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With the advantages of fast calculating speed and high precision, the physics-informed 
neural network method opens up a new approach for numerically solving nonlinear partial 
differential equations. Based on conserved quantities, we devise a two-stage PINN method 
which is tailored to the nature of equations by introducing features of physical systems into 
neural networks. Its remarkable advantage lies in that it can impose physical constraints 
from a global perspective. In stage one, the original PINN is applied. In stage two, we 
additionally introduce the measurement of conserved quantities into mean squared error 
loss to train neural networks. This two-stage PINN method is utilized to simulate abundant 
localized wave solutions of integrable equations. We mainly study the Sawada-Kotera 
equation as well as the coupled equations: the classical Boussinesq-Burgers equations and 
acquire the data-driven soliton molecule, M-shape double-peak soliton, plateau soliton, 
interaction solution, etc. Numerical results illustrate that abundant dynamic behaviors of 
these solutions can be well reproduced and the two-stage PINN method can remarkably 
improve prediction accuracy and enhance the ability of generalization compared to the 
original PINN method.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Relying on the advantages of fast calculating speed and high precision, deep neural networks have developed rapidly 
and been applied widely in various fields, such as image recognition, speech recognition, natural language processing and 
so on. The neural network method also plays an important role in the area of scientific computing, especially in solving 
forward and inverse problems of nonlinear partial differential equations. As a major landmark, Raissi et al. proposed the 
physics-informed neural network (PINN) method [1], which is one of the most powerful and revolutionary data-driven 
approaches. It aims to train neural networks to solve supervised learning tasks while respecting laws of physics described 
by nonlinear partial differential equations. On this basis, abundant significant physics-informed neural network frameworks, 
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e.g. NSFnets [2], VPINNs [3], fPINNs [4], B-PINNs [5] and hp-VPINNs [6], were devised and targeted at different application 
situations. This PINN methodology and its variants also have demonstrated extraordinary performance in approximating the 
unknown solutions [7–9], data-driven discovery of partial differential equations [10,11], the research of extracting physical 
information from flow visualizations [12] and beyond [13,14]. In order to improve the performance of physics-informed 
neural networks, Jagtag et al. also proposed different ways of locally adaptive activation functions with slope recovery term 
and these methods are capable of accelerating the training process [15]. Also noteworthy, many scholars have obtained 
a number of research results [16–21]. Our group mainly focused on integrable equations possessing remarkable properties, 
such as the KdV equation, mKdV equation, nonlinear Schrödinger equation, derivative nonlinear Schrödinger equation (DNLS) 
and Chen-Lee-Liu equation [17–21]. By means of the PINN method, we reproduced abundant dynamic behaviors of data-
driven solutions with regard to mentioned equations, including the breathing solution [19], rogue wave solutions [19,20], 
rogue periodic wave [21] and so on.

Currently, we are devoting to the research of integrable-deep learning algorithms, which aim to study integrable systems 
via the deep learning algorithm and further improve the neural network method with the advantages of integrable systems. 
First of all, numerous exact solutions can be obtained since integrable systems have outstanding properties. Therefore, it 
provides abundant samples for the PINN algorithm in reproducing dynamic behaviors of solutions. Secondly, due to the 
good properties of integrable systems such as abundant symmetry, infinite conservation laws and the Lax pair, as well as 
the mature methods for studying integrable systems including the Darboux transformation [22–26], the Bäcklund trans-
formation [27–31], the Hirota bilinear method [32,33] and the inverse scattering transformation [34–37], we can combine 
these properties and methods with the PINN method to obtain more accurate numerical solutions. Finally, considering that 
integrable systems can describe physical phenomena such as the localized wave and turbulence [38–40], we can observe 
more physical phenomena with the aid of PINN method, which can not be obtained by classical methods.

The two-stage physics-informed neural network method based on conserved quantities is proposed here. The specific 
way is that the original PINN is applied in stage one while in stage two we additionally introduce the measurement of 
conserved quantities into mean squared error loss to train neural networks. There are three motivations for this improved 
method. Above all, we intend to further improve integrable-deep learning algorithms and thus more features of physical 
systems are introduced into neural networks, such as conserved quantities considered in this paper. In the next place, our 
goal is to devise a more targeted PINN method in solving nonlinear systems, especially integrable systems, which is tailored 
to the nature of equations by digging out more underlying information of the given equations. Last but not least, we aim 
to impose constraints from a global perspective considering that the loss functions in the original PINN method reflect the 
local constrains at certain points solely.

In this paper, we mainly consider nonlinear integrable equations: the Boussinesq-Burgers equations [38,41], the classical 
Boussinesq-Burgers equations [42–46] as well as the Sawada-Kotera equation [57,58]. Here, our improved PINN method is 
utilized to reproduce the dynamic behaviors of localized wave solutions for the above equations, such as the interaction 
solution, soliton molecule, M-shape double-peak soliton, etc.

This paper is organized as follows. In Section 2, we review the physics-informed neural network method for completeness 
and put forward the two-stage PINN method based on conserved quantities. In Section 3, our two-stage PINN method based 
on conserved quantities is utilized to simulate abundant localized wave solutions including the one-soliton solution for the 
Boussinesq-Burgers equations and interaction solution for the classical Boussinesq-Burgers equations. Dynamic behaviors of 
soliton molecules for the Sawada-Kotera equation are also reproduced in Section 4. In above two sections, given that we 
just use the original PINN in stage one, the performance of the two models can be evaluated in terms of the accuracy by 
comparing the results of the two stages. Then we present the relative L2 errors of these two methods and calculate error 
reduction rates. Finally, the conclusion and expectation are given in the last section.

2. Methodology

2.1. The PINN method

The physics-informed neural network method is briefly reviewed in this section [1], which plays an important role in 
solving forward and inverse partial differential equations. We take the following (1+1)-dimensional nonlinear equation as 
an example to illustrate this method:

ut +N[u] = 0, x ∈ [x0, x1] , t ∈ [t0, t1] , (2.1)

where u = u(x, t) is the real-valued solution of this equation and N[·] is a nonlinear differential operator in space. The 
governing equation f (x, t) is defined by the left-hand-side of the Eq. (2.1) above:

f := ut +N[u]. (2.2)

We aim to solve the initial-boundary value problem with the aid of physics-informed neural network technique. Mean-
while, the PINN method is introduced from three aspects as follows.
2
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(1) Structure establishment of PINN:
Considering that the depth of neural network depends on the number of weighted layers, we construct a neural network 

of depth L consisting of one input layer, L − 1 hidden layers and one output layer. The lth (l = 0, 1, · · · , L) layer has Nl

neurons, which represents that it transmits Nl-dimensional output vector xl to the (l + 1)th layer as the input data. The 
connection between layers is achieved by the following affine transformation A and activation function σ(·):

xl = σ(Al(xl−1)) = σ(wlxl−1 + bl), (2.3)

where wl ∈RNl×Nl−1 and bl ∈RNl denote the weight matrix and bias vector of the lth layer, respectively. Thus, the relation 
between input x0 and output u(x0, �) is given by

u(x0,�) = (AL ◦ σ ◦AL−1 ◦ · · · ◦ σ ◦A1)(x0), (2.4)

and here � =
¶

wl,bl
©L

l=1
represents the trainable parameters of PINN.

Before training a NN model, we need to initialize the parameters. Usually, the bias term is initialized to zero. There 
are many effective methods to initialize weight matrixes, such as Xavier initialization [47], He initialization [48], etc. Given 
that the expression ability of the linear model is not enough, the activation function is used to add nonlinear factors to 
neural networks. The most frequently used nonlinear activation functions include ReLU function, Sigmoid function and 
tanh function. In this paper, we select tanh function as the activation function and initialize weights of the neural network 
with the Xavier initialization.

(2) Parameter optimization of PINN:
The essence of the training neural networks or deep learning models is to update the weights and biases. Based on the 

training data, our goal is to minimize the value of the loss function by optimizing the parameters of the neural network.
Assume we can obtain the initial-boundary dataset {xi

u, ti
u, ui}Nu

i=1 and the set of collocation points of f (x, t), denoted by 
{xi

f , t
i
f }

N f
i=1. Then we construct the mean squared error function as the loss function to measure the difference between the 

predicted values and the true values of each iteration. The given information is investigated to merge into mean squared 
error, including the initial and boundary data as well as the governing equation:

M S E1 = M S Eu + M S E f , (2.5)

where

M S Eu = 1

Nu

Nu∑
i=1

|û(xi
u, ti

u) − ui|2, (2.6)

M S E f = 1

N f

N f∑
i=1

| f (xi
f , ti

f )|2. (2.7)

Here, {û(xi
u, ti

u)}Nu
i=1 denote the predicted results and the derivatives of the network u with respect to time t and space 

x are derived by automatic differentiation [49] to obtain { f (xi
f , t

i
f )}

N f
i=1. Based on MSE criteria, the parameters of neural 

networks are optimized to approach the initial and boundary training data and satisfy the structure imposed by (2.1). 
Several commonly used optimization methods of loss functions are: L-BFGS [50], SGD, Adam and we apply L-BFGS method 
here. Hence, numerical solutions of the given domain and period can be obtained according to the trained PINN.

