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a b s t r a c t

The main objective of this paper is to study the simple zero soliton solutions
and multiple-zero soliton solutions of the reverse-time Manakov system by using
Riemann–Hilbert method. It is worth noting that the symmetry of discrete
scattering data for the reverse-time Manakov system is very different from the
local Manakov system. In addition, in order to better show the remarkable
characteristics of soliton solutions, we analyze the dynamic behavior of different
solutions.
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1. Introduction

It is well known that nonlinear partial differential equations (PDEs) play an important role in nonlinear
science, so it is crucial to study the properties of these PDEs [1]. Especially for a special class of
integrable PDE, it has been the goal of many scholars to study the properties of their soliton solutions,
breather solutions and rouge wave solutions. Among them, the most important equation was the nonlinear
Schrödinger (NLS) equation, which has been widely investigated for many years because it is a universal
model of many disciplines [2,3]. However, some more complex models cannot be described by NLS, so it
is necessary to study higher dimensional and more complex models. As a generalization of the classical
NLS equation, the Manakov system has more properties than NLS, and has clear physical significance.
It represents the propagation of optical pulse in birefringent fiber and wavelength division multiplexing
system [4]. Later, scholars found that the equation of PT symmetry also has good physical significance
and is also worth investigating. So many nonlocal equations have been found and studied, such as nonlocal
NLS, nonlocal mKdV, etc [5–7].
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In this paper, we mainly consider the reverse-time Manakov system

iut(x, t) + uxx(x, t) + 2[u(x, t)u(x, −t) + v(x, t)v(x, −t)]u(x, t) = 0,

ivt(x, t) + vxx(x, t) + 2[u(x, t)u(x, −t) + v(x, t)v(x, −t)]v(x, t) = 0.
(1)

he inverse scattering of the multicomponent nonlocal reverse-time NLS equations were obtained in [8], and
he Darboux transformation of system (1) was also studied in [9]. Inspired by their work, we will study
he simple zero N-soliton solutions and higher-order soliton solutions of the nonlocal reverse-time Manakov
ystem (1) in more detail, and give its dynamic behavior. Here we mainly use the Riemann–Hilbert method,
hich is the extension of the classical inverse scattering method [10,11]. Different from the work in [12], the
onlocal equation we studied remains the original form of the Manakov system, and is still a coupled system,
hich will produce more abundant forms of solutions.
The order of the paper is as follows. In Section 2, the symmetric relation and asymptotic property of the

cattering data matrix for the reverse-time Manakov system are analyzed, and the corresponding Riemann–
ilbert Problem (RHP) is constructed. Further, the determinant form of the N-soliton solutions of the

imple zero without reflection is given, and the dynamic behavior of various solitons is analyzed in detail.
n Section 3, the determinant form of multiple zeros N-soliton solutions is given by using the idea of limits,
nd the dynamic behavior diagram of the Higher order 2-soliton solution and Higher order 3-soliton solution
re shown.

. Inverse scattering transform for the reverse-time Manakov system

In order to maintain structural integrity, we briefly review the inverse scattering problem of the
everse-time Manakov system. The reverse-time Manakov system (1) admits the following Lax pair

Φx = MΦ, M = M(x, t; z) := −izΛ0 + U,

Φt = NΦ, N = N(x, t; z) := −3iz2Λ0 + 3zU + iΛ3(Ux − U2),
(2)

here Φ is the matrix eigenfunction, z is the spectral parameter and

Λ0 =

⎡⎣ 2 0 0
0 −1 0
0 0 −1

⎤⎦ , U(x, t) =

⎡⎣ 0 u(x, t) v(x, t)
−u(x, −t) 0 0
−v(x, −t) 0 0

⎤⎦ , Λ3 =

⎡⎣ 1 0 0
0 −1 0
0 0 −1

⎤⎦ ,

when x → ±∞, u(x, 0), v(x, 0) have the following behavior u(x, 0) → 0, v(x, 0) → 0. Under these conditions,
the spectral problems about Φ(x, t, z) satisfies Φ = Y e(−izx−3iz2t)Λ0 , and Y → I, x → ±∞. At the same
time, It is easy to find that Y satisfies the integral equation Y± = I ±

