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Abstract In this work, we mainly consider the Cauchy problem for the reverse space-time nonlocal Hirota

equation with the initial data rapidly decaying in the solitonless sector. Start from the Lax pair, we first construct

the basis Riemann-Hilbert problem for the reverse space-time nonlocal Hirota equation. Furthermore, using the

approach of Deift-Zhou nonlinear steepest descent, the explicit long-time asymptotics for the reverse space-time

nonlocal Hirota is derived. For the reverse space-time nonlocal Hirota equation, since the symmetries of its

scattering matrix are different with the local Hirota equation, the ϑ(λi) (i = 0, 1) would like to be imaginary,

which results in the δ0λi
contains an increasing t

±Imϑ(λi)
2 , and then the asymptotic behavior for nonlocal Hirota

equation becomes differently.
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1 Introduction

In recent years, more and more scholars pay attention to nonlocal integrable equations in the
area of integrable systems. The nonlocal nonlinear Schrödinger (NLS) equation

iqt + qxx + 2q2q∗(−x, t) = 0 (1.1)

was first introduced by Ablowitz and Musslimani, and they derived its soliton solutions through
the method of inverse scattering transform(IST)[2, 3]. The nonlocal NLS equation(1.1) contains
the PT symmetric potential which is invariant under the transformation x → −x and complex
conjugation. The IST for the nonlocal NLS equation with nonzero boundary conditions at
infinity was studied in Ref.[1]. It is worth mentioning that the long-time asymptotics for
the integrable nonlocal NLS equation with decaying boundary conditions has been presented
in Ref.[23]. Moreover, other nonlocal integrable equations were also investigated including
nonlocal Davey-Stewartson equations, nonlocal modified KdV equation, nonlocal sine-Gordon
equation, nonlocal derivative NLS equation, etc.[17, 21, 27, 28, 33, 35].

Recently, the reverse space-time nonlocal Hirota equation

iqt + α
[
qxx − 2q2q(−x,−t)

]
+ iβ [qxxx − 6qq(−x,−t)qx] = 0 (1.2)
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was introduced by Cen, Correa and Fring in 2019[6] as a PT symmetric reduction (r =
q(−x,−t)) of the following system:

iqt + α[qxx − 2q2r] + iβ[qxxx − 6qrqx] = 0,

irt − α[rxx − 2qr2] + iβ[rxxx − 6qrrx] = 0,
(1.3)

where α, β ∈ R. These two equations are transformed into each other by means of a PT -
symmetry transformation. This reduction leads to (1.2) and is consistent with the PT -symmetry
condition: if q(x, t) is a solution of (1.4), then q(−x,−t) is a solution as well. The other types of
integrable nonlocal Hirota equation are also introduced in Ref. [6] including the reverse space
nonlocal Hirota equation, reverse time nonlocal Hirota equation and the conjugate reverse space-
time nonlocal Hirota equation. The multi-soliton solutions of these nonlocal Hirota equations
have been generated by DarbouxCrum transformations and Hirota bilinear method[6]. The
conjugate reverse space-time nonlocal Hirota equation with nonzero boundary conditions was
investigated via Riemann-Hilbert(RH) method[19]. Soliton solutions of the conjugate reverse
space nonlocal Hirota equation were obtained by the IST method and Darboux transformation
method in Ref. [15] and Ref. [16], respectively. Using the Darboux transformation, some types
of exact solutions of the reverse space-time nonlocal Hirota equation were found in Ref. [29].

In 1967, the IST was used to solve the KdV equation with Lax pairs by Gardner et al. for the
first time[9]. Since then, it played an increasingly important role in finding the exact solutions
for integrable systems. Later on, a modern version of IST method, named RH formulation, was
developed by Zakharov et al.[32], and then the exact solutions and long-time asymptotics of
various integrable equations were investigated using RH formulation[5, 20, 25, 31, 34]. It is worth
mentioning that Pelinovsky and Shimabukuro proved the existence of global solutions to the
derivative NLS equation on the line from the perspective of inverse scattering transform based
on the representation of a RH problem, which is a milestone in the development of IST[18].
And what’s more, in 1993, Deift-Zhou put forward the nonlinear steepest descent method for
the first time to solve the oscillatory RH problem and derive the long-time asymptotics of solu-
tions for the modified KdV equation[8]. After that, this method has been employed to discuss
the asymptotic analysis in a variety of integrable models[4, 7, 10–12, 14, 26, 30]. In 2019, Dmitry
Shepelsky et al. applied this method to study the long-time behavior of solutions to the initial
boundary value problem of nonlocal NLS equations[23]. Recently, they have extended the Deift-
Zhou method to study the long-time asymptotic behavior of nonlocal integrable NLS solutions
with nonzero boundary conditions and step-like initial data, respectively[22, 24]. Besides, the
Deift-Zhou nonlinear steepest-descent method was used to analyze the long-time asymptotics
for the solution of the nonlocal mKdV equation[13].

As we know, long-time asymptotics for the reverse space-time nonlocal Hirota equation
(1.2) has not been reported. In this paper, we are committed to the Cauchy problem for the
so-called defocusing reverse space-time nonlocal Hirota equation

iqt + α
[
qxx − 2q2q(−x,−t)

]
+ iβ [qxxx − 6qq(−x,−t)qx] = 0, x ∈ R, t > 0,

q(x, 0) = q0(x),
(1.4)

with the initial data q0(x) belonging to the Schwartz space and rapidly decaying to 0 as | x |→
∞. For the nonlocal Hirota equation, except to the symmetries of its Lax pair are different
with the local Hirota equation, another major difference is that ϑ(λi)(i = 0, 1) are imaginary

in our case, which leads to the δ0λi
contains an increasing t

±Imϑ(λi)

2 , and then the asymptotic
behavior for nonlocal Hirota equation will behave differently. The pivotal result of this paper
is generalized in what follows:

Theorem 1.1. Let q(x, t) be the solution of the Cauchy problem of the reverse space-time
nonlocal Hirota equation(1.4) with q0(x) lying in the Schwartz space. As t → ∞, for α2−3β t

x >
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0, the leading asymptotics of the solution q(x, t) is

q(x, t) =

√
πt−

1
2−Imϑ(λ0)e4iλ

2
0t(4βλ0+α)+2χ0(λ0)+

πϑ(λ0)
2 +πi

4 +iReϑ(λ0) ln t+iϑ(λ0) ln(32λ
2
0(α+6βλ0))

√
α+ 6βλ0r1(λ0)Γ(iϑ(λ0))

+

√
πt−

1
2+Imϑ(λ1)e4iλ

2
1t(4βλ1+α)+2χ1(λ1)−π

2 ϑ(λ1)+
πi
4 −iReϑ(λ1) ln t−iϑ(λ1) ln(32λ

2
1(α+6βλ1))

√
α+ 6βλ1r1(λ1)Γ(−iϑ(λ1))

+O(t−
1
2−max{|Imϑ(λ0)|,|Imϑ(λ1)|}), (1.5)

with

λ0 =
−α−

√
α2 − 3β x

t

6β
, λ1 =

−α+
√
α2 − 3β x

t

6β
,

χ0(λ) =
1

2πi

∫ λ1

λ0

ln

(
1− r1(s)r2(s)

1− r1(λ0)r2(λ0)

)
ds

s− λ
,

χ1(λ) =
1

2πi

∫ λ1

λ0

ln

(
1− r1(s)r2(s)

1− r1(λ1)r2(λ1)

)
ds

s− λ
,

ϑ(λ0) = − 1

2π
ln(1− r1(λ0)r2(λ0)),

ϑ(λ1) = − 1

2π
ln(1− r1(λ1)r2(λ1)),

(1.6)

where Γ is Gamma function, and r1(λ), r2(λ) are the reflection coefficients.

This paper is organized as follows. In section 2, we perform the direct scattering theory
to generate the associated RH problem, further the phase analysis is discussed in detail. In
section 3, the nonlinear steepest descent method is used to analyse the long-time asymptotics
of the solution for the reverse space-time nonlocal Hirota equation.

2 Inverse Scattering Transform and the Riemann-Hilbert Problem

At the very start, we should carry out the direct scattering analysis to construct the basis
RH problem for the nonlocal Hirota equation (1.4), which is a compatibility condition of the
following Lax pair[6]

ϕx =Xϕ, X ≡

(
−iλ q(x, t)

q(−x,−t) iλ

)
, ϕt = Tϕ, T ≡

(
Q B

C −Q

)
,

Q =− iαqq(−x,−t)− 2iαλ2 + β
[
q(−x,−t)qx + qqx(−x,−t)− 4iλ3 − 2iλqq(−x,−t)

]
,

B =iαqx + 2αλq + β
[
2q2q(−x,−t)− qxx + 2iλqx + 4λ2q

]
,

C =iαqx(−x,−t) + 2αλq(−x,−t)

+ β
[
2qq(−x,−t)2 − qxx(−x,−t) + 2iλqx(−x,−t) + 4λ2q(−x,−t)

]
,

(2.1)

where λ means the spectral parameter, ϕ = ϕ (x, t;λ) is the eigenfunction.
As x → ±∞, due to the initial data rapidly decaying, the Lax pair (2.1) turns into

ϕ∞
x = X0ϕ

∞ = −iλσ3ϕ
∞, ϕ∞

t = T0ϕ
∞ = (2αλ+ 4βλ2)X0ϕ

∞, (2.2)

where σ3 represents one of the following Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (2.3)
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We can easily find that the Eq.(2.2) arrives at the following fundamental matrix solution

ϕ∞(x, t;λ) = e−iθ(x,t;λ)σ3 , θ(x, t;λ) = λ(x+
[
2αλ+ 4βλ2

]
t). (2.4)

Taking D+, D− and Σ on λ-plane as D± = {λ ∈ C|Imλ ≷ 0} ,Σ = R, the Jost solutions
ϕ±(x, t;λ) are

ϕ±(x, t;λ) = e−iθ(x,t;λ)σ3 + o(1), λ ∈ Σ, as x → ±∞. (2.5)

Through the variable transformation

µ±(x, t;λ) = ϕ±(x, t;λ)e
iθ(x,t;λ)σ3 , (2.6)

the spectral problem (2.1) can be solved as the following Jost solutions µ±, given by{
µ− = I +

∫ x

−∞ exp [−iλσ3 (x− y)] (X −X0)µ− exp [iλσ3 (x− y)] dy,

µ+ = I −
∫ +∞
x

exp [−iλσ3 (x− y)] (X −X0)µ+ exp [iλσ3 (x− y)] dy.
(2.7)

Proposition 2.1. Suppose q ∈ L1(R±), then µ±(x, t, λ) given in Eq.(2.7) satisfy the following
properties:
• µ−1(x, t, λ) and µ+2(x, t, λ) is analytical in D+ and continuous in D+ ∪ Σ;
• µ+1(x, t, λ) and µ−2(x, t, λ) is analytical in D− and continuous in D− ∪ Σ;
• µ±(x, t, λ) → I as λ → ∞;
• detµ±(x, t, λ) = 1, x, t ∈ R, λ ∈ Σ.

Since the Jost solutions ϕ±(x, t, λ) are the simultaneous solutions of Lax pair (2.1), they can
meet the following linear relation contacted by a scattering matrix S(λ) = (sij(λ))2×2, given
by

ϕ−(x, t, λ) = ϕ+(x, t, λ)S(λ), λ ∈ Σ, (2.8)

of which the scattering coefficients can be written into what follows

s11(λ) = Wr(ϕ−1, ϕ+2), s12(λ) = Wr(ϕ−2, ϕ+2),

s21(λ) = Wr(ϕ+1, ϕ−1), s22(λ) = Wr(ϕ+1, ϕ−2).
(2.9)

Proposition 2.2. Suppose q ∈ L1(R±), then the scattering matrix S(λ) has the following
properties:
• detS(λ) = 1 for λ ∈ Σ;
• s11(λ) is analytical in D+ and continuous in D+ ∪ Σ;
• s22(λ) is analytical in D− and continuous in D− ∪ Σ;
• S(x, t, λ) → I as λ → ∞.