(3) Capability Evaluation of PINN:
Actually, the PINN method only involves above two aspects. However, in this paper, we aim to evaluate the performance 

of the PINN method in the circumstances of known solutions of Eq. (2.1).
We divide spatial region [x0, x1] and time region [t0, t1] into Nx and Nt discrete equidistance points, respectively. Then 

the solution u is discretized into Nx × Nt data points in the given spatiotemporal domain. We randomly select Nu points 
of initial-boundary data on the above grids (I ∪ B, I = [x0 + j x1−x0

Nx−1 , t0], ( j = 0, 1, · · · , Nx − 1), B = [x, t0 + k t1−t0
Nt−1 ], (x =

x0 or x1, k = 0, 1, · · · , Nt − 1)) and obtain a random selection of N f collocation points of f (x, t) in [x0, x1] × [t0, t1], which 
is not required to appear on grids. Thus, the training data in this case is {xi

u , ti
u, ui}Nu

i=1 and {xi
f , t

i
f }

N f
i=1. Given that the size 

of training data is only a small percentage of total data on grids, we calculate the relative L2 error (R E) of Nx × Nt data 
points on grids to evaluate the generalization ability of the PINN model:

R E =
√∑Nx−1

j=0
∑Nt−1

k=0 |û(x0 + j x1−x0
Nx−1 , t0 + k t1−t0

Nt−1 ) − u j,k|2√∑Nx−1
j=0

∑Nt−1
k=0 |u j,k|2

, (2.8)

where û(x0 + j x1−x0 , t0 + k t1−t0 ) and u j,k represent the predictive value and true value, separately.
Nx−1 Nt−1
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2.2. Introduction of conserved quantities

In this part, the introduction of conserved quantities is presented in brief [51].
For a finite-dimensional system, let qi, pi(i = 1, 2, · · · , n) be the generalized coordinates and momentums of the me-

chanical system. If Hamiltonian functions H = H(qi, pi) exist, which satisfy

dqi

dt
= ∂ H

∂ pi
,

dpi

dt
= − ∂ I

∂qi
, (i = 1,2, · · · ,n) (2.9)

then (2.9) can be rewritten as

q̇i = {qi, H} , ṗi = {pi, H} ,

q̇i = dqi
dt , ṗi = dpi

dt ,
(2.10)

after introducing Poisson brackets

{F , G} =
n∑

j=1

Å
∂ F

∂q j

∂G

∂ p j
− ∂ F

∂ p j

∂G

∂q j

ã
. (2.11)

Besides, qi and pi satisfy the following relations{
qi,q j

} = {
pi, p j

}= 0,
{

qi, p j
}= δi j. (2.12)

Therefore, Eq. (2.9) is called the Hamilton system. If there is I = I(qi, pi), which holds

dI

dt
= 0, (2.13)

then I is called a conserved quantity of Eq. (2.9).
For infinite dimensional systems, we take the following (1+1)-dimensional nonlinear equation as an example

�(x, t, u(x, t)) = 0, (2.14)

and then a conserved quantity mi can be defined similarly, which is time-independent and usually obtained by calculating 
the integral from −∞ to ∞ with respect to a corresponding conserved density �i(x, t):

mi =
∞∫

−∞
�idx, (i = 1,2, · · · ). (2.15)

Then Eq. (2.14) have the corresponding conservation law

Dt�i + Dx J i = 0, (i = 1,2, · · · ) (2.16)

which is satisfied for all solutions of (2.14). Here, �i(x, t) is the conserved density and J i(x, t) is the associated flux [52]. 
The above formulas reveal the relationship between conserved quantities and conservation laws.

Integrable systems have infinite conserved quantities, which is a pretty significant property. Generally speaking, it’s not 
plain to derive conserved quantities. Sometimes, the first few conserved quantities in physical problems usually correspond 
to the conservation of mass, momentum, or energy. Others may facilitate the research of the quantitative and qualitative 
properties of solutions.

2.3. The two-stage PINN method based on conserved quantities

The main purpose of this article is to put forward a more targeted PINN algorithm of nonlinear mathematical physics. 
We try to introduce more features of integrable systems into neural networks to improve the precision and reliability. This 
part epitomizes the main idea of the two-stage PINN method based on conserved quantities.

(1) Stage One:
In the first stage, we use the original PINN method which is mentioned in Section 2.1. Under the principle of minimizing 

the mean squared error loss, we can acquire the numerical solution û1(x, t) of the given domain and period after parameter 
optimization.

(2) Stage Two:
On the basis of stage one, we make the following improvements. Based on conserved quantities, we aim to achieve 

further optimization of the numerical solution û1(x, t) in the first stage.
Firstly, we should gain a conserved quantity m(t) of the corresponding equation, which evidently depends on the choice 

of the solution u and is actually time-independent, i.e. dm(t) = 0. Based on the initial data of u(x, t), the conserved quantity 
dt

4
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Fig. 1. (Color online.) Schematic diagrams of constraints: (a) Constraints of the original PINN method; (b) Constraints of the two-stage PINN method based 
on conserved quantities.

m(t0) can be calculated and taken as the criterion. We randomly select Nc different moments and measure the corre-
sponding conserved quantities {m(ti

m)}Nc
i=1. Our goal is to make {m(ti

m)}Nc
i=1 approach the theoretical value m(t0) as close as 

possible.
According to the above analysis, the mean squared error loss of the original PINN is changed into:

M S E2 = M S Eu + M S E f + M S Es + M S Em, (2.17)

where

M S Es = 1

Ns

Ns∑
i=1

|û(xi
s, ti

s) − û1(xi
s, ti

s)|2, (2.18)

M S Em = 1

Nc

Nc∑
i=1

|m(ti
m) − m(t0)|2. (2.19)

Here, û(x, t) denotes the numerical solution obtained in stage two and M S Es measures the difference of numerical re-
sults between two stages at {xi

s, ti
s}Ns

i=1, which implies that further optimization is based on stage one and Ns points 
{xi

s, ti
s, ̂u1(xi

s, ti
s), ̂u(xi

s, ti
s)}Ns

i=1 are sampled randomly on the grids. Meanwhile, M S Em reflects the constraint of the conserved 
quantity.

With regard to the calculation of conserved quantities, we adopt the method of numerical integral by using summation 
instead of integrals. Suppose M[u] is a conserved density (M[·] denotes a differential operator) and we divide spatial 
region [x0, x1] into Nx discrete equidistance points with time region [t0, t1] into Nt discrete equidistance points, then M[u]
is discretized into Nx × Nt data points and the formulas of m(t0) and m(ti

m) are derived:

m(t0) =
x1∫

x0

M[u](x, t0)dx ≈
Nx∑
j=2

M[u](x j, t0)
x1 − x0

Nx − 1
, (2.20)

m(ti
m) =

x1∫
x0

M[û](x, ti
m)dx ≈

Nx∑
j=2

M[û](x j, ti
m)

x1 − x0

Nx − 1
, (2.21)

where M[u](x j, t0) and M[û](x j, ti
m) represent the true value and predictive value, respectively.

In the original PINN method, the loss M S Eu and M S E f reflect the local constraints at certain points solely, which are 
selected stochastically. However, in stage two, the calculation of conserved quantities involves the integral operation. It is 
widely known that at any given time, conserved quantities mirror the global property of the solution u in [x0, x1]. Thus, our 
practice to introduce the measurement of this global property into the mean squared error loss is meaningful and is a kind 
of method to impose constraints from a global perspective.

Similarly, if we consider k conserved quantities m = (m1, m2, · · · , mk), M S Em is transformed into:

M S Em = 1

Nc

k∑
j=1

Nc∑
i=1

|m j(t
i
m) − m j(t0)|2. (2.22)

With regard to two methods above, we display the schematic diagrams of constraints in Fig. 1. Black crosses imply 
that these selected points need to meet initial-boundary conditions and blue dots represent the random selection of points 
5
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Fig. 2. (Color online.) Schematic diagram of the two-stage physics-informed neural network method based on conserved quantities.

should satisfy the structure imposed by the governing equation. They are both local constraints. The two-stage PINN method 
based on conserved quantities differs from the original PINN method in that it takes conserved quantities into consideration 
to impose constraints globally. We use the red lines to denote calculation of conserved quantity at certain moments, which 
involves the integral operation and the method of numerical integral is adopted by using summation instead of integrals.

Moreover, Fig. 2 shows a sketch of the two-stage PINN method based on conserved quantities, where maxit denotes the 
maximum number of iterations.

This method is established on the assumption that heights of background waves in the region D (D = [x, t], x ∈
(−∞, x0]

⋃
[x1,+∞) , t ∈ [t0, t1]) are almost consistent. Therefore, we can integral from x0 to x1 with respect to a con-

served density to represent conserved quantities instead of from −∞ to +∞. It is a reasonable assumption in the sense 
that it can be easily satisfied by localized wave solutions, which are widely considered in the field of integrable systems to 
describe various physical phenomena.

Actually, a natural idea is to take the following formula

M S E = M S Eu + M S E f + M S Em, (2.23)

as the optimization objective of PINN directly rather than carrying out this two-stage method. However, the result was a 
disappointment and even worse than the original PINN method. After the analysis, we are of the opinion that the opti-
mization is dominated by M S Em , and finally it converges to other local optimal point which causes unsatisfactory results. 
Consequently, we propose the two-stage PINN method to improve it. This method not only considers the global property 
measured by conserved quantities, but also further optimizes parameters of the original PINN. The numerical results also 
show that it can avoid converging to other non-ideal local optimums.