∫ x

±∞ eizΛ0(y−x)UY±eizΛ0(x−y)dy. By
nalyzing the integral equation, the following properties can be obtained

roposition 1. Dividing Y into columns as Y = (Y (1), Y (2), Y (3)), we have
• The column vectors Y

(1)
− and Y

(2)
+ , Y

(3)
+ are analytic for z ∈ C+ and continuous for z ∈ C+ ∪ R;

•The column vectors Y
(1)

+ and Y
(2)

− , Y
(3)

− are analytical for z ∈ C− and continuous for z ∈ C− ∪ R;
where C+ = {z | arg z ∈ (0, π)}, C− = {z | arg z ∈ (π, 2π)}.

Select the vector composition matrix analyzed in the upper half plane, denoted as N+:

N+ = (Y (1)
− , Y

(2)
+ , Y

(3)
+ ) = Y−H1 + Y+H2, (3)

here H1 = diag{1, 0, 0} and H2 = diag{0, 1, 1}. And N+ satisfies the asymptotic condition N+(x, λ) →
I, z ∈ C → ∞. In addition, the two different forms of solutions for the space part of the Lax equation must
+

2
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be linearly correlated, thereby introducing the scattering matrix S through the following expression

Y−(x, z, t)e−izxΛ0 = Y+(x, z, t)e−izxΛ0S(z), S(z) =

⎛⎝ s11(z) s12(z) s13(z)
s21(z) s22(z) s23(z)
s31(z) s32(z) s33(z)

⎞⎠ . (4)

Meanwhile, it is easy to verify that Y −1 satisfies the adjoint equation of Lax Eq. (2) and also satisfies the
boundary condition Y −1 → I as x → ±∞.

Proposition 2. Taking the similar procedure as above denote matrices Y −1 as a collection of rows Y −1 =
(Y −1[1]

, Y −1[2]
, Y −1[3])T

• The row vectors Y −1
+

[1] and Y −1
−

[2]
, Y −1

−
[3] are analytic for z ∈ C+ and continuous for z ∈ C+ ∪ R.

•The row vectors Y −1
−

[1] and Y −1
+

[2]
, Y −1

+
[3] are analytical for z ∈ C− and continuous for z ∈ C− ∪ R.

In order to construct RHP, the vector composition matrix analyzed in the lower half plane chosen as N−1
−

N−1
− = H1Y −1

− + H2Y −1
+ (5)

and by inverting both sides of Eq. (4), we can obtain

eizxΛ0Y −1
− = S−1(z)eizxΛ0Y −1

+ , S−1(z) = S̆(z) =

⎛⎝ s̆11(z) s̆12(z) s̆13(z)
s̆21(z) s̆22(z) s̆23(z)
s̆31(z) s̆32(z) s̆33(z)

⎞⎠ . (6)

Through direct calculation, we can get that N−1
− also satisfies the same boundary condition N−1

− (x, λ) →
I, z ∈ C− → ∞. In addition, Y satisfies the time equation, and the time evolution of the scattering matrix
S(z) and S̆(z) can be obtained according to Eqs. (2), (4) and (6), we have

St + 3iz2 [Λ0, S] = 0, S̆t + 3iz2
[
Λ0, S̆

]
= 0.

Hence, the RHP of the reverse-time Manakov system is

Riemann-Hilbert Problem 1. The matrix function N(z; x, t) has the following properties:

• Analyticity : N(z, x, t) is analytic function in z ∈ C±;
• Jump condition: N+(z, x, t) = N−(z, x, t)V (z), z ∈ R;
• Normalization : N(z, x, t) = I + O(z), as z → ∞.