Furthermore, we need to study the symmetries of the Jost solutions ϕ(x, t, λ) and scattering
matrix S(λ) for the nonlocal Hirota equation. The detail reduction conditions for X(x, t, λ)
and T (x, t, λ) in the Lax pair (2.1) on λ-plane are as follows:

X(x, t, λ) = −σ2X(−x,−t, λ)σ2, T (x, t, λ) = −σ2T (−x,−t, λ)σ2, (2.10)

which results in the Jost solutions Ψ(x, t, λ), and scattering matrix S(λ) has the following
reduction conditions on λ-plane:

ϕ±(x, t, λ) = σ2ϕ∓(−x,−t, λ)σ2, S(λ) = σ2S
−1(λ)σ2, (2.11)
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which means s12(λ) = s21(λ), and s11(λ), s22(λ) are not directly related. This is different from
the case of local Hirota equation.

According to the analyticity of Jost solutions µ±(x, t, λ) in Proposition 2.1, we can define
the following sectionally meromorphic matrices

M+(x, t, λ) =
(µ−1

s11
, µ+2

)
, M−(x, t, λ) =

(
µ+1,

µ−2

s22

)
, (2.12)

where ± denote analyticity in D+ and D−, respectively. Then, a matrix RH problem is gener-
ated:

Riemann-Hilbert Problem. M(x, t, λ) solves the following RH problem:
M(x, t, λ) is analytic in C \ Σ,
M+(x, t, λ) = M−(x, t, λ)J(x, t, λ), λ ∈ Σ,

M(x, t, λ) → I, λ → ∞,

(2.13)

of which the jump matrix J(x, t, λ) is

J(x, t, λ) =

(
1− r1(λ)r2(λ) −r2(λ)e

−2iθ(x,t,λ)

r1(λ)e
2iθ(x,t,λ) 1

)
, (2.14)

where r1(λ) =
s21(λ)
s11(λ)

, r2(λ) =
s12(λ)
s22(λ)

.

Let

M(x, t, λ) = I +
1

λ
M1(x, t;λ) +O

( 1

λ2

)
, λ → ∞, (2.15)

then the potential q(x, t) of the nonlocal Hirota equation (1.4) is given by

q(x, t) = 2i [M1]12 (x, t, λ) = 2i lim
λ→∞

λ [M ]12 (x, t, λ). (2.16)

3 The Long-time Behavior for the Nonlocal Hirota Equation

In this section, we primarily devote to discuss the long-time behavior for the nonlocal Hirota
equation(1.4). Let’s start with phase analysis, in terms of the works of Deift and Zhou[8], we

take df
dλ = 0, and then the stationary points of the function f are λ0 =

−α−
√

α2−3βξ

6β , λ1 =

−α+
√

α2−3βξ

6β for α2 − 3βξ > 0, there we have defined f = λ(ξ + 2αλ+ 4βλ2), ξ = x
t , and the

signature distribution for Re (if) is shown in Figure 3.1. The steepest decent contours are

L : {λ = λ1 + λ1ρe
3πi
4 : −∞ < ρ ≤

√
2} ∪ {λ = λ0 − λ0ρe

πi
4 : −∞ < ρ ≤

√
2},

L∗ : {λ = λ1 + λ1ρe
− 3πi

4 : −∞ < ρ ≤
√
2} ∪ {λ = λ0 − λ0ρe

−πi
4 : −∞ < ρ ≤

√
2}.

(3.1)

3.1 Factorization of the Jump Matrix and Contour Deformation

We decompose the jump matrix J(x, t, λ) into following two cases:

J =



(
1 −r2e

−2ift

0 1

)(
1 0

r1e
2ift 1

)
,

 1 0

r1e
2ift

1− r1r2
1

 1− r1r2 0

0
1

1− r1r2

 1 −r2e
−2ift

1− r1r2
0 1

 .

(3.2)
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Figure 3.1. The signature table for Re(if) in the complex λ-plane.

Then, we define a RH problem for the function δ(λ){
δ+(λ) = (1− r1(λ)r2(λ))δ−(λ), λ ∈ (λ1, λ2),

δ(λ) → 1, λ → ∞,
(3.3)

which can be solved by the Plemelj formula as

δ(λ) = exp
{ 1

2πi

∫ λ1

λ0

ln(1− r1(s)r2(s))

s− λ
ds
}

=
(λ− λ1

λ− λ0

)iϑ(λ0)

eχ0(λ) =
(λ− λ1

λ− λ0

)iϑ(λ1)

eχ1(λ), (3.4)

where

χ0(λ) =
1

2πi

∫ λ1

λ0

ln

(
1− r1(s)r2(s)

1− r1(λ0)r2(λ0)

)
ds

s− λ
,

χ1(λ) =
1

2πi

∫ λ1

λ0

ln

(
1− r1(s)r2(s)

1− r1(λ1)r2(λ1)

)
ds

s− λ
,

ϑ(λ0) = − 1

2π
ln(1− r1(λ0)r2(λ0)),

ϑ(λ1) = − 1

2π
ln(1− r1(λ1)r2(λ1)),

(3.5)

so that

Imϑ(λi) = − 1

2π

∫ λi

−∞
d arg(1− r1(s)r2(s)), i = 0, 1. (3.6)

Assuming that
∫ λi

−∞ d arg(1− r1(s)r2(s)) ∈ (−π, π), we have

|Imϑ(λ)| < 1

2
, λ ∈ R, (3.7)

then we get that ln(1− r1(λ)r2(λ)) is single-valued, and the singularity of δ(λ, ξ) at λ = λ0 and
λ = λ1 is square integrable.