All codes are based upon Python 3.7 and Tensorflow 1.15, and the presented numerical experiments are run on a Mac-
Book Pro computer with 2.3 GHz Intel Core i5 processor and 16-GB memory.
6
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3. Data-driven one-soliton solution of the Boussinesq-Burgers equations and interaction solution of the classical 
Boussinesq-Burgers equations

In this section, we will apply the two-stage PINN method to numerically solve integrable equations and then contrast 
the simulation results of the two models: the PINN and two-stage PINN based on conserved quantities. Considering that we 
just use the original PINN in stage one, the performance of the two models can be evaluated in terms of the accuracy by 
comparing the results of the two stages.

The current research of coupled equations with the aid of neural networks is relatively less than that of the single equa-
tion and thus we mainly consider the coupled equations here: the Boussinesq-Burgers equations [38,41] and the classical 
Boussinesq-Burgers equations [42–46].

3.1. One-soliton solution of the Boussinesq-Burgers equations

Here, we investigate the Boussinesq-Burgers equations [38,41] with the first kind of boundary condition (Dirichlet bound-
ary condition)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + 2uux − 1
2 vx = 0,

vt + 2(uv)x − 1
2 uxxx = 0, x ∈ [x0, x1], t ∈ [t0, t1],

u(x, t0) = u0(x),

v(x, t0) = v0(x),

u(x0, t) = a1(t), u(x1, t) = a2(t),

v(x0, t) = a3(t), v(x1, t) = a4(t).

(3.1)

Wang et al. [53] studied the Lax pair, Bäcklund transformation and multi-soliton solutions for the Boussinesq-Burgers equa-
tions. Many researchers also obtained a variety of soliton solutions and some exact interaction solutions of the Boussinesq-
Burgers equations, which describe the propagation of shallow water waves [55,56]. In Ref. [62], Rady et al. have derived the 
multi-soliton solution of this equation. Firstly, they consider the following function transformation

v = λux + β, (3.2)

and set λ = −1, β = 0. In the light of the idea of homogeneous balance method [70] as well as the Bäcklund transformation, 
the multi-soliton solution can be obtained

u = 1

2

∑n
i=1 ki exp

Ä
ki

Ä
x − 2

Ä
a + ki

4

ä
t
ää

1 +∑n
i=1 exp

Ä
ki

Ä
x − 2

Ä
a + ki

4

ä
t
ää + a,

v = −ux. (3.3)

In this case, the governing equations f1(x, t) and f2(x, t) are as follows

f1 := ut + 2uux − 1

2
vx,

f2 := vt + 2(uv)x − 1

2
uxxx. (3.4)

When n = 1, the corresponding initial-boundary conditions are given by

u(−20, t) = − e20+ 7t
2

2(1 + e20+ 7t
2 )

+ 2, u(20, t) = − e−20+ 7t
2

2(1 + e−20+ 7t
2 )

+ 2,

v(−20, t) = − e20+ 7t
2

2
Ä

1 + e20+ 7t
2

ä +
Ä

e20+ 7t
2

ä2

2
Ä

1 + e20+ 7t
2

ä2 ,

v(20, t) = − e−20+ 7t
2

2
Ä

1 + e−20+ 7t
2

ä +
Ä

e−20+ 7t
2

ä2

2
Ä

1 + e−20+ 7t
2

ä2 ,

u0(x) = − e−x−7

2(1 + e−x−7)
+ 2, v0(x) = − e−x−7

2(1 + e−x−7)
+ (e−x−7)2

2(1 + e−x−7)2 , (3.5)

after choosing corresponding parameters as a = 2, k1 = −1, [x0, x1] = [−20, 20], [t0, t1] = [−2, 2]. To obtain the training data, 
we divide the spatial region [x0, x1] = [−20, 20] and time region [t0, t1] = [−2, 2] into Nx = 1025 and Nt = 201 discrete 
7



Table 1
One-soliton solution of the Boussinesq-Burgers equations: relative L2 errors of PINN 
and two-stage PINN based on conserved quantities as well as error reduction rates.

Solution
Method

PINN Two-stage PINN Error reduction rate

u 8.965473e-04 7.343612e-04 18.09%
v 4.750580e-02 3.776971e-02 20.49%

equidistance points, separately. Thus, the solutions u and v are both discretized into 1025 × 201 data points in the given 
spatiotemporal domain. We randomly select Nu = 100 points from the initial-boundary dataset and proceed by sampling 
N f = 10000 collocation points via the Latin hypercube sampling method [69]. A 8-layer feedforward neural network with 40 
neurons per hidden layer is constructed to learn the one-soliton solution of the Boussinesq-Burgers equations. In addition, 
we use the hyperbolic tangent (tanh) activation function and initialize weights of the neural network with the Xavier 
initialization. The derivatives of the network u, v with respect to time t and space x are derived by automatic differentiation.

We utilize the L-BFGS algorithm to optimize loss functions. Obviously, v is a conserved density of the Boussinesq-Burgers 
equations and we select m defined by

m =
x1∫

x0

vdx ≈
Nx∑
j=2

v(x j, t)
x1 − x0

Nx − 1
, (3.6)

as the conserved quantity adopted in two-stage PINN. The loss function of stage one is (2.5) and that of stage two is (2.17)
where we choose Ns = 10000, Nc = 20 and M S Em is given by

M S Em = 1

Nc

Nc∑
i=1

|m(ti
m) − m(t0)|2

≈ 1

Nc

Nc∑
i=1

∣∣∣∣ Nx∑
j=2

v̂(x j, ti
m)

x1 − x0

Nx − 1
−

Nx∑
j=2

v(x j, t0)
x1 − x0

Nx − 1

∣∣∣∣2, (3.7)

where v(x j, t0) and v̂(x j, ti
m) represent the true value and predictive value, respectively.

Ultimately, the data-driven one-soliton solution of the Boussinesq-Burgers equations is obtained by two-stage PINN 
method based on conserved quantities.

Fig. 3 displays the density diagrams of the one-soliton solution, comparison between the predicted solutions and exact 
solutions as well as the error density diagrams. In the bottom panel of Fig. 3 (a) and Fig. 3 (c), we show the comparison 
between exact solutions and predicted solutions at different time points t = −1.5, 0, 1.5. Obviously, both u and v propa-
gate along the positive direction of the x-axis as time goes by. Through contrastive analysis, one-soliton solution can be 
successfully simulated by two-stage PINN method with high accuracy. In Fig. 4, the three-dimensional plots of predicted 
one-soliton solutions u(x, t) and v(x, t) are showed respectively, where v(x, t) is a dark soliton solution.

In stage one, the original PINN is applied. After 168 times iterations in about 41.7379 seconds, the relative L2 error of 
u is 8.965473e-04 and that of v is 4.750580e-02. In stage two, where the conserved quantity is considered, the relative L2

error of u is 7.343612e-04 and that of v is 3.776971e-02 after 1382 times iterations in about 407.5796 seconds. To compare 
the performance of two methods, error reduction rate (E R R) can be obtained according to the relative L2 error of PINN 
method (R E1) and that of two-stage PINN method based on conserved quantities (R E2):

E R R = R E1 − R E2

R E1
. (3.8)

By calculation, the error reduction rate (E R R) of u is 18.09% and that of v is 20.49%, which are presented in Table 1. It 
turns out that our proposed two-stage PINN method based on conserved quantities can improve prediction accuracy and 
gain better generalization.

3.2. Interaction solution of the classical Boussinesq-Burgers equations

In this part, we consider the classical Boussinesq-Burgers (CBB) equations [42–46]

ut = 1

2
(β − 1)uxx + 2uux + 1

2
vx,

vt = β

Å
1 − β

2

ã
uxxx + 1

2
(1 − β)vxx + 2(uv)x, (3.9)
S. Lin and Y. Chen Journal of Computational Physics 457 (2022) 111053
8



S. Lin and Y. Chen Journal of Computational Physics 457 (2022) 111053

Fig. 3. (Color online.) One-soliton solution u(x, t) and v(x, t) of the Boussinesq-Burgers equations by two-stage PINN based on conserved quantities: (a)
The density diagrams and comparison between the predicted solutions and exact solutions at the three temporal snapshots of u(x, t); (b) The error density 
diagram of u(x, t); (c) The density diagrams and comparison between the predicted solutions and exact solutions at the three temporal snapshots of v(x, t); 
(d) The error density diagram of v(x, t).