Where the jump matrix is V = Θ

⎛⎝ 1 s̆12 s̆13
s21 1 0
s31 0 1

⎞⎠Θ−1, Θ = e−izxΛ0−3iz2tΛ0 . If N± is expanded as

N± = I +
N

(1)
±
z +

N
(2)
±
z2 + O

( 1
z3

)
, after a simple calculation, it can be obtained that

u(x, t) = 3i(N (1)
+ )12, v(x, t) = 3i(N (1)

+ )13.

Another important aspect is symmetry. As a special case of multi-component reverse-time NLS [13], the
ymmetry of the reverse-time Manakov system is also Y −1(x, t, z) = Y T (x, −t, −z), where superscript ‘T ’
epresents the transposition of a matrix. This means that (z, −z) is a pair of spectral parameters, which is
ifferent from the distribution of spectral parameters of the local Manakov system. Further,

N−1
− (x, t, z) = NT

+ (x, −t, −z), (7)

hen we have S−1(x, t, z) = S̆(z) = ST (x, −t, −z).

3
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As we all know, for the regular RHP, its solution is easy to be given by the Plemelj formula as det(N+) =
11 ̸= 0 and det(N−1

− ) = s̆11 ̸= 0. We need to pay more attention to the non-regular case. In other words,
et(N+) = s11 = 0 and det(N−1

− ) = s̆11 = 0 at some points. Let us first assume that these zeros are simple
nd there are N zeros. Therefore, each kerN+(zk) contains only one base column vector, which is represented
y vk(x, t, zk), and each kerN−1

− (z̆k) is a single base row vector, represented by v̆k(x, t, z̆k). So we have the
ollowing expression

N+(zk)vk(x, t, zk) = 0, v̆k(x, t, z̆k)N−1
− (z̆k) = 0,

ith Eq. (7), it can be deduced that v̆k(x, t, z̆k) = vT
k (x, −t, −zk). With the help of Ref. [10], we know that

k = e(−izkx−3iz2
kt)Λ0wk and v̆k = w̆ke(iz̆kx+3iz̆2

kt)Λ0 , where wk = (ak, bk, ck)T and w̆k = (ăk, b̆k, c̆k) are an
rbitrary constant vector, according to the symmetry, we can deduce ăk = aT

k , b̆k = bT
k , c̆k = cT

k . Based on
he Yang method, we can perfectly give the solution of the reverse-time Manakov system

u = 3i
detF

detM
, v = 3i

detG

detM
, (8)

here

Mjk =
ajaT

k e−2i(zj+zk)[x−3(zj−zk)t] +
(
bjbT

k + cjcT
k

)
ei(zj+zk)[x−3(zj−zk)t]

zk + zj
,

F =

⎛⎜⎜⎜⎜⎜⎜⎝
M11 M12 · · · M1n bT

1 eiz1x−3iz2
1t

M21 M22 · · · M2n bT
2 eiz2x−3iz2

2t

...
...

. . .
...

...
Mn1 Mn2 · · · Mnn bT

n eiznx−3iz2
nt

a1e−2iz1x−6iz2
1t a2e−2iz2x−6iz2

2t · · · ane−2iznx−6iz2
nt 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

G =

⎛⎜⎜⎜⎜⎜⎜⎝
M11 M12 · · · M1n cT

1 eiz1x−3iz2
1t

M21 M22 · · · M2n cT
2 eiz2x−3iz2

2t

...
...

. . .
...