Let

M (1)(x, t;λ) = M(x, t;λ)δ−σ3(λ), (3.8)
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then M (1) solves the RH problem on the jump contour R shown in Figure 3.2,{
M

(1)
+ (x, t;λ) = M

(1)
− (x, t;λ)J (1)(x, t;λ), λ ∈ R = Σ(1),

M (1)(x, t;λ) → I, λ → ∞,
(3.9)

where

J (1) =

(
1 0

γ1(λ)e
2iftδ−2

− 1

)(
1 −γ2(λ)e

−2iftδ2+
0 1

)
, (3.10)

the functions γ1(λ), γ2(λ) are defined as

γ1(λ) =


r1(λ)

1− r1(λ)r2(λ)
, λ0 < λ < λ1,

−r1(λ), λ < λ0 ∪ λ > λ1,

γ2(λ) =


r2(λ)

1− r1(λ)r2(λ)
, λ0 < λ < λ1,

−r2(λ), λ < λ0 ∪ λ > λ1.

(3.11)

Figure 3.2. The jump contour R = Σ(1).

Performing the decomposition J (1) = (b−)
−1b+, where

b− =

(
1 0

−γ1(λ)e
2iftδ−2

− 1

)
, b+ =

(
1 −γ2(λ)e

−2iftδ2+
0 1

)
, (3.12)

and taking

M (2) =


M (1)(λ), λ ∈ Ω1 ∪ Ω2,

M (1)(λ)(b−)
−1, λ ∈ Ω3 ∪ Ω4 ∪ Ω5,

M (1)(λ)(b+)
−1, λ ∈ Ω6 ∪ Ω7 ∪ Ω8,

(3.13)

we can deform the contour Σ(1) into the contour Σ(2) = L ∪ L∗ as displayed in Figure 3.3 and
derive the following RH problem on the contour Σ(2) = L ∪ L∗ ∪ R{

M
(2)
+ (x, t;λ) = M

(2)
− (x, t;λ)J (2)(x, t;λ), λ ∈ Σ(2),

M (2)(x, t;λ) → I, λ → ∞,
(3.14)

where the jump matrix is

J (2) =


I, λ ∈ R,
b+, λ ∈ L,

(b−)
−1, λ ∈ L∗.

(3.15)

Considering the jump matrix J (2) decaying exponentially to identity away from the station-
ary phase point λ0, λ1 as t → ∞, we need take Dϵ

λ0
and Dϵ

λ1
be a disk of radius ϵ centered at

λ0 and λ1, with ϵ sufficiently small. Thus, we can change the contour Σ(2) into the contours
Σ(app) and Σ(err) (see Figure 3.4).
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Figure 3.3. The jump contour Σ(2) and domains Ωj (j = 1, · · · , 8).

Figure 3.4. The jump contour Σ(2).

Define

M (app) = M
(app)
λ0

M
(app)
λ1

=

{
I, outside Dϵ

λ0
∪Dϵ

λ1
,

parametrixof M (2), inside Dϵ
λ0

∪Dϵ
λ1
,

(3.16)

which means M (app) has the same jump conditions as M (2) inside Dϵ
λ0

∪Dϵ
λ1
. M

(app)
λ0

should

possess a jump J
(app)
λ0

across the circle Dϵ
λ0
, M

(app)
λ1

should possess a jump J
(app)
λ1

across the
circle Dϵ

λ1
. Besides, we obtain (see Appendix A)

J
(app)
λ0

− I =

(
O(t−

1
2 ) O(t−

1
2−Im(ϑ(λ0)))

O(t−
1
2+Im(ϑ(λ0))) O(t−

1
2 )

)
,

J
(app)
λ1

− I =

(
O(t−

1
2 ) O(t−

1
2+Im(ϑ(λ1)))

O(t−
1
2−Im(ϑ(λ1))) O(t−

1
2 )

)
.

(3.17)

So the following RH problem is given for matrix M (app)(x,t,λ)
M (app)(x, t, λ) is analytic in C \ Σ(app),

M
(app)
+ (x, t, λ) = M

(app)
− (x, t, λ)J (app)(x, t, λ), λ ∈ Σ(app),

M (app)(x, t, λ) → I, λ → ∞,

(3.18)

of which the jump matrix J (app)(x, t, λ) is

J (app)(x, t, λ) =


J
(app)
i = J

(2)
i (i = 1, 2, 3, 4), inside Dϵ

λ0
,

J
(app)
i = J

(2)
i (i = 5, 6, 7, 8), inside Dϵ

λ1
,

J
(app)
λ0

on Dϵ
λ0
,

J
(app)
λ1

on Dϵ
λ1
,

(3.19)



716 W.Q. PENG, Y. CHEN

where

J
(2)
1 = J

(2)
5 =

 1 − r2(λ)

1− r1(λ)r2(λ)
e−2iftδ2+

0 1

 ,

J
(2)
2 = J

(2)
6 =

(
1 0

−r1(λ)e
2iftδ−2

− 1

)
,

J
(2)
3 = J

(2)
7 =

(
1 r2(λ)e

−2iftδ2+
0 1

)
,

J
(2)
4 = J

(2)
8 =

 1 0
r1(λ)

1− r1(λ)r2(λ)
e2iftδ−2

− 1

 .

(3.20)

For large λ, we define the factorization

M (2) = M (err)M (app), (3.21)

where the error term contains higher-order contribution from the contour Σ(2). Then matrix
M (err)(x, t, λ) meets the following RH problem:

M (err)(x, t, λ) is analytic in C \ Σ(err),

M
(err)
+ (x, t, λ) = M

(err)
− (x, t, λ)J (err)(x, t, λ), λ ∈ Σ(err),

M (err)(x, t, λ) → I, λ → ∞,

(3.22)

of which the jump matrix J (err)(x, t, λ) is (see Appendix B)

J (err)(x, t, λ) =


J
(err)
i = J

(2)
i = I +O(e−C̃t), (i = 1, 2, · · · , 8), outside Dϵ

λ0
∪Dϵ

λ1
,

J
(err)
λ0

= (J
(app)
λ0

)−1 on Dϵ
λ0
,

J
(err)
λ1

= (J
(app)
λ1

)−1 on Dϵ
λ1
.