Fig. 4. (Color online.) One-soliton solution u(x, t) and v(x, t) of the Boussinesq-Burgers equations by two-stage PINN based on conserved quantities: (a) The 
three-dimensional plot of u(x, t); (b) The three-dimensional plot of v(x, t).
9
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where u = u(x, t) and v = v(x, t) are real-valued solutions and β is an arbitrary constant. Obviously, the classical 
Boussinesq-Burgers equations are equivalent to the Boussinesq-Burgers equations under the condition (u, v, x, t, β) →
(−u, −v, −x, −t, 1). Moreover, Darboux transformations and soliton solutions of the classical Boussinesq-Burgers equations 
have been given in Ref. [54]. Some scholars also have studied the finite-band solutions [46], rational solutions [71], con-
servation laws and dynamical behaviors [72]. Dong et al. [63] applied the consistent tanh expansion (CTE) to study the 
interaction solution for this equation given by

u = u0 + u1 tanh(w),

v = v0 + v1 tanh(w) + v2 tanh(w)2, (3.10)

where

u1 = wx

2
, u0 = 2wt − wxx

4wx
,

v2 = βw2
x

2
− w2

x , v1 = wxx − βwxx

2
,

v0 = − (β − 2)(2w4
x − wx wxxx + 2wx wxt + w2

xx − 2wxx wt)

4w2
x

, (3.11)

and the interaction between soliton and resonance has the following form

w = px + qt + 1

2
ln

(
1 +

n∑
i=1

exp (pi x + qit)

)
, i = 1,2, . . .

qi = pi
(

2q + pi p + 2p2
)

2p
, i = 1,2, . . . (3.12)

Here, we select the parameters as follows:

n = 1, p = 1, q = 1, β = 1, p1 = 2. (3.13)

We focus on the classical Boussinesq-Burgers (CBB) equations with the first kind of boundary condition (Dirichlet bound-
ary condition)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = 2uux + 1
2 vx,

vt = 1
2 uxxx + 2(uv)x, x ∈ [x0, x1], t ∈ [t0, t1],

u(x, t0) = u0(x),

v(x, t0) = v0(x),

u(x0, t) = a1(t), u(x1, t) = a2(t),

v(x0, t) = a3(t), v(x1, t) = a4(t).

(3.14)

After setting [x0, x1] = [−10, 15], [t0, t1] = [−3, 2], initial conditions of the interaction solution above are obtained as follows

u0(x) = (4e−36+4x + 4e−18+2x + 1)(tanh(x − 3 + ln(1+e−18+2x)
2 ) + 1)

4(e−18+2x)2 + 6e−18+2x + 2
,

v0(x) = 2e−18+2x sinh(x − 3 + ln(1+e−18+2x)
2 ) cosh(x − 3 + ln(1+e−18+2x)

2 )

2(1 + e−18+2x)2 cosh2(x − 3 + ln(1+e−18+2x)
2 )

+ 2e−18+2x cosh2(x − 3 + ln(1+e−18+2x)
2 ) + 4e−36+4x + 4e−18+2x + 1

2(1 + e−18+2x)2 cosh2(x − 3 + ln(1+e−18+2x)
2 )

, (3.15)

as well as corresponding boundary conditions, which are no longer presented here due to space limitation.
We construct a 9-layer feedforward neural network with 40 neurons per hidden layer to learn the interaction solu-

tion between a soliton and one resonant. With the help of MATLAB, spatial region [x0, x1] = [−10, 15] and time region 
[t0, t1] = [−3, 2] are divided into Nx = 1025 and Nt = 201 discrete equidistance points, respectively. After adopting the 
same generation and sampling method of training data in Section 3.1, we randomly select Nu = 100 points from the initial-
boundary dataset and N f = 10000 collocation points.

Here, v is a conserved density of the classical Boussinesq-Burgers equations and the conserved quantity adopted in two-
stage PINN is defined just as (3.6). The loss function of stage one is (2.5) and that of stage two is (2.17) where we choose 
10
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Fig. 5. (Color online.) Interaction solution u(x, t) and v(x, t) between soliton and resonance of the classical Boussinesq-Burgers equations by two-stage 
PINN based on conserved quantities: (a) The density diagrams and comparison between the predicted solutions and exact solutions at the three temporal 
snapshots of u(x, t); (b) The error density diagram of u(x, t); (c) The density diagrams and comparison between the predicted solutions and exact solutions 
at the three temporal snapshots of v(x, t); (d) The error density diagram of v(x, t).

Ns = 10000, Nc = 20 and the computing formula of M S Em is consistent with (3.7). In addition, the L-BFGS algorithm to 
optimize loss functions is the same in Section 3.1, as well as the Xavier initialization and the hyperbolic tangent (tanh) 
activation function.

The two-stage PINN method based on conserved quantities eventually succeeds in numerical simulations of the interac-
tion solution between a soliton and one resonant.

In Fig. 5, the density diagrams of interaction solution, comparison between the predicted solutions and exact solutions 
as well as the error density diagrams are plotted. From the bottom panel of Fig. 5 (a) and Fig. 5 (c), it implies there is little 
difference between exact solutions and predicted solutions. Meanwhile, it can be seen that two peaks converge into one of 
higher amplitude according to the wave propagation pattern of v(x, t) and it propagates along the negative direction of the 
x-axis. Fig. 6 displays the predicted 3D plots of the interaction solution, which show interaction behaviors between soliton 
and resonance.

In stage one, we use the original PINN method. After 784 times iterations in about 267.7466 seconds, the relative L2
error of u is 3.536702e-04 and that of v is 3.304951e-03. In stage two, where the conserved quantity is considered, the 
relative L2 error of u is 2.756669e-04 and that of v is 2.576679e-03 after 6411 times iterations in about 2421.5709 seconds. 
To compare the performance of two methods, the results of calculation show that the error reduction rate (E R R) of u is 
22.06% and that of v is 22.04%, which are shown in Table 2. Compared with the original PINN, we also confirm that 
the precision and the generalization ability of neural networks can be improved by our two-stage PINN method based on 
conserved quantities.

4. Data-driven soliton molecule and new types of solitons of the Sawada-Kotera equation

In recent years, soliton molecules, bound states of solitons, have been widely concerned. A pair of bright solitons, bound 
together by a dark soliton were discovered in optical fibers through numerical simulations and experimental verifications 
11
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Fig. 6. (Color online.) Interaction solution u(x, t) and v(x, t) between soliton and resonance of the classical Boussinesq-Burgers equations by two-stage PINN 
based on conserved quantities: (a) The three-dimensional plot of u(x, t); (b) The three-dimensional plot of v(x, t).

Table 2
Interaction solution of the classical Boussinesq-Burgers equations: relative L2 errors 
of PINN and two-stage PINN based on conserved quantities as well as error reduction 
rates.

Solution
Method

PINN Two-stage PINN Error reduction rate

u 3.536702e-04 2.756669e-04 22.06%
v 3.304951e-03 2.576679e-03 22.04%

in 2005 [64]. Later, soliton molecules were obtained in dipolar Bose-Einstein condensates by the method of numerical 
prediction [65]. Lou [66] used a new mechanism, namely the velocity resonant, to find soliton molecules in three fifth order 
integrable systems (fifth order KdV, KK and SK equations). Ren et al. [67] studied soliton molecules of the Korteweg-de 
Vries equation with higher-order corrections via the velocity resonance mechanism and they found the collision between a 
soliton molecule and one soliton is elastic.

To our knowledge, there is poor study of the data-driven soliton molecules by physics-informed neural networks. Con-
sequently, in this part, abundant travelling wave structures are numerically simulated through the two-stage PINN method 
based on conserved quantities, like the soliton molecule, kink-antikink molecule and so on.

For the following Sawada-Kotera (SK, also called Caudrey-Dodd-Gibbon-Sawada-Kotera (CDGSK)) equation

ut + uxxxxx + 15uuxxx + 45u2ux + 15uxuxx = 0, (4.1)

which was introduced in Ref. [57,58], Ye et al. [59] obtained many new periodic travelling wave solutions via Jacobi elliptic 
function linear superposition approach. Meanwhile, singular travelling wave solutions of this equation were researched [60]. 
Lou [61] derived the inverse recursion operator by using the pseudopotential of SK.

In this part, we aim to reproduce dynamic behaviors of the soliton molecule and new types of solitons for Eq. (4.1). 
Wang et al. [68] obtained the soliton molecule solutions via the travelling wave approach

u = −ak2 + 6ac
c + cosh

î√
3ak

(
x − 9a2k4t − b

)ó
î
c cosh

î√
3ak

(
x − 9a2k4t − b

)ó+ 1
ó2 , (4.2)

where a > 0, c, k and b are arbitrary constants. Here, we consider the Sawada-Kotera (SK) equation with the first kind of 
boundary condition (Dirichlet boundary condition) as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut + uxxxxx + 15uuxxx + 45u2ux + 15uxuxx = 0, x ∈ [x0, x1], t ∈ [t0, t1],
u(x, t0) = u0(x),

u(x0, t) = a1(t),

u(x , t) = a (t).