...
Mn1 Mn2 · · · Mnn cT

n eiznx−3iz2
nt

a1e−2iz1x−6iz2
1t a2e−2iz2x−6iz2

2t · · · ane−2iznx−6iz2
nt 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Next, we will analyze the specific properties of soliton solutions in detail.
1 − soliton solution
The form of 1-soliton solution for the reverse-time Manakov system can be obtained as N = 1

u = − 6iabze−9iz2t

a2e−3izx + (b2 + c2)e3izx
, v = − 6iacze−9iz2t

a2e−3izx + (b2 + c2)e3izx
. (9)

When z is pure imaginary, they can be simplified as a fundamental solitons, which are stationary and
bounded. When z is general, it can be seen from the expression that the amplitude of the soliton solutions are
determined by the imaginary part. When Im(z) > 0, the amplitude of the soliton solutions increase with
time. On the contrary, when Im(z) < 0, the amplitude of the soliton solutions decrease with time, until
they disappear. In Fig. 1, we show two forms of soliton solutions. The basic 1-soliton solution parameters in
Figs. 1(a) and 1(b) are a = b = c = 1, z = i, and the general 1-soliton solution parameters in Figs. 1(c) and
1(d) are a = 1, b = 1

10 , c = i, z = 1
10 + 3

10 i.
2 − soliton solution
When N = 2 in Eq. (8), we get the two soliton solutions of the nonlocal reverse-time Manakov system.

n the form of
u = −6i(z1 + z2) F

, v = −6i(z1 + z2) G
, (10)
M M
4
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Fig. 1. 1-soliton solution for the nonlocal reverse-time Manakov system. (a) Basic 1-soliton solution of |u|; (b) Basic 1-soliton solution
f |v|; (c) General 1-soliton solution of |u|;(d) General 1-soliton solution of |v|.

here

F = (a1b1b2
2z2

1 − a1b1b2
2z1z2 + a1b1c2

2z2
1 + a1b1c2

2z1z2 − 2a1b2c1c2z1z2)e−i(9tiz2
1+xz1−2xz2)

+
(
−a2b2

1b2z1z2 + a2b2
1b2z2

2

−2a2b1c1c2z1z2 + a2b2c2
1z1z2 + a2b2c2

1z2
2
)

ei(−9tz2
2+2xz1−xz2)

+ (−a2
1a2b2z1z2 + a2

1a2b2z2
2)e−i(9tz2

2+4xz1+xz2)

+ (a1a2
2b1z2

1 − a1a2
2b1z1z2)e−i(9tz2

1+xz1+4xz2),

G = (−2a1b1b2c2z1z2 + a1b2
2c1z2

1 + a1b2
2c1z1z2 + a1c1c2

2z2
1 − a1c1c2

2z1z2)e−i(9tz2
1+xz1−2xz2)

+
(
a2b2

1c2z1z2 + a2b2
1c2z2

2

−2a2b1b2c1z1z2 − a2c2
1c2z1z2 + a2c2

1c2z2
2
)

ei(−9tz2
2+2xz1−xz2)

+ (a1a2
2c1z2

1 − a1a2
2c1z1z2)e−i(9tz2

1+xz1+4xz2)

+ (−a2
1a2c2z1z2 + a2

1a2c2z2
2)e−i(9tz2

2+4xz1+xz2),

M = (a2
1a2

2z2
1 − 2a2

1a2
2z1z2 + a2

1a2
2z2

2)e−4ix(z1+z2) + (a2
1b2

2z2
1 + 2a2

1b2
2z1z2 + a2

1b2
2z2

2 + a2
1c2

2z2
1 + 2a2

1c2
2z1z2

+ a2
1c2

2z2
2)e−2ix(2z1−z2)

+ (−4a1a2b1b2z1z2 − 4a1a2c1c2z1z2)e−i(9tz1−9tz2+x)(z1+z2)

+ (−4a1a2b1b2z1z2 − 4a1a2c1c2z1z2)ei(9tz1−9tz2−x)(z1+z2)

+ (a2
2b2

1z2
1 + 2a2

2b2
1z1z2 + a2

2b2
1z2

2 + a2
2c2

1z2
1 + 2a2

2c2
1z1z2 + a2

2c2
1z2

2)e2ix(z1−2z2)

