψXT + 1

3
(WT + 1)ψ − ςψX = 0, with W = 3Q X + 
(T ).

(74)
For the case of α = 1, β = 0, Lax pair (67) of mGVE reduced to the ones of the standard VE,

ψ3X + WXψX − τψ = 0, ψXT + 1

3
(WT + 1)ψ − ςψX = 0, with W = 3Q X + 
(T ). (75)

E. Conservation laws of mGVE

Conservation laws play an important role in mathematical physics, such as it describes the con-
servation of fundamental physical quantities, provides a method to study quantitative and qualitative
properties of equations and their solutions, verifies complete integrability of NLEEs. There are many
methods used to obtain the infinite conservation laws or conserved quantities for both continuous
system and discrete system. For instance, Satsuma et al. developed a systematic way to derive the
higher conservation laws for several NLEEs through BT.39–42

The infinite sequence of conservation laws usually taking the following form:

In,T + Fn,X = 0, n = 1, 2, 3, . . . , (76)

which provides a corresponding sequences of integrals of motion given by the functions
∫

Indx. In
this section, we show that mGVE (34) also has an infinite sequence of conserved quantities based
on its Lax paix (67).

From the Lax pair (67) and mGVE (34), it can be shown that

3τψT + α(1 + WT )ψ2X − αWX,T ψX + (αβ − 3τς )ψ = 0. (77)

Thus we have the following system:

ψ3X + αWXψX + βψX − τψ = 0, (78a)

3τψT + α(1 + WT )ψ2X − αWX,T ψX + (αβ − 3τς )ψ = 0. (78b)

Recalling that

v = Q′ − Q

2
, v = ln ψ, (Q′ − Q)X = α

3
(W ′ − W ), (79)
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we have

ψX = α

6
(W ′ − W )ψ. (80)

In order to derive the infinite conservation laws of mGVE (34), the transformation from W ′ to W
can be given as

W ′ = W + κ +
∞∑

n=1

In(W, WX , . . .)

κn
, (81)

which reduce

W ′
X = WX +

∞∑
n=1

In,X (WX , W2X . . .)

κn
. (82)

Inserting (80) into (78), we have

(W ′ − W )2X + α

2
(W ′ − W )

[
W ′ + (2α − 1)W

]
X

+ α2

36
(W ′ − W )3 + β(W ′ − W ) − 6τ

α
= 0,

(83a)

(W ′ − W )T + α

3τ

{
(1 + WT )

[
(W ′ − W )X + α

6
(W ′ − W )2

]
− WX,T (W ′ − W )

}
X

= 0. (83b)

Based on (81) and (82) and equating the coefficients for power of 1
κ

in (83a), we obtain the recursion
relations to calculate I ′

n in an explicit form

I1 = −12WX

α
− 12β

α2
, I2 = 72W2X

α2
, I3 = −288W3X

α3
, I4 = 864W4X

α4
, (84a)

In = −12

α2
In−2,2X − 6

α
In−1,X − 12WX

α
In−2 − 6

α

n−2∑
j=1

I j In− j−2,X −
n−1∑
j=1

I j In− j−1 (84b)

− 1

3

n−4∑
j=1

n− j−3∑
l=1

I j IlIn− j−l−2 − 12β

α2
In−2, n = 3, 4, . . . ,

Due to Eq. (83b), all these quantities do satisfy the conservation law (76) for appropriate Fn.
Equation (83b) shows that

∫
(W ′ − W − κ)d X is a conserved quantity when suitable boundary

conditions are imposed on W ′ and W .

IV. QUASIPERIODIC SOLUTION AND ASYMPTOTIC ANALYSIS

A. Riemann theta function and quasiperiodic solution

As is well known, exact solutions play an important role in the study of nonlinear mathemat-
ical physics, such as soliton, peakon, cuspon, rational and quasiperiodic solutions.43–56 Moreover,
investigating relations among different exact solutions is also a very interesting topic. Since these
relations not only provide an approach to deforming exact solutions, but also help us to investigate
the structures and properties of some complicated forms of the solutions such as quasiperiodic
solutions.