(4.3)
1 2

12
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Obviously, the governing equation f (x, t) is given by

f := ut + uxxxxx + 15uuxxx + 45u2ux + 15uxuxx, (4.4)

and u is a conserved density considered in this section.
We only present the following soliton molecule solution and new types of soliton solutions of the Sawada-Kotera equa-

tion here:

4.1. The soliton molecule (SM) for 0 < c 
 1
2

After taking c = 1
4000 , k = a = 1, b = 0, [x0, x1] = [−10, 10], [t0, t1] = [−0.01, 0.01], we have:

u(−10, t) = −1 + 3
Ä

1
4000 + cosh(

√
3(−9t − 10))

ä

2000
(

cosh(
√

3(−9t−10))
4000 + 1

)2 ,

u(10, t) = −1 + 3
Ä

1
4000 + cosh(

√
3(−9t + 10))

ä

2000
(

cosh(
√

3(−9t+10))
4000 + 1

)2 ,

u0(x) = −1 + 3
1

4000 + cosh(
√

3(0.09 + x))

2000( 1
4000 cosh(

√
3(0.09 + x)) + 1)2

. (4.5)

With the aid of MATLAB, we divide spatial region [x0, x1] = [−10, 10] into Nx = 513 discrete equidistance points and time 
region [t0, t1] = [−0.01, 0.01] into Nt = 201 discrete equidistance points. Thus, the solution u in the given spatiotemporal 
domain is discretized into 513 × 201 data points. We randomly select Nu = 100 points {xi

u, ti
u, ui}Nu

i=1 from the initial-

boundary dataset and proceed by sampling N f = 2000 collocation points {xi
f , t

i
f }

N f
i=1 via the Latin hypercube sampling 

method. A 8-layer feedforward neural network with 40 neurons per hidden layer is constructed to learn the soliton molecule 
(SM) of the Sawada-Kotera equation. Besides, we use the hyperbolic tangent (tanh) activation function and initialize weights 
of the neural network with the Xavier initialization. The derivatives of the network u with respect to time t and space x are 
derived by automatic differentiation.

The loss function of stage one is (2.5) and that of stage two is (2.17) where we choose Ns = 2000, Nc = 20 and M S Em is 
given by

M S Em = 1

Nc

Nc∑
i=1

|m(ti
m) − m(t0)|2

≈ 1

Nc

Nc∑
i=1

∣∣∣∣ Nx∑
j=2

û(x j, ti
m)

x1 − x0

Nx − 1
−

Nx∑
j=2

u(x j, t0)
x1 − x0

Nx − 1

∣∣∣∣2, (4.6)

where u(x j, t0) and û(x j, ti
m) represent the true value and predictive value, respectively. Then the L-BFGS algorithm is 

utilized to optimize loss functions above.
The numerical solution can be obtained through our two-stage PINN method. When the original PINN method is applied 

in stage one, it achieves the relative L2 error of 1.157014e-02 after 14564 times iterations in about 9636.1083 seconds. In 
stage two, the conserved quantity (m = ∫ x1

x0
udx ≈ ∑Nx

j=2 u(x j, t) x1−x0
Nx−1 ) is considered. After 8847 times iterations in about 

6117.9302 seconds, the relative L2 error of u is 8.054410e-03.
Fig. 7 exhibits the density diagrams of soliton molecule u(x, t) and comparison between the predicted solutions and 

exact solutions at different time points t = −0.01, 0, 0.01. It is obvious that dynamic behavior of this solution can be well 
simulated with high precision from contrast in the (a) of Fig. 7.

4.2. The M-shape double-peak soliton for c < 1
2

Here we take c = 1
4 , k = a = 1, b = 0, [x0, x1] = [−8, 8], [t0, t1] = [−0.01, 0.01], then the initial-boundary conditions are 

obtained

u(−8, t) = −1 + 3
Ä

1
4 + cosh(

√
3(−9t − 8))

ä

2
(

cosh(
√

3(−9t−8))
4 + 1

)2 ,

u(8, t) = −1 + 3
Ä

1
4 + cosh(

√
3(−9t + 8))

ä

2
(

cosh(
√

3(−9t+8))
4 + 1

)2 ,
13
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Fig. 7. (Color online.) Soliton molecule u(x, t) of the Sawada-Kotera equation by two-stage PINN based on conserved quantities: (a) The density diagrams 
and comparison between the predicted solutions and exact solutions at the three temporal snapshots of u(x, t); (b) The error density diagram of u(x, t).

u0(x) = −1 + 3
1
4 + cosh(

√
3(0.09 + x))

2( 1
4 cosh(

√
3(0.09 + x)) + 1)2

. (4.7)

Then, we construct a 7-layer feedforward neural network with 40 neurons per hidden layer to simulate the M-shape 
double-peak soliton of the Sawada-Kotera equation. The initial-boundary data is obtained via the same generation and sam-
pling method in Section 4.1 and here we choose Nx = 513, Nt = 201 as well. Moreover, the selected values of Nu, N f , Ns, Nc

and the neural network setting, such as loss functions, the optimization algorithm, the activation function and so on, are 
the same as the previous section.

By means of the two-stage PINN method based on conserved quantities, we finally acquire the data-driven M-shape 
double-peak soliton solution.

In stage one, the PINN model achieves the relative L2 error of 1.557140e-03 after 5294 times iterations in about 
1927.8552 seconds. In stage two, where we introduce the conserved quantity into the neural network, after 4565 times 
iterations in about 1796.5973 seconds, the relative L2 error of u is 8.148663e-04.

In Fig. 8, we present the density diagrams of M-shape double-peak soliton u(x, t) and comparison between the predicted 
solutions and exact solutions. Besides, in the (b) and (c) of Fig. 8, error density diagrams generated by the original PINN and 
two-stage PINN based on conserved quantities are plotted separately, which fully verified the advantage of high precision of 
our improvement.

4.3. The kink-antikink molecule (KAKM) or plateau soliton for c = 1
2

The initial-boundary conditions are given by

u(−6, t) = −1 + 3
Ä

1
2 + cosh(

√
3(−9t − 6))

ä
(

cosh(
√

3(−9t−6))
2 + 1

)2 ,

u(6, t) = −1 + 3
Ä

1
2 + cosh(

√
3(−9t + 6))

ä
(

cosh(
√

3(−9t+6))
2 + 1

)2 ,

u0(x) = −1 + 3
1
2 + cosh(

√
3(0.09 + x))

( cosh(
√

3(0.09+x))
2 + 1)2

, (4.8)

after choosing corresponding parameters as c = 1
2 , k = a = 1, b = 0, [x0, x1] = [−6, 6], [t0, t1] = [−0.01, 0.01].

Similarly, we divide spatial region [x0, x1] = [−6, 6] into Nx = 513 discrete equidistance points and time region [t0, t1] =
[−0.01, 0.01] into Nt = 201 discrete equidistance points. Thus, the solution u is discretized into 513 ×201 data points in the 
given spatiotemporal domain. The initial-boundary dataset sampled randomly is served as input to the neural network for 
training. In the process of establishing the two-stage physics-informed neural network, we also adopt the fully-connected 
structure with the Xavier initialization and hyperbolic tangent activation function. The loss functions of two stages are 
optimized in the same way as described above. The only difference is the number of hidden layers. We construct a 8-layer 
feedforward neural network with 40 neurons per hidden layer here.
14
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Fig. 8. (Color online.) M-shape double-peak soliton u(x, t) of the Sawada-Kotera equation: (a) The density diagrams and comparison between the predicted 
solutions and exact solutions at the three temporal snapshots of u(x, t) by two-stage PINN based on conserved quantities; (b) The error density diagram of 
u(x, t) by original PINN; (c) The error density diagram of u(x, t) by two-stage PINN based on conserved quantities.

After 5381 times iterations in about 2310.8078 seconds, the relative L2 error of u is 1.766738e-03 in stage one. The 
numerical results show that after 2972 times iterations, our two-stage PINN model based on conserved quantities achieves 
the relative L2 error of 3.678135e-04 in about 1315.2801 seconds in stage two.

Fig. 9 exhibits the density diagrams of the plateau soliton u(x, t) and comparison between the predicted solutions and 
exact solutions at different time points t = −0.01, 0, 0.01. Similarly, error density diagrams generated by the original PINN 
and two-stage PINN based on conserved quantities are plotted respectively in the (b) and (c) of Fig. 9. Most notably, the 
relative L2 of u(x, t) by two-stage PINN based on conserved quantities nearly reach to 5e-4, about one order of magnitude 
lower than that by the original PINN. This result accentuates that the improved method can enhance the performance in 
terms of accuracy.

4.4. The single-peak soliton for c > 1
2

We choose c = 1, k = a = 1, b = 0, [x0, x1] = [−6, 6], [t0, t1] = [−0.01, 0.01], which yields

u(−6, t) = −1 + 6 + 6 cosh(
√

3(−9t − 6))

(cosh(
√

3(−9t − 6)) + 1)2
,

u(6, t) = −1 + 6 + 6 cosh(
√

3(−9t + 6))

(cosh(
√

3(−9t + 6)) + 1)2
,

u0(x) = −1 + 6
1 + cosh(

√
3(0.09 + x))

(cosh(
√

3(0.09 + x)) + 1)2
. (4.9)

After exploiting the same data discretization and sampling method, spatial region [x0, x1] = [−6, 6] and time region 
[t0, t1] = [−0.01, 0.01] are divided into Nx = 513 and Nt = 201 discrete equidistance points, respectively. Based on the 
15
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Fig. 9. (Color online.) Plateau soliton u(x, t) of the Sawada-Kotera equation: (a) The density diagrams and comparison between the predicted solutions and 
exact solutions at the three temporal snapshots of u(x, t) by two-stage PINN based on conserved quantities; (b) The error density diagram of u(x, t) by 
original PINN; (c) The error density diagram of u(x, t) by two-stage PINN based on conserved quantities.

training data sub-sampled by the Latin hypercube sampling method, a 8-layer feedforward neural network with 40 neurons 
per hidden layer is established to derive numerical solutions in the form of single-peak soliton after setting up parameters 
as Nu = 100, N f = 2000. Likewise, we employ the Xavier initialization and hyperbolic tangent (tanh) activation function as 
well as the L-BFGS algorithm to optimize loss functions where Ns = 2000, Nc = 20.