+
(
b2

1b2
2z2

1 − 2b2
1b2

2z1z2 + b2
1b2

2z2
2 + b2

1c2
2z2

1

+2b2
1c2

2z1z2 + b2
1c2

2z2
2 − 8b1b2c1c2z1z2 + b2

2c2
1z2

1 + 2b2
2c2

1z1z2 + b2
2c2

1z2
2 + c2

1c2
2z2

1 − 2c2
1c2

2z1z2 + c2
1c2

2z2
2
)

× e2ix(z1+z2)

Based on the symmetry of the above spectral parameters, we consider several relationships between the two
eigenvalues:

• Re(z1) = Re(z2) = 0, Im(z1) ̸= Im(z2), u(x, t) and v(x, t) are pure imaginary two soliton solutions,
and they are bound solitons. Select different values of ak, bk and ck, k = 1, 2, and there are soliton solutions
with different amplitudes. Figs. 2(a) and 2(b) show the corresponding display diagram with

z1 = 2i, a1 = 1, b1 = 1, c1 = 1
10 , z2 = i, a2 = 1, b2 = 1, c2 = 1.

• Re(z1) ̸= Re(z2), Im(z1) = Im(z2) and Re(z1) = −Re(z2), u(x, t) and v(x, t) are ordinary two soliton
solutions without singularity. Except that the amplitude at the intersection will collapse or become larger,
the amplitude at other places will not change with time. We show the dynamic diagram in Figs. 2(c) and
5
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Fig. 2. Two-soliton solution for the Manakov system. (a) Pure imaginary 2 soliton solution of |u|; (b) Pure imaginary 2 soliton
solution of |v|; (c) Ordinary two soliton solution of |u|;(d) Ordinary two soliton solution of |v|.

Fig. 3. Two-soliton solution for the reverse-time Manakov system. (a)Singular 2-soliton solution of |u|; (b) Singular 2-soliton solution
f |v|; (c) The 2-soliton solution of the amplitude gradual transformation of |u|; (d) The 2-soliton solution of the amplitude gradual
ransformation of |v|.

(d), and the corresponding parameters selection are

z1 = 1 + i, a1 = 1, b1 = 1, c1 = i

10 , z2 = −1 + i, a2 = 1, b2 = 1, c2 = 1
10 .

• Re(z1) ̸= Re(z2), Im(z1) ̸= Im(z2), u(x, t) and v(x, t) are singular two soliton solutions. We show the
ynamic graph in Figs. 3(a) and 3(b), and the corresponding parameters are

z1 = 1
10 + 1

4 i, a1 = 1, b1 = 1, c1 = 1, z2 = − 1
20 + 1

2 i, a2 = 1, b2 = 1, c2 = 1
2 .

• Re(z1) ̸= Re(z2), Im(z1) = Im(z2) and Re(z1) ̸= −Re(z2), u(x, t) and v(x, t) are composed of two
oliton solutions with varying amplitude. And when |Re(z1)| > |Re(z2)|, the amplitude of the soliton solution
ncreases with time, when |Re(z1)| < |Re(z2)|, the amplitude of the soliton solution decreases with time. We
isplay the dynamic graph in Figs. 3(c) and 3(d), and the parameters are

z1 = 1
5 + 1

10 i, a1 = 1, b1 = i, c1 = i

2 , z2 = −1
8 + 1

10 i, a2 = 1, b2 = 1, c2 = 1
3 .

For more simple zero point soliton solutions, after our analysis, they satisfy the nonlinear superposition.
ue to the complexity of their expressions, we will not show specific forms.

. Higher-order soliton solutions of the reverse-time Manakov system

In this section, we mainly consider the case of multiple zeros, that is, detN+ =
∏

(z − zj)rj , detN− =
(z̆−z̆j)rj , rj ≥ 2. At this time, we use the idea of limit to solve. According to the previous simple zero point,

the perturbation spectrum parameters αj = zj + ε ∈ C+, ᾰj = z̆j + ε̆ ∈ C−, j = 1, 2..., N are introduced,
nd their corresponding kernel vectors are

(−iαkx−3iα2
kt)Λ0 T ˘ (iᾰkx+3iᾰ2

kt)Λ0
vk(αk) = e (ak(ε), bk(ε), ck(ε)) , v̆k(ᾰk) = (ăk(ε̆), bk(ε̆), c̆k(ε̆))e .