(3.23)

Let’s expand the matrices M (2),M
(app)
λ0

,M
(app)
λ1

,M (err) at infinity into the Laurent series

M (2) = I +
M

(2)
1

λ
+

M
(2)
2

λ2
+ · · · , λ → ∞,

M
(app)
λ0

= I +
(M

(app)
λ0

)1

λ
+

(M
(app)
λ0

)2

λ2
+ · · · , λ → ∞,

M
(app)
λ1

= I +
(M

(app)
λ1

)1

λ
+

(M
(app)
λ1

)2

λ2
+ · · · , λ → ∞,

M (err) = I +
M

(err)
1

λ
+

M
(err)
2

λ2
+ · · · , λ → ∞.

(3.24)

According to the factorization (3.21), comparing the coefficients of 1
λ , we find

M
(2)
1 = (M

(app)
λ0

)1 + (M
(app)
λ1

)1 +M
(err)
1 . (3.25)

Thus the solution of the nonlocal Hirota equation (1.4) is

q(x, t) = 2i[M
(2)
1 ]12 = 2i[(M

(app)
λ0

)1]12 + 2i[(M
(app)
λ1

)1]12 + 2i[M
(err)
1 ]12. (3.26)
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Similar to Refs.[5, 26], the absolution of matrix M
(err)
1 (x, t, λ) in Eq.(3.22) satisfies (see Ap-

pendix C)

|M (err)
1 (x, t, λ)| = O(t−

1
2−max{|Imϑ(λ0)|,|Imϑ(λ1)|}). (3.27)

3.2 Reduction to a Model Riemann-Hilbert Problem

In this subsection, we will define a scaling transformation to separate the time t from the jump
matrix, given by

λ̃ = T0(λ) =
√

−8t(α+ 6βλ0)(λ− λ0), λ ∈ Σ
(app)
λ0

,

λ̃ = T1(λ) =
√

8t(α+ 6βλ1)(λ− λ1), λ ∈ Σ
(app)
λ1

.
(3.28)

For a given function φ(ζ), one has

T0(φ(λ)) = φ
( λ̃√

−8t(α+ 6βλ0)
+ λ0

)
, T1(φ(λ)) = φ

( λ̃√
8t(α+ 6βλ1)

+ λ1

)
.

Hence, we have

T0(e
−itfδ(λ)) = δ0λ0

δ1λ0
, T1(e

−itfδ(λ)) = δ0λ1
δ1λ1

, (3.29)

where

δ0λ0
=
[
− 32λ2

0t(α+ 6βλ0)
] iϑ(λ0)

2 e2iλ
2
0t(4βλ0+α)+χ0(λ0),

δ1λ0
=λ̃−iϑ(λ0)

( 2λ0

λ̃/
√
−8t(α+ 6βλ0) + λ0 − λ1

)−iϑ(λ0)

× e
i
4 λ̃

2(1− iβλ̃
√

2t(6βλ0+α)
3
2

)

e
χ0(

λ̃√
−8t(α+6βλ0)

+λ0)−χ0(λ0)
,

δ0λ1
=
[
32λ2

1t(α+ 6βλ1)
]− iϑ(λ1)

2 e2iλ
2
1t(4βλ1+α)+χ1(λ1),

δ1λ1
=λ̃iϑ(λ1)

( 2λ1

λ̃/
√
8t(α+ 6βλ1) + λ1 − λ0

)iϑ(λ1)

× e
− i

4 λ̃
2(1+ βλ̃

√
2t(6βλ1+α)

3
2

)

e
χ1(

λ̃√
8t(α+6βλ1)

+λ1)−χ1(λ1)
.

(3.30)

3.2.1 The T0 Scaling Transformation

Here, we first consider the scaling transformation of T0, it is easy to obtain the following RH
problem

M
(3)
+ (x, t; λ̃) = M

(3)
− (x, t; λ̃)J (3), λ̃ ∈ Σ(3), (3.31)

where we have defined

M (3)(x, t; λ̃) = T0(M
(app)
λ0

(x, t;λ)), J (3)(x, t; λ̃) = T0(J
(2)
i (x, t;λ)), i = 1, 2, 3, 4.
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In terms of the above analysis, one gets the new jump matrix J (3), given by (see Figure 3.5)

J
(3)
1 =

 1 −(δ0λ0
δ1λ0

)2
r2

1− r1r2

( λ̃√
−8t(α+ 6βλ0)

+ λ0

)
0 1

 ,

J
(3)
2 =

 1 0

−(δ0λ0
δ1λ0

)−2r1

( λ̃√
−8t(α+ 6βλ0)

+ λ0

)
1

 ,

J
(3)
3 =

 1 (δ0λ0
δ1λ0

)2r2

( λ̃√
−8t(α+ 6βλ0)

+ λ0

)
0 1

 ,

J
(3)
4 =

 1 0

(δ0λ0
δ1λ0

)−2 r1
1− r1r2

( λ̃√
−8t(α+ 6βλ0)

+ λ0

)
1

 .

(3.32)

Figure 3.5. The jump contour Σ(3).

Since

M (3) = T0(M
(app)
λ0

(λ)) = M
(app)
λ0

( λ̃√
−8t(α+ 6βλ0)

+ λ0

)
= I +

(M
(app)
λ0

)1
λ̃√

−8t(α+6βλ0)
+ λ0

+ · · · = I +
M

(3)
1

λ̃
+ · · · . (3.33)

Comparing the coefficient of λ̃ in above formulas, we have

M
(3)
1 =

√
−8t(α+ 6βλ0)(M

(app)
λ0

)1. (3.34)

Moreover, as t → ∞, one obtains

lim
t→∞

( λ̃√
−8t(α+ 6βλ0)

+ λ0

)
= λ0,

lim
t→∞

δ1λ0
= λ̃−iϑ(λ0)e

1
4 iλ̃

2

.