With the advantage of the proposed two-stage PINN method, we finally reproduce the single-peak soliton solution.
In stage one, we construct the original PINN model. After 1583 times iterations in about 813.6134 seconds, the relative 

L2 error of u is 1.772205e-02. In stage two, where the conserved quantity is considered, the relative L2 error of u is 
9.931406e-03 after 1034 times iterations in about 611.5201 seconds.

In Fig. 10, the density diagrams of single-peak soliton u(x, t) and comparison between the predicted solutions and exact 
solutions are displayed. Through comparing error density diagrams of two methods showed in the (b) and (c) of Fig. 10, it 
demonstrates that our two-stage PINN method based on conserved quantities is also more accurate for simulating single-
peak soliton.

In Fig. 11, the three-dimensional plots of four structures are plotted respectively: soliton molecule, M-shape double-
peak soliton, plateau soliton and single-peak soliton. It illustrates that the two-stage PINN method can effectively reproduce 
different dynamic behaviors.

Similarly, according to the relative L2 error of the PINN method (R E1) and that of the two-stage PINN method based 
on conserved quantities (R E2), the error reduction rate (E R R) can be obtained. In addition, Table 3 shows the relative L2
errors of above solutions as well as the contrast of two methods in terms of error reduction rates.

From Table 3, it can be seen that the proposed two-stage PINN method based on conserved quantities remarkably 
improves the original PINN method according to error reduction rates. Especially for the plateau soliton, its error reduction 
rate (79.18%) is extraordinarily significant in the numerical experiments. What’s more, our method can improve the accuracy 
by an order of magnitude in all experiments above. Consequently, our improvement is shown to effectively enhance the 
prediction accuracy.
16
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Fig. 10. (Color online.) Single-peak soliton u(x, t) of the Sawada-Kotera equation: (a) The density diagrams and comparison between the predicted solutions 
and exact solutions at the three temporal snapshots of u(x, t) by two-stage PINN based on conserved quantities; (b) The error density diagram of u(x, t)
by original PINN; (c) The error density diagram of u(x, t) by two-stage PINN based on conserved quantities.

Table 3
Soliton molecule and new types of solitons of the Sawada-Kotera equation: relative 
L2 errors of PINN and two-stage PINN based on conserved quantities as well as error 
reduction rates.

Solution
Method

PINN Two-stage PINN Error reduction rate

Soliton molecule 1.157014e-02 8.054410e-03 30.39%
M-shape soliton 1.557140e-03 8.148663e-04 47.67%
Plateau soliton 1.766738e-03 3.678135e-04 79.18%
Single-peak soliton 1.772205e-02 9.931406e-03 43.96%

5. Remark

5.1. Effect of random initialization

Considering that weights of the neural network are initialized with the Xavier initialization, the setting of the parameter 
seed in the codes will affect the numerical results. For the sake of verifying the stableness of this two-stage PINN method, 
numerical experiments with different randomly generated seed values are performed to explore the impact of random 
initialization on the results. Ten sets of numerical experiments under the condition of different initial seeds are carried out 
for every example, which are displayed in Table 6-Table 13 in Appendix A. In Table 4, we present the average iteration times 
and error reduction rates of two methods (PINN and two-stage PINN based on conserved quantities), where the iteration 
times of the two-stage PINN are the total iteration times of stage one and stage two.

As can be seen from Table 6-Table 13 and Table 4, when different seed values are taken, our method still shows satis-
factory performance. After several random experiments, the error reduction rates all maintain at a considerably good level, 
17
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Fig. 11. (Color online.) The three-dimensional plots of background induced soliton and soliton molecules u(x, t) by two-stage PINN based on conserved 
quantities: (a) Soliton molecule; (b) M-shape double-peak soliton; (c) Plateau soliton; (d) Single-peak soliton.

Table 4
Average iteration times and error reduction rates of PINN and two-stage PINN based on conserved quantities.

Solution Average iteration times Average error 
reduction ratePINN Two-stage PINN

One soliton (u) 176.3 1977.1 23.49%
One soliton (v) 176.3 1977.1 28.71%
Interaction solution (u) 1033 7613.5 20.48%
Interaction solution (v) 1033 7613.5 20.50%
Soliton molecule 6755.7 12145.9 34.67%
M-shape soliton 5200.7 9723.4 40.52%
Plateau soliton 6231.4 10662.7 45.62%
Single-peak soliton 2036.3 4091.1 49.49%

which implies that our two-stage method has good stability. Especially for the data-driven M-shape, plateau and single-peak 
soliton solution of the Sawada-Kotera equation, the two-stage PINN method based on conserved quantities outperforms the 
original PINN method in accuracy. Also remarkably, many of the above experiments can improve the accuracy of the solu-
tion by an order of magnitude, such as No. 1, No. 5, No. 8 in Table 11 and so on. What’s more, the iteration times of the 
last four solutions in stage two are almost the same as those in stage one, but the prediction accuracy can be effectively 
improved. However, for the one-soliton solution of the Boussinesq-Burgers equations and interaction solution of the classical 
Boussinesq-Burgers equations, the training cost of the second stage is several times than that of the first stage. According to 
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Table 5
Average iteration times and error reduction rates of PINN and two-stage PINN (fine-tuning) based on conserved 
quantities.

Solution Average iteration times Average error 
reduction ratePINN Two-stage PINN 

(fine-tuning)

One soliton (u) 176.3 254.9 -0.45%
One soliton (v) 176.3 254.9 0.28%
Interaction solution (u) 1033 1457.9 1.08%
Interaction solution (v) 1033 1457.9 2.78%
Soliton molecule 6755.7 6815.8 1.99%
M-shape soliton 5200.7 5264.9 2.53%
Plateau soliton 6231.4 6291.5 -2.50%
Single-peak soliton 2036.3 2129.6 -5.59%

the number of iterations in stage one, we can find out that the first stage of these two solutions only needs about several 
hundred iterations to obtain the data-driven solution with satisfied accuracy, which means that the original PINN method 
has enough ability to train these two solutions well. Nevertheless, the number of iterations in the first stage of follow-
ing four solutions generally requires several thousand times, which is much higher than the previous two solutions. As a 
common sense, compared to an unsatisfactory numerical experiment, it will be much more difficult if we want to notably 
improve a great one. Since in the first two solutions, the first stage has pretty good performance in accuracy and efficiency, 
we have to sacrifice considerable efficiency in order to significantly improve the accuracy.

The experimental results provide a basis for the stability of our two-stage PINN method with respect to initialization, 
which make our explanation more intuitive and reliable.

5.2. Comparison between training a separate PINN and fine-tuning the same network in stage two

In this part, numerical experiments are carried out to show the comparison between training a separate PINN and fine-
tuning the same network in stage two.

With the advantage of transfer learning, we fine-tune the same network after the first stage in the following ways. 
Firstly, we save the weight matrixes and bias vectors of the first-stage network at the end of the iteration process and 
then those of the second-stage neural network are initialized with the saved data. Thus, the difference between the training 
of two stages also includes the weight initialization besides the mean squared error loss function. The role of the first 
stage is not only to generate the rough numerical solution û1(x, t), which facilitates further optimization in stage two, but 
also to transmit the data of weight matrixes and bias vectors corresponding to the approximate solution to the second-
stage training. In this sense, the second-stage training is based on stage one instead of training from scratch, which helps 
to accelerate convergence to the approximate optimal solution. Under the condition of different initial seeds, the results 
of numerical experiments of every example are obtained by fine-tuning the same network after the first stage, which are 
presented in Table 14-Table 21 in Appendix A. Here, average iteration times and error reduction rates of PINN and two-stage 
PINN (fine-tuning) based on conserved quantities are shown in Table 5.

By contrasting the above results in Table 4 and Table 5, it demonstrates that with regard to the two-stage PINN (fine-
tuning), the accuracy improvement on the basis of stage one (PINN) is far from satisfactory despite the reduction in training 
costs compared with the two-stage PINN. Based on above-mentioned numerical results, we speculate that the way by using 
pre-trained weight matrixes and bias vectors as the initial values will merely lead to the numerical solution near that 
obtained in the first stage rather than the more optimal solution.

Next, let’s analyze the reason why we need to train a separate neural network in the second training stage instead of 
fine-tuning the same network after the first stage. The purpose of the first stage of training is to acquire the rough numerical 
solution û1(x, t), and then based on conserved quantities, we aim to achieve further optimization of the numerical solution 
û1(x, t) by adding two items (M S Es and M S Em) into the mean squared error loss function. However, if we use the fine-
tuning method to inherit the weights and biases obtained in the first stage as the initialization parameters in the second 
stage, it is not theoretically reasonable enough. For two relatively close solutions û1(x, t) and û2(x, t) (the proximity here 
means that both of them can be used as good approximations of the real solution u(x, t)), every weight and bias at the 
corresponding position between them can differ greatly. Take a fully-connected neural network of depth L as an example to 
explain the previous sentence. The connection between layers and the relation between input x0 and output u(x0, �) are 
mentioned in (2.3)-(2.4). Here we use 	1 =

¶
wl

1,bl
1

©L

l=1
and 	2 =

¶
wl

2,bl
2

©L

l=1
to denote parameters in the networks of 

û1(x, t) and û2(x, t) separately. Due to the complication of the networks, it is not required to achieve

wl ≈ wl ,bl ≈ bl ,∀l = 1,2, · · · , L, i = 1,2, · · · , Nl, j = 1,2, · · · , Nl−1, (5.1)
1,i j 2,i j 1,i 2,i
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(here the symbol ‘≈’ in Eq. (5.1) means close enough) but the composition of the affine transformation and activation 
function can realize that both numerical solutions û1(x, t) and û2(x, t) are within required accuracy in the given domain 
and period.