6
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Fig. 4. Higher order soliton solutions for the reverse-time Manakov system. (a) Higher order 2-soliton solution of |u|; (b) Higher
rder 2-soliton solution of |v|; (c) Higher order 3-soliton solution of |u|; (d) Higher order 3-soliton solution of |v|.

Expand the above disturbance term at ε = 0, ε̆ = 0, and record them as

vk(zk, ε) =

⎡⎣ ∞∑
j=0

v
[j]
k,1εj ,

∞∑
j=0

v
[j]
k,2εj ,

∞∑
j=0

v
[j]
k,3εj

⎤⎦T

, v̆k (z̆k, ε̆) =

⎡⎣ ∞∑
j=0

v̆
[j]
k,1ε̆j ,

∞∑
j=0

v̆
[j]
k,2ε̆j ,

∞∑
j=0

v̆
[j]
k,3ε̆j

⎤⎦ .

In the expansion, let ε, ε̆ tend to zero. Bring them into Eq. (8) and obtain the N-soliton solution form of
multiple zeros

u = 3i
detF̃

detM̃
, v = 3i

detG̃

detM̃
, (11)

here F̃ and G̃ are matrices of order (N + 1) × (N + 1)

F̃ =
(

M̃ X
Y 0

)
, G̃ =

(
M̃ H
Y 0

)
,

(M̃)[l1,l2]
k,j = lim

ε,ε̆→0

1
(l1 − 1)! (l2 − 1)!

∂l1+l2−2

∂ε̆l1−1∂εl2−1

[
v̆k (z̆k, ε̆) vj (zj , ε)

zj + ε − z̆k − ε̆

]
,

X =
[
v̆

[0]
1,2, v̆

[1]
1,2, . . . , v̆

[r1−1]
1,2 , v̆

[0]
2,2, v̆

[1]
2,2, . . . , v̆

[r2]
2,2 , . . . , v̆

[0]
n,2, v̆

[1]
n,2, . . . , v̆

[rn−1]
n,2

]T

,

Y =
[
v

[0]
1,1, v

[1]
1,1, . . . , v

[r1−1]
1,1 , v

[0]
2,1, v

[1]
2,1, . . . , v

[r2]
2,1 , . . . , v

[0]
n,1, v

[1]
n,1, . . . , v

[rn−1]
n,1

]
,

H =
[
v̆

[0]
1,3, v̆

[1]
1,3, . . . , v̆

[r1−1]
1,3 , v̆

[0]
2,3, v̆

[1]
2,3, . . . , v̆

[r2]
2,3 , . . . , v̆

[0]
n,3, v̆

[1]
n,3, . . . , v̆

[rn−1]
n,3

]T

.

According to the symmetry of the above spectral parameters, z = −z so ε̆ = −ε. Due to the complexity of
the expression, we present the dynamic behavior diagrams of the simplest higher-order two-soliton solution
and higher-order three-soliton solution of the nonlocal reverse-time Manakov system in Fig. 4 (a–d).

From the dynamic behavior diagram of higher-order soliton solution in Fig. 4, we can see that for
pure imaginary higher-order two-soliton solution and higher-order three-soliton solution, the amplitude is
determined by the sign of the imaginary part. At large t, it is the motion of two parallel solitons, like
the mutual approximation process of two simple two-soliton solutions and three-soliton solutions, which
is consistent with the limit idea in our calculation. Fig. 4 shows the most fundamental higher-order soliton
solution, with common parameters of a = b = c = 1, z = i. In addition, r1 = 2, rj = 0, j = 2..n in Fig. 4(a)
and (b), r1 = 3, rj = 0, j = 2..n in Fig. 4(c) and (d).

Data availability
No data was used for the research described in the article.
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