Nakamura presents a direct method to multi-periodic wave solutions for NLEEs based on
Riemann theta function.57, 58 Recently, this method was extended to investigate the discrete Toda
lattice, Nizhnik-Novikov-Veselov equation, (2 + 1)-dimensions Bogoyavlenskii’s breaking soliton
equation, supersymmetric Ito’s equation, and difference equations, etc.29, 59–64

In the following, combine the Riemann theta function and Hirota direct method, we give the
one periodic solution of the mGVE and discuss the relation between one periodic solution and one
soliton solution.
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Now, we consider the Riemann theta function solution of mGVE,

F =
∞∑

n=−∞
ν(ξ, τ ) =

∞∑
n=−∞

e2π inξ+π in2τ , (85)

where n ∈ Z, τ ∈ C, Imτ > 0, and ξ = κX + ρT + γ , with κ and ρ are constants to be determined,
γ is a constant.

Taking φ(T ) = 3c
αβ

, then (39) can be rewritten as

G(DX , DT ) =
[

D3
X DT + (

3c

β
+ α)D2

X + βDX DT + c
]

F · F = 0, (86)

where c is a constant that must not be dropped.

Remark 7: The D-operators have good property when acting on exponential functions which
plays a key role in the construction of the periodic wave solutions

Dm
X Dn

T eξ1 · eξ2 = (κ1 − κ2)m(ι1 − ι2)neξ1+ξ2, (87)

where ξ j = κ j X + ι j T + ξ
(0)
j , j = 1, 2.

More generally, we have

G(DX , DT )eξ1 · eξ2 = G(κ1 − κ2, ι1 − ι2)eξ1+ξ2. (88)

Substituting (85) into (86), we have

G F · F = G(DX , DT )
∞∑

n=−∞
e2π inξ+π in2τ

∞∑
m=−∞

e2π imξ+π im2τ

=
∞∑

n=−∞

∞∑
m=−∞

G(DX , DT )e2π inξ+π in2τ · e2π imξ+π im2τ

=
∞∑

n=−∞

∞∑
m=−∞

G[2π i(n − m)κ, 2π i(n − m)ρ]e2π i(n+m)ξ+π i(n2+m2)τ

=
∞∑

p=−∞

{ ∞∑
n=−∞

G[2π i(2n − p)κ, 2π i(2n − p)ρ]eπ i[n2+(p−n)2]τ
}

e2π i pξ

=
∞∑

p=−∞
Ḡ(p)e2π i pξ .

(89)

Noting that

Ḡ(p) =
∞∑

n=−∞
G

[
2π i(2n − p)κ, 2π i(2n − p)ρ

]
eπ i[n2+(p−n)2]τ

=
∞∑

h=−∞
G

[
Aκ, Aρ

]
eπ i[h2+(p−h−2)2]τ · e2π i(p−1)τ

= Ḡ(p − 2)e2π i(p−1)τ ,

(90)

where A = 2π i
[
2h − (p − 2)

]
, p = m + n.

Based on (90) and by induction method, we can get

Ḡ(p) =
{

Ḡ(0)eπ inpτ , p = 2n,

Ḡ(1)eπ i(2n+2n2)(p+1)τ , p = 2n + 1.
(91)
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In this way, we may let

Ḡ(0) =
∞∑

n=−∞

{
16n2π2βκ(16n2π2κ2 − β)ρ + (β − 48n2π2κ2)c−16n2π2κ2αβ

}
e2iπn2τ = 0,

Ḡ(1) =
∞∑

n=−∞

{
4(2n − 1)2π2βκ[16π2κ2(n2 − n) + 4π2κ2 − β]ρ + [48π2κ2(n − n2) + β

−12π2κ2]c − (16n2π2κ2αβ + 4π2κ2αβ − 16π2κ2nαβ)
}

e(2n2−2n+1)π iτ = 0.