I train a separate neural network in the second stage in order to find the more optimal solution with better constraints. 
But if we use the idea of weight transfer, it will maybe not run out of the neighborhood of the local optimum obtained in 
the first stage and can only be slightly optimized nearby.

Of course, pre-training and fine-tuning are very popular tricks in deep learning. The goal of transfer learning is to apply 
the knowledge or patterns learned in previous fields or tasks to novel but related fields or problems and it does exert 
advantage in many applications. However, in this paper, the problem itself has not changed and we aim to remarkably 
improve prediction accuracy compared to the original PINN method instead of obtaining the somewhat satisfactory solution 
solely. This may be the reason why the transfer learning algorithm is not suitable here.

5.3. Summary of method

In particular, we should utilize the control variable method by running the first-stage training for longer time (using the 
same number of iterations as total iterations of two-stage training) to confirm the improvement of the generalization ability 
is contributed from more training iterations or the second stage PINN. As is shown in Fig. 2, there are two conditions for 
the iteration termination: one is that the number of iterations exceeds the maximum number of iterations, and the other is 
that the difference of the mean squared error losses between two adjacent iterations is less than a predetermined constant 
ε (equivalent to convergence in the sense of the difference ε). In all codes, it can be seen from the operation results that the 
training procedures stop because the second terminating condition of iterations is met. However, our subsequent practice 
shows that the first-stage training cannot go on effectively. Thus, it is not feasible to make the total number of iterations 
the same. Of course, in the accuracy comparison of this paper, our scheme is also reasonable in the sense of controlling 
the same convergence conditions. Based on the rough numerical solution û1(x, t) in stage one and conserved quantities, the 
second stage can converge to a local optimum closer to the global optimum by modifying the loss function. In a word, our 
two-stage PINN method can be regarded as breaking the convergence of the original PINN method and contribute to the 
improvement of prediction accuracy and generalization. All the experiments in this paper have such results.

Although it must be admitted that, compared with the original PINN method, our method needs a relatively large loss 
of efficiency in simple calculation examples, the increase in the number of iterations for complex calculation examples 
is within an acceptable range. In general, our two-stage method is mainly to deal with some solutions that the original 
PINN method do not perform well, such as the last four solutions. By adding an overall constraint, we break the original 
convergence and reach a more optimal extreme point, thereby greatly improving the accuracy of the solution.

Superiority and inferiority of an algorithm is primarily determined by its efficiency and accuracy. As one of the most 
powerful and revolutionary data-driven approaches, compared with the traditional numerical methods, such as the finite 
element method (FEM), the main disadvantage of PINN is that it can only reach an accuracy of 10−4 scale, which still needs 
to be raised. Consequently, it is reasonable for our proposed two-stage method to pay more attention to improving accuracy. 
At the same time, our method can improve the accuracy by an order of magnitude in many numerical experiments, which 
shows that this improved method is effective and meaningful.

6. Conclusions

In this paper, we aim to devise a more targeted PINN algorithm tailored to the nature of equations by introducing con-
served quantities of nonlinear systems into neural networks, which implies that the underlying information of the given 
equations is dug out to improve the precision and reliability. Moreover, the original PINN method considers the local con-
straints at certain points solely, which evokes the question of whether we can impose constraints from a global perspective. 
For these purposes, we propose the two-stage PINN method based on conserved quantities. In stage one, the original PINN 
is applied. In stage two, we additionally introduce the measurement of conserved quantities into mean squared error loss to 
train neural networks to achieve further optimization of the numerical solution in the first stage. This methodology provides 
a promising new direction to devise deep learning algorithms with the advantages of integrable systems.

At the same time, we richly exemplify the use of this improved PINN method by simulating the one-soliton solution of 
the Boussinesq-Burgers equations as well as the interaction solution between a soliton and one resonant of the classical 
Boussinesq-Burgers equations. Besides, considering that there is poor study of the data-driven soliton molecules by physics-
informed neural networks, we reproduce the dynamical behaviors of the soliton molecule, M-shape double-peak soliton, 
plateau soliton and single-peak soliton for the Sawada-Kotera (SK) equation.

For the sake of comparing the performances of two methods: the original PINN and two-stage PINN based on the con-
served quantities, we calculate error reduction rates according to their own relative L2 errors. Remarkably, results indicate 
that two-stage PINN method based on conserved quantities can obviously improve prediction accuracy and enhance the 
ability of generalization, which implies that our improvement is meaningful in simulating solutions of nonlinear partial 
differential equations. Meanwhile, this is the first time that features of integrable systems are introduced to PINN method. 
Thus, our practice can solve partial differential equations much more pertinently and promote the development of this 
field.
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However, our proposed method increases the training cost for improving the accuracy. In the future, we will devote to 
devise a new physics-informed neural network algorithm which can improve prediction accuracy and generalization ability 
without sacrificing efficiency.
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Appendix A. Model comparison among PINN, two-stage PINN and two-stage PINN (fine-tuning) under the condition of 
different initial seeds

Under the condition of different initial seeds, which are selected randomly, ten sets of numerical experiments for every 
solution are carried out and displayed in Tables 6–13 to verify the stableness of the two-stage PINN method. Meanwhile, 
the performance of the two-stage PINN (fine-tuning) is displayed in Tables 14–21.

Table 6
One-soliton solution u of the Boussinesq-Burgers equations under the condition of different initial seeds: relative L2 errors, iteration 
times and error reduction rates of PINN and two-stage PINN based on conserved quantities.

Order 
number

PINN Two-stage PINN Error 
reduction 
rate

u Iteration 
times

u Iteration 
times

1 1.022047E-03 143 8.037295E-04 1968 21.36%
2 1.513022E-03 183 1.310325E-03 1942 13.40%
3 1.000569E-03 156 7.850035E-04 3062 21.54%
4 6.198014E-04 165 4.354769E-04 1848 29.74%
5 7.494604E-04 153 4.464852E-04 1918 40.43%
6 1.010213E-03 160 7.375601E-04 2001 26.99%
7 3.881981E-04 217 2.996518E-04 1895 22.81%
8 6.711765E-04 184 5.544982E-04 1732 17.38%
9 1.166211E-03 239 9.358580E-04 1903 19.75%
10 8.332990E-04 163 6.541544E-04 1502 21.50%

Table 7
One-soliton solution v of the Boussinesq-Burgers equations under the condition of different initial seeds: relative L2 errors, iteration 
times and error reduction rates of PINN and two-stage PINN based on conserved quantities.

Order 
number

PINN Two-stage PINN Error 
reduction 
rate

v Iteration 
times

v Iteration 
times

1 4.988110E-02 143 3.052248E-02 1968 38.81%
2 6.346011E-02 183 4.739228E-02 1942 25.32%
3 5.850316E-02 156 4.453980E-02 3062 23.87%
4 5.006774E-02 165 2.932091E-02 1848 41.44%
5 4.581136E-02 153 3.010600E-02 1918 34.28%
6 5.326944E-02 160 4.034909E-02 2001 24.25%
7 1.851491E-02 217 1.484928E-02 1895 19.80%
8 4.567286E-02 184 2.869855E-02 1732 37.16%
9 6.160414E-02 239 4.869631E-02 1903 20.95%
10 4.866762E-02 163 3.835431E-02 1502 21.19%
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Table 8
Interaction solution u of the classical Boussinesq-Burgers equations under the condition of different initial seeds: relative L2 errors, 
iteration times and error reduction rates of PINN and two-stage PINN based on conserved quantities.

Order 
number

PINN Two-stage PINN Error 
reduction 
rate

u Iteration 
times

u Iteration 
times

1 3.336242E-04 977 2.418497E-04 8057 27.51%
2 4.757502E-04 1061 3.713813E-04 7861 21.94%
3 3.087738E-04 1099 2.554277E-04 7438 17.28%
4 2.742805E-04 1035 2.083445E-04 8820 24.04%
5 2.923117E-04 1080 2.631685E-04 6522 9.97%
6 3.879219E-04 1144 3.019368E-04 7880 22.17%
7 4.586962E-04 888 3.864513E-04 8115 15.75%
8 3.163651E-04 909 2.482309E-04 6183 21.54%
9 3.849681E-04 1104 2.955302E-04 7019 23.23%
10 3.401000E-04 1033 2.673134E-04 8240 21.40%

Table 9
Interaction solution v of the classical Boussinesq-Burgers equations under the condition of different initial seeds: relative L2 errors, 
iteration times and error reduction rates of PINN and two-stage PINN based on conserved quantities.