(3.35)

To separate the time t completely, we perform the following limiting operation

M (∞) = lim
t→∞

(δ0λ0
)−σ̂3M (3), (3.36)
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which changes the jumping curve Σ(3) into Σ(∞), and leads to the following RH problem:


M (∞)(x, t; λ̃) is analytic in C\Σ(∞),

M
(∞)
+ (x, t; λ̃) = M

(∞)
− (x, t; λ̃)J (∞)(x, t; λ̃), λ̃ ∈ Σ(∞),

M (∞)(x, t; λ̃) → I, λ̃ → ∞,

(3.37)

where

J
(∞)
1 =

 1 −λ̃−2iϑ(λ0)e
1
2 iλ̃

2 r2
1− r1r2

(λ0)

0 1

 ,

J
(∞)
2 =

(
1 0

−λ̃2iϑ(λ0)e−
1
2 iλ̃

2

r1(λ0) 1

)
,

J
(∞)
3 =

(
1 λ̃−2iϑ(λ0)e

1
2 iλ̃

2

r2(λ0)

0 1

)
,

J
(∞)
4 =

 1 0

λ̃2iϑ(λ0)e−
1
2 iλ̃

2 r1
1− r1r2

(λ0) 1

 .

(3.38)

To obtain the model RH problem, we define the following transformation

M (mod) = M (∞)Gj , λ̃ ∈ Ωj , j = 0, · · · , 4, (3.39)

where
G0 = e

1
4 iλ̃

2σ3 λ̃−iϑ(λ0)σ3 ,

G1 = G0

 1 − r2
1− r1r2

(λ0)

0 1

 , G2 = G0

(
1 0

r1(λ0) 1

)
,

G3 = G0

(
1 r2(λ0)

0 1

)
, G4 = G0

 1 0

− r1
1− r1r2

(λ0) 1

 .

(3.40)

Through this transformation, we obtain a model RH problem for M (mod) with a constant jump
matrix, given by

M (mod)(x, t; λ̃) is analytic in C\R,
M

(mod)
+ (x, t; λ̃) = M

(mod)
− (x, t; λ̃)J (mod)(x, t; λ̃), λ̃ ∈ R,

M (mod)(x, t; λ̃) → e
1
4 iλ̃

2σ3 λ̃−iϑ(λ0)σ3 , λ̃ → ∞,

(3.41)

where

J (mod) =

(
1− r1(λ0)r2(λ0) −r2(λ0)

r1(λ0) 1

)
. (3.42)

The solution M (mod)(λ̃) of this RH problem can be given explicitly via using the parabolic
cylinder functions.

In order to derive the asymptotic formulas in Theorem 1.1, we give the large-λ̃ behavior of
M (∞)(λ̃)(see Appendix D)

M (∞)(λ̃) = I +
M

(∞)
1

λ̃
+O

( 1
λ̃

)
, λ̃ → ∞, (3.43)
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where

[M
(∞)
1 ]12 =

√
2πi(−1)iϑ(λ0)− 1

2 e−
3πi
4 +

πϑ(λ0)
2

r1(λ0)Γ(iϑ(λ0))
,

[M
(∞)
1 ]21 =

√
2πi(−1)−iϑ(λ0)− 1

2 e−
πi
4 +

πϑ(λ0)
2

r2(λ0)Γ(−iϑ(λ0))
.

(3.44)

Therefore, combining (3.34), (3.36), (3.43) and (3.44), we have

[(M
(app)
λ0

)1]12 =
1√

−8t(α+ 6βλ0)
[M

(3)
1 ]12 =

(δ0λ0
)2√

−8t(α+ 6βλ0)
[M

(∞)
1 ]12

=

√
2π[32λ2

0t(α+ 6βλ0)]
iϑ(λ0)e4iλ

2
0t(4βλ0+α)+2χ0(λ0)− 3πi

4 +
πϑ(λ0)

2√
−8t(α+ 6βλ0)r1(λ0)Γ(iϑ(λ0))

. (3.45)

Figure 3.6. The jump contour Σ(3) ∪ Σ(mod).

3.2.2 The T1 Scaling Transformation

Here, we perform the T1 scaling transformation, and obtain the following RH problem

M
(3)
+ (x, t; λ̃) = M

(3)
− (x, t; λ̃)J (3), λ̃ ∈ Σ(3), (3.46)

where

M (3)(x, t; λ̃) = T1(M
(app)
λ1

(x, t;λ)), J (3)(x, t; λ̃) = T1(J
(2)
i (x, t;λ)), i = 5, 6, 7, 8.

and the new jump matrix J (3) is (see Figure 3.7)

J
(3)
5 =

 1 −(δ0λ1
δ1λ1

)2
r2

1− r1r2

( λ̃√
8t(α+ 6βλ1)

+ λ1

)
0 1

 ,

J
(3)
6 =

 1 0

−(δ0λ1
δ1λ1

)−2r1

( λ̃√
8t(α+ 6βλ1)

+ λ1

)
1

 ,

J
(3)
7 =

 1 (δ0λ1
δ1λ1

)2r2

( λ̃√
8t(α+ 6βλ1)

+ λ1

)
0 1

 ,

J
(3)
8 =

 1 0

(δ0λ1
δ1λ1

)−2 r1
1− r1r2

( λ̃√
8t(α+ 6βλ1)

+ λ1

)
1

 .

(3.47)
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Figure 3.7. The jump contour Σ(3).

Due to

M (3) = T1(M
(app)
λ1

(λ)) = M
(app)
λ1

( λ̃√
8t(α+ 6βλ1)

+ λ1

)
= I +

(M
(app)
λ1

)1
λ̃√

8t(α+6βλ1)
+ λ1

+ · · · = I +
M

(3)
1

λ̃
+ · · · , (3.48)

we have

M
(3)
1 =

√
8t(α+ 6βλ1)(M

(app)
λ1

)1. (3.49)

Besides, we arrive at

lim
t→∞

( λ̃√
8t(α+ 6βλ1)

+ λ1

)
= λ1, lim

t→∞
δ1λ1

= λ̃iϑ(λ1)e−
1
4 iλ̃

2

.