(92)

For the sake of convenience, we denote that λ = eπ iτ , thus we have

a11 =
∞∑

n=−∞
16n2π2βκ(16n2π2κ2 − β)λ2n2

, a12 =
∞∑

n=−∞
(β − 48n2π2κ2)λ2n2

, (93a)

a21 =
∞∑

n=−∞
4(2n − 1)2π2βκ(16n2π2κ2 − 16nπ2κ2 + 4π2κ2 − β)λ2n2−2n+1, (93b)

a22 =
∞∑

n=−∞
(48nπ2κ2 + β − 48n2π2κ2 − 12π2κ2)λ2n2−2n+1, (93c)

b1 =
∞∑

n=−∞
16n2π2κ2αβλ2n2

, (93d)

b2 =
∞∑

n=−∞
(16n2π2κ2αβ + 4π2κ2αβ − 16π2κ2nαβ)λ2n2−2n+1, (93e)

then system (92) can be written as matrix form(
a11 a12

a21 a22

)(
ρ

c

)
=

(
b1

b2

)
. (94)

Solving this system, we obtain

ρ = a12b2 − a22b1

a11a22 − a2
12

, c = a12b2 − a12b1

a11a22 − a2
12

. (95)

Thus, we obtain the one periodic wave solution of mGVE (35),

x = T + 6

α
(ln F)X + 3cT

αβ
+ x0, t = X, u = 6

α
(ln F)X X , (96)

where F and ρ, c are given by (85) and (95), respectively.

Remark 8: Figure 6 shows the periodic wave solution (96) for one choice of the parameters.

B. Asymptotic property of one periodic wave solution

It is of interest to investigate the asymptotic behaviour of the periodic wave solutions of mGVE.
First of all, we expand the system (94) into power series of λ,(

a11 a12

a21 a22

)
= A0 + A1λ + A2λ

2 + . . . , (97a)
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(
b1

b2

)
= B0 + B1λ + B2λ

2 + . . . , (97b)

(
ρ

c

)
= X0 + X1γ + X2γ

2 + . . . . (97c)

Substituting (97) into (94), we have the following recursion relations:

A0 X0 = B0, (98a)

A0 X1 + A1 X0 = B1, (98b)

A0 X2 + A2 X0 + A1 X1 = B2, (98c)

. . . , (98d)

A0 Xn + A1 Xn−1 + . . . + An X0 = Bn. (98e)

If the matrix A0 is reversible, solving (98) leads to

X0 = A−1
0 B0, Xn = A−1

0 (Bn −
n∑

j=1

A j Bn−1), n = 1, 2, . . . . (99)

If A0 and A1 are not inverse, but they take the following form:

A0 =
(

0 β

0 0

)
, A1 =

(
0 0

32π4κ3β − 8β2π2κ −24π2κ2 + 2β

)
, (100)

solving relations (98) leads to

X0 =
(

B I I
1 −(2β−24π2κ2)B I

0
32π4κ3β−8β2π2κ

B I
0

)
, (101a)

X1 =
(

(B2−A2 X0)I I −(2β−24π2κ2)B I
1

32π4κ3β−8β2π2κ

B I
1

)
, (101b)

Xn =

⎛
⎜⎜⎝

(Bn+1−
n+1∑
j=2

A j Xn+1− j )I I
1 −(2β−24π2κ2)(Bn+1−

n∑
j=2

A j Xn− j )I

32π4κ3β−8β2π2κ

(Bn+1 −
n∑

j=2
A j Xn− j )I

⎞
⎟⎟⎠ , n = 2, 3, . . . , (101c)

where V I and V I I denote the first and second component of a two dimensional vector V , respectively.
Thus, the relation between the one periodic wave solution (96) and the one soliton solution (52)

can be established as follows.

Theorem 4: Suppose that the vector (ρ, c)T is a solution of the system (94), and for the one
periodic wave solution (96), we let

κ = ω1

2π i
, γ = δ1 − πτ i

2π i
, (102)

where ω1, δ1 are the same as those in (52). Then we have the following asymptotic properties:

c → 0, ξ → η1 − πτ i

2π i
, ν(ξ, τ ) → 1 + eη1 , as λ → 0. (103)

In other words, the one periodic solution (96) tends to the one soliton solution (52) under λ → 0.
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Proof: By using (93), we write functions aij, bj, (i, j = 1, 2) as the series about λ and in term of
(97), we have

A0 =
(

0 β

0 0

)
, A1 =

(
0 0

32π4κ3β − 8β2π2κ −24π2κ2 + 2β

)
, (104a)

A2 =
(

32π2βκ(16π2κ2 − β) 2(β − 48π2κ2)
0 0

)
, (104b)

A5 =
(

0 0
72π2βκ(36π2κ2 − β) 0

)
, A3 = A4 = 0, . . . , (104c)

B1 =
(

0
8π2κ2αβ

)
, B2 =

(
32π2κ2αβ

0

)
, (104d)

B5 =
(

0
72π2κ2αβ

)
, B1 = B3 = B4 = 0, . . . . (104e)

Substituting (104) into formulas (101), we then obtain

X0 =
(

κα
4π2κ2−β

0

)
, X2 =

⎛
⎝ 8κα(β−12π2κ2)(16π2κ2−β)

(4π2κ2−β)2

32π2κ2αβ(16π2κ2−β)
β−4π2κ2

⎞
⎠ , X1 = 0, . . . , (105)

and thus

ρ = κα

4π2κ2 − β
+ 8κα(β − 12π2κ2)(16π2κ2 − β)

(4π2κ2 − β)2
λ2 + . . . , (106a)

c = 32π2κ2αβ(16π2κ2 − β)

β − 4π2κ2
λ2 + . . . , (106b)

which exactly implies that

c → 0. (107)

It remains to show that the one periodic wave (96) degenerates to the one soliton solution (52)
under the limit λ → 0. For this purpose, we first expand the periodic function ν(ξ ) in the form

ν(ξ, τ ) = 1 + (e2π iξ + e−2π iξ )λ + (e4π iξ + e−4π iξ )λ4 + . . . . (108)

By using the transformation (102), it follows that

ν(ξ, τ ) = 1 + eξ̄ + (e−ξ̄ + e2ξ̄ )λ2 + (e−2ξ̄ + e3ξ̄ )λ6 + . . . → 1 + eξ̄ , asλ → 0, (109)

where

ξ̄ = 2π iξ + π iτ = ω1 X + 2π iρT + δ1. (110)

Combining (102), (106), and (110) deduces that

ξ̄ = ω1 X − ω1α

ω2
1 + β

T + δ1 = ω1 X + ι1T + δ1, as λ → 0, (111)

or equivalently,

ξ → η1 − π iτ

2π i
, as λ → 0. (112)
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Again (109) and (111) immediately leads to

ν(ξ, τ ) → 1 + eη1 , as λ → 0. (113)

Therefore, we conclude that the one periodic solution (96) just goes to the one soliton solution (52)
as the amplitude λ → 0. �
V. CONCLUSIONS

In this paper, we investigate the integrability of the mGVE. The significant properties, such as
bilinear formulism, N soliton solutions, quasiperiodic solution, bilinear Bäcklund transformation,
Lax pair, and conservation laws that can characterize integrability of mGVE are discussed. Moreover,
the asymptotic analysis shows that the one periodic wave solution tends to the one soliton solution
under a small amplitude limit λ → 0. Furthermore, all the results of mGVE can reduced to the GVE
and standard VE under the special case of α = 1 and α = 1, β = 0, respectively.

The result demonstrates that binary Bell polynomial is a quick and succinct method in investi-
gating the integrabilities of NLEEs.

It would be specially mentioned that the transformation (38) with an arbitrary function in T,
which means we may obtain new N soliton solutions of mGVE as well as GVE and VE.

For instance, by virtue of the transformation W = 6(ln F)X + 
(T ), bilinear equation of the
VE is [

D3
X DT + D2

X + φ(T )D2
X

]
F · F = 0, (114)

which reduced to the known result as φ(T) = 0.12

Based on the Hirota direct method, the N soliton solutions of the VE can be obtained as follows:

U = 6
[

ln
( ∑

μ=0,1

e

n∑
j=1

μ j η j +
n∑

1≤ j<l
μ j μl A jl

)]
2X

, η j = k j X − 
(T )

k j
− T

k j
+ c j , (115)

where

eA jl = (k j − kl)2(k2
j − k j kl + k2

l )

(k j + kl)2(k2
j + k j kl + k2

l )
, ( j < l, j, l = 1, 2, 3, . . .), (116)

and
∑

μ=0,1
indicates the summation over all possible combination of μj = 0, 1(j = 1, 2, . . . ).

As is well known, VE describes the propagation of shortwave perturbations in a relaxing medium.
It is similar to the Kadomtsev-Petviashvili equation is a generalisation of the one-dimensional
Korteweg-de Vries equation. Therefore, another interesting question is how to construct the (2 + 1)-
dimensional extensions of the VE as well as its generalisations and investigate their potential physical
meaning. We will study in the near future.
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