Similarly, we carry out the following limitation

M (∞) = lim
t→∞

(δ0λ1
)−σ̂3M (3), (3.50)

and we obtain the following new RH problem:


M (∞)(x, t; λ̃) is analytic in C\Σ(∞),

M
(∞)
+ (x, t; λ̃) = M

(∞)
− (x, t; λ̃)J (∞)(x, t; λ̃), λ̃ ∈ Σ(∞),

M (∞)(x, t; λ̃) → I, λ̃ → ∞,

(3.51)

where

J
(∞)
5 =

 1 −λ̃2iϑ(λ1)e−
1
2 iλ̃

2 r2
1− r1r2

(λ1)

0 1

 ,

J
(∞)
6 =

(
1 0

−λ̃−2iϑ(λ1)e
1
2 iλ̃

2

r1(λ1) 1

)
,

J
(∞)
7 =

(
1 λ̃2iϑ(λ1)e−

1
2 iλ̃

2

r2(λ1)

0 1

)
,

J
(∞)
8 =

 1 0

λ̃−2iϑ(λ1)e
1
2 iλ̃

2 r1
1− r1r2

(λ1) 1

 .

(3.52)
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Next, we will aim to obtain a model RH problem by defining

M (mod) = M (∞)Gj , λ̃ ∈ Ωj , j = 0, · · · , 4, (3.53)

where
G0 = e−

1
4 iλ̃

2σ3 λ̃iϑ(λ1)σ3 ,

G1 = G0

 1 − r2
1− r1r2

(λ1)

0 1

 , G2 = G0

(
1 0

r1(λ1) 1

)
,

G3 = G0

(
1 r2(λ1)

0 1

)
, G4 = G0

 1 0

− r1
1− r1r2

(λ1) 1

 ,

(3.54)

then we obtain the following model RH problem:
M (mod)(x, t; λ̃) is analytic in C\R,
M

(mod)
+ (x, t; λ̃) = M

(mod)
− (x, t; λ̃)J (mod)(x, t; λ̃), λ̃ ∈ R,

M (mod)(x, t; λ̃) → e−
1
4 iλ̃

2σ3 λ̃iϑ(λ1)σ3 , λ̃ → ∞,

(3.55)

where

J (mod) =

(
1− r1(λ1)r2(λ1) −r2(λ1)

r1(λ1) 1

)
. (3.56)

Performing the same procedure in Appendix D, we get the large-λ̃ behavior of M (∞)(λ̃):

M (∞)(λ̃) = I +
M

(∞)
1

λ̃
+O

( 1
λ̃

)
, λ̃ → ∞, (3.57)

where

[M
(∞)
1 ]12 =

√
2πie−

π
2 ϑ(λ1)e−

3πi
4

r1(λ1)Γ(−iϑ(λ1))
, [M

(∞)
1 ]21 =

√
2πie−

π
2 ϑ(λ1)e−

πi
4

r2(λ1)Γ(iϑ(λ1))
. (3.58)

Figure 3.8. The jump contour Σ(3) ∪ Σ(mod).

Therefore, combining (3.49), (3.50), (3.57) and (3.58), we have

[(M
(app)
λ1

)1]12 =
1√

8t(α+ 6βλ1)
[M

(3)
1 ]12 =

(δ0λ1
)2√

8t(α+ 6βλ1)
[M

(∞)
1 ]12

=

√
2πi[32λ2

1t(α+ 6βλ1)]
−iϑ(λ1)e4iλ

2
1t(4βλ1+α)+2χ1(λ1)−π

2 ϑ(λ1)− 3πi
4√

8t(α+ 6βλ1)r1(λ1)Γ(−iϑ(λ1))
. (3.59)

Finally, combining (3.26), (3.27), (3.45) and (3.59), we can achieve the result of Theorem 1.1.
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Appendix A

From Ref.[8], we have

M (∞) = (δ0λ0
)−σ̂3M (3) +O(t−

1
2 ln t). (A.1)

For λ̃ → ∞,

M (3) = I +M
(3)
1 λ̃−1 +O(λ̃−2) = I + (δ0λ0

)σ̂3(M
(∞)
1 +O(t−

1
2 ln t))λ̃−1 +O(λ̃−2). (A.2)

On Dϵ
λ0
, M

(app)
λ0− = I, one has

M
(app)
λ0+

= T−1
0 (M (3)) =I + (δ0λ0

)σ̂3(T−1
0 (M

(∞)
1 ) +O(t−

1
2 ln t))(

√
8t(α+ 6β|λ0|)(λ− λ0))

−1

+O((
√
8t(α+ 6β|λ0|)(λ− λ0))

−2). (A.3)

Therefore, we get

J
(app)
λ0

− I = (M
(app)
λ0− )−1M

(app)
λ0+

− I =

(
O(t−

1
2 ) O(t−

1
2−Im(ϑ(λ0)))

O(t−
1
2+Im(ϑ(λ0))) O(t−

1
2 )

)
. (A.4)

In a similar way, we have

J
(app)
λ1

− I =

(
O(t−

1
2 ) O(t−

1
2+Im(ϑ(λ1)))

O(t−
1
2−Im(ϑ(λ1))) O(t−

1
2 )

)
. (A.5)

Appendix B

According to Eq.(3.21), we obtain

J (err) = (M
(err)
− )−1M

(err)
+ = M

(app)
− J (2)(J (app))−1(M

(app)
− )−1. (B.1)

Since M
(app)
− = I on Σ(err), one has

J (err) = J (2)(J (app))−1. (B.2)

Furthermore, we get

J
(err)
i = J

(2)
i (i = 1, 2, · · · , 8), outside Dϵ

λ0
∪Dϵ

λ1
,

J
(err)
λ0

= (J
(app)
λ0

)−1 on Dϵ
λ0
,

J
(err)
λ1

= (J
(app)
λ1

)−1 on Dϵ
λ1
.

(B.3)

Now, we will estimate the error of J
(err)
7 outside Dϵ

λ1
. On the jump contour λ1+λ1ρe

3πi
4 (ρ > ϵ),

the jump matrix J
(err)
7 is

J
(err)
7 = J

(2)
7 =

(
1 r2(λ)e

−2iftδ2+
0 1

)
. (B.4)

Observing

|e−2ift| = e4λ
2
1ρ

2(
√
2βλ1ρ−6βλ1−α)t ≤ e−C̃t, C̃ > 0. (B.5)
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Thus, we have

J
(err)
7 − I = J

(2)
7 − I = O(e−C̃t). (B.6)

Similarly, we have

J
(err)
i − I = J

(2)
i − I = O(e−C̃t), i = 1, 2 · · · , 8. (B.7)

Moreover, from Eq.(A.4) and Eq.(A.5), it is easy to find

J
(err)
λ0

− I = (J
(app)
λ0

)−1 − I =

(
O(t−

1
2 ) O(t−

1
2−Im(ϑ(λ0)))

O(t−
1
2+Im(ϑ(λ0))) O(t−

1
2 )

)
,

J
(err)
λ1

− I = (J
(app)
λ1

)−1 − I =

(
O(t−

1
2 ) O(t−

1
2+Im(ϑ(λ1)))

O(t−
1
2−Im(ϑ(λ1))) O(t−

1
2 )

)
.

(B.8)

Appendix C

The Cauchy integral formula on contour Σ can be defined as

(CΣ(f))(λ) =
1

2πi

∫
Σ

f(s)

s− λ
ds. (C.1)

Let

C−
V (f) = C−

Σ (f(V − I)), (C.2)

where V is a matrix given in Σ, and C+
Σ , C+

Σ denote the nontangential limits of the bounded
operator CΣ approaching Σ from left and right, respectively.

According to the RH problem (3.22), we can obtain

M (err) − I = CΣ(err)M
(err)
− (J (err) − I)

= − 1

2πiλ

∫
Σ(err)

M
(err)
− (J (err) − I)ds+O(λ−2), (C.3)

which indicates

M
(err)
1 = − 1

2πi

∫
Σ(err)

M
(err)
− (J (err) − I)ds. (C.4)

Using Holder inequality, we have

| M (err)
1 |≤ C1||M (err)

− − I||L2 ||J (err) − I||L2 + C2||J (err) − I||L1 , C1, C2 > 0. (C.5)

Beside, it is not hard to get ||M (err)
− − I||L2 ≤ C3||J (err) − I||L2 , C3 > 0, then we finally obtain

| M (err)
1 |≤ C1C3||J (err) − I||L2 + C2||J (err) − I||L1 . (C.6)

Combining Eq.(B.7) and Eq.(B.8), we arrive at

|M (err)
1 (x, t, λ)| = O(t−

1
2−max{|Imϑ(λ0)|,|Imϑ(λ1)|}). (C.7)
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Appendix D

The solution M (mod)(λ̃) of the model RH problem (3.41) can be given explicitly via using the
Liouville’s theorem and parabolic cylinder functions. Since the jump matrix J (mod) is constant,
the logarithmic derivative d

dλ̃
M (mod)(M (mod))−1 possesses continuous jump along any of the

rays, which indicates that M (mod) solves the following ordinary differential equation

d

dλ̃
M (mod) +

 − i

2
λ̃ Ψ

Φ
i

2
λ̃

M (mod) = 0, (D.1)

where Ψ = i[M
(∞)
1 ]12,Φ = −i[M

(∞)
1 ]21. The solution of (D.1) can be written as

M (mod) =

 M
(mod)
11

− i
2 λ̃M

(mod)
22 − dM

(mod)
22

dλ̃

Φ
i
2 λ̃M

(mod)
11 − dM

(mod)
11

dλ̃

Ψ
M

(mod)
22

 , (D.2)

where the functions M
(mod)
jj , j = 1, 2, satisfy the parabolic cylinder equations

d2

dλ̃2
M

(mod)
11 +

(
− i

2
− ΦΨ+

λ̃2

4

)
M

(mod)
11 = 0,

d2

dλ̃2
M

(mod)
22 −

(
− i

2
+ ΦΨ− λ̃2

4

)
M

(mod)
22 = 0.

(D.3)

According to the property of standard parabolic cylinder equation and M
(mod)
11 → e

1
4 iλ̃

2

λ̃−iϑ,

M
(mod)
22 → e−

1
4 iλ̃

2

λ̃iϑ, λ̃ → ∞, we obtain

M
(mod)
11 =

{
(ie−

3π
4 i)iϑD−iϑ(ie

− 3π
4 iλ̃) Im (λ̃) > 0,

(ie
π
4 i)iϑD−iϑ(ie

π
4 iλ̃) Im (λ̃) < 0,

(D.4)

M
(mod)
22 =

{
(ie−

π
4 i)−iϑDiϑ(ie

−π
4 iλ̃) Im (λ̃) > 0,

(ie
3π
4 i)−iϑDiϑ(ie

3π
4 iλ̃) Im (λ̃) < 0.

(D.5)

Then, we can get

M
(mod)
− (λ̃)−1M

(mod)
+ (λ̃) =M

(mod)
− (0)−1M

(mod)
+ (0)

=


(ie

π
4 i)iϑ

2
−iϑ
2
√
π

Γ( 1+iϑ
2 )

(ie
3π
4 i)1−iϑ 2

1+iϑ
2

√
π

ΦΓ(−iϑ
2 )

(ie
π
4 i)1+iϑ 2

1−iϑ
2

√
π

ΨΓ( iϑ2 )
(ie

3π
4 i)−iϑ 2

iϑ
2
√
π

Γ( 1−iϑ
2 )


−1

×


(ie−

3π
4 i)iϑ

2
−iϑ
2
√
π

Γ( 1+iϑ
2 )

(ie−
π
4 i)1−iϑ 2

1+iϑ
2

√
π

ΦΓ(−iϑ
2 )

(ie−
3π
4 i)1+iϑ 2

1−iϑ
2

√
π

ΨΓ( iϑ2 )
(ie−

π
4 i)−iϑ 2

iϑ
2
√
π

Γ( 1−iϑ
2 )
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=

(
1− r1(λ1)r2(λ1) −r2(λ1)

r1(λ1) 1

)
, (D.6)

which leads to

Ψ =

√
2π(−1)iϑ(λ0)+

1
2 e−

3πi
4 +

πϑ(λ0)
2

r1(λ0)Γ(iϑ(λ0))
, Φ = −

√
2π(−1)−iϑ(λ0)+

1
2 e−

πi
4 +

πϑ(λ0)
2

r2(λ0)Γ(−iϑ(λ0))
. (D.7)
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