Order 
number

PINN Two-stage PINN Error 
reduction 
rate

v Iteration 
times

v Iteration 
times

1 2.054654E-03 977 1.593131E-03 8057 22.46%
2 2.795753E-03 1061 2.171737E-03 7861 22.32%
3 2.961905E-03 1099 1.964070E-03 7438 33.69%
4 2.563365E-03 1035 1.955249E-03 8820 23.72%
5 3.115359E-03 1080 2.322891E-03 6522 25.44%
6 2.513343E-03 1144 2.224517E-03 7880 11.49%
7 3.846048E-03 888 3.175677E-03 8115 17.43%
8 3.055887E-03 909 2.441593E-03 6183 20.10%
9 1.965187E-03 1104 1.750304E-03 7019 10.93%
10 2.770811E-03 1033 2.287292E-03 8240 17.45%

Table 10
Soliton molecule of the Sawada-Kotera equation under the condition of different initial seeds: relative L2 errors, iteration times and 
error reduction rates of PINN and two-stage PINN based on conserved quantities.

Order 
number

PINN Two-stage PINN Error 
reduction 
rate

u Iteration 
times

u Iteration 
times

1 3.311141E-03 4569 2.360810E-03 9090 28.70%
2 1.046591E-03 7784 8.193358E-04 13860 21.71%
3 6.646270E-03 8437 4.429318E-03 15471 33.36%
4 1.834566E-03 4798 8.186580E-04 9908 55.38%
5 1.857327E-03 7942 9.532945E-04 11148 48.67%
6 9.397016E-03 7985 5.271889E-03 13532 43.90%
7 2.178783E-03 5965 1.782485E-03 11920 18.19%
8 2.440131E-03 6890 1.886930E-03 13327 22.67%
9 8.043736E-03 7525 5.785798E-03 13483 28.07%
10 1.689550E-03 5662 9.109926E-04 9720 46.08%

Table 11
M-shape double-peak soliton of the Sawada-Kotera equation under the condition of different initial seeds: relative L2 errors, itera-
tion times and error reduction rates of PINN and two-stage PINN based on conserved quantities.

Order 
number

PINN Two-stage PINN Error 
reduction 
rate

u Iteration 
times

u Iteration 
times

1 1.931914E-03 4433 8.757620E-04 9711 54.67%
2 2.831166E-03 6521 1.596378E-03 11453 43.61%
3 2.332973E-01 4627 1.673380E-01 8548 28.27%
4 3.268729E-03 2750 1.933634E-03 6317 40.84%
5 1.437975E-03 4299 7.104947E-04 8673 50.59%
6 3.341850E-03 8592 2.286872E-03 11872 31.57%
7 2.065562E-03 6318 1.085886E-03 12022 47.43%
8 1.281252E-03 5576 8.728303E-04 10618 31.88%
9 2.276220E-03 4354 1.470364E-03 9364 35.40%
10 2.107036E-01 4537 1.244700E-01 8656 40.93%
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Table 12
Plateau soliton of the Sawada-Kotera equation under the condition of different initial seeds: relative L2 errors, iteration times and 
error reduction rates of PINN and two-stage PINN based on conserved quantities.

Order 
number

PINN Two-stage PINN Error 
reduction 
rate

u Iteration 
times

u Iteration 
times

1 2.473586E-03 6573 8.324058E-04 10506 66.35%
2 1.107452E-01 5203 9.019751E-02 10495 18.55%
3 2.488100E-03 4265 1.160830E-03 7366 53.34%
4 2.208977E-03 8569 9.398346E-04 11776 57.45%
5 1.975001E-03 3688 1.172173E-03 8916 40.65%
6 1.992681E-03 6067 1.402009E-03 13419 29.64%
7 3.450265E-03 9691 1.457149E-03 13925 57.77%
8 2.220231E-03 6090 1.426968E-03 8561 35.73%
9 1.479445E-03 5495 7.942674E-04 9600 46.31%
10 2.880094E-03 6673 1.429492E-03 12063 50.37%

Table 13
Single-peak soliton of the Sawada-Kotera equation under the condition of different initial seeds: relative L2 errors, iteration times 
and error reduction rates of PINN and two-stage PINN based on conserved quantities.

Order 
number

PINN Two-stage PINN Error 
reduction 
rate

u Iteration 
times

u Iteration 
times

1 5.163666E-03 1351 3.036510E-03 3383 41.19%
2 1.040870E-02 2320 3.798210E-03 6380 63.51%
3 2.276302E-02 2062 5.526031E-03 4043 75.72%
4 8.646699E-03 1332 5.828349E-03 3890 32.59%
5 2.357372E-02 3227 7.597484E-03 4864 67.77%
6 9.075930E-03 2746 5.439070E-03 4262 40.07%
7 5.091968E-03 1724 3.012729E-03 3931 40.83%
8 3.080010E-03 1771 2.310492E-03 3180 24.98%
9 3.939520E-03 2110 2.223910E-03 3646 43.55%
10 4.703115E-03 1720 1.663019E-03 3332 64.64%

Table 14
One-soliton solution u of the Boussinesq-Burgers equations under the condition of different initial seeds: relative L2 errors, iteration 
times and error reduction rates of PINN and two-stage PINN (fine-tuning) based on conserved quantities.

Order 
number

PINN Two-stage PINN (fine-tuning) Error 
reduction 
rate

u Iteration 
times

u Iteration 
times

1 1.022047E-03 143 1.061781E-03 220 -3.89%
2 1.513022E-03 183 1.514958E-03 227 -0.13%
3 1.000569E-03 156 1.013353E-03 248 -1.28%
4 6.198014E-04 165 6.091569E-04 273 1.72%
5 7.494604E-04 153 7.994637E-04 244 -6.67%
6 1.010213E-03 160 9.958131E-04 253 1.43%
7 3.881981E-04 217 3.770619E-04 283 2.87%
8 6.711765E-04 184 6.506031E-04 269 3.07%
9 1.166211E-03 239 1.174681E-03 308 -0.73%
10 8.332990E-04 163 8.407394E-04 224 -0.89%

Table 15
One-soliton solution v of the Boussinesq-Burgers equations under the condition of different initial seeds: relative L2 errors, iteration 
times and error reduction rates of PINN and two-stage PINN (fine-tuning) based on conserved quantities.

Order 
number

PINN Two-stage PINN (fine-tuning) Error 
reduction 
rate

v Iteration 
times

v Iteration 
times

1 4.988110E-02 143 5.033882E-02 220 -0.92%
2 6.346011E-02 183 6.267900E-02 227 1.23%
3 5.850316E-02 156 5.641989E-02 248 3.56%
4 5.006774E-02 165 5.031941E-02 273 -0.50%
5 4.581136E-02 153 5.078001E-02 244 -10.85%
6 5.326944E-02 160 5.175873E-02 253 2.84%
7 1.851491E-02 217 1.893970E-02 283 -2.29%
8 4.567286E-02 184 4.325795E-02 269 5.29%
9 6.160414E-02 239 6.062242E-02 308 1.59%
10 4.866762E-02 163 4.727585E-02 224 2.86%
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Table 16
Interaction solution u of the classical Boussinesq-Burgers equations under the condition of different initial seeds: relative L2 errors, 
iteration times and error reduction rates of PINN and two-stage PINN (fine-tuning) based on conserved quantities.

Order 
number

PINN Two-stage PINN (fine-tuning) Error 
reduction 
rate

u Iteration 
times

u Iteration 
times

1 3.336242E-04 977 3.133056E-04 2047 6.09%
2 4.757502E-04 1061 4.693227E-04 1329 1.35%
3 3.087738E-04 1099 3.032740E-04 1400 1.78%
4 2.742805E-04 1035 2.727682E-04 1339 0.55%
5 2.923117E-04 1080 3.053162E-04 1533 -4.45%
6 3.879219E-04 1144 3.882256E-04 1208 -0.08%
7 4.586962E-04 888 4.242304E-04 2014 7.51%
8 3.163651E-04 909 3.237128E-04 1015 -2.32%
9 3.849681E-04 1104 3.835493E-04 1240 0.37%
10 3.401000E-04 1033 3.399872E-04 1454 0.03%

Table 17
Interaction solution v of the classical Boussinesq-Burgers equations under the condition of different initial seeds: relative L2 errors, 
iteration times and error reduction rates of PINN and two-stage PINN (fine-tuning) based on conserved quantities.

Order 
number

PINN Two-stage PINN (fine-tuning) Error 
reduction 
rate

v Iteration 
times

v Iteration 
times

1 2.054654E-03 977 1.795106E-03 2047 12.63%
2 2.795753E-03 1061 2.820340E-03 1329 -0.88%
3 2.961905E-03 1099 2.633005E-03 1400 11.10%
4 2.563365E-03 1035 2.552349E-03 1339 0.43%
5 3.115359E-03 1080 3.224893E-03 1533 -3.52%
6 2.513343E-03 1144 2.467861E-03 1208 1.81%
7 3.846048E-03 888 3.567078E-03 2014 7.25%
8 3.055887E-03 909 3.037032E-03 1015 0.62%
9 1.965187E-03 1104 1.892184E-03 1240 3.71%
10 2.770811E-03 1033 2.919759E-03 1454 -5.38%

Table 18
Soliton molecule of the Sawada-Kotera equation under the condition of different initial seeds: relative L2 errors, iteration times and 
error reduction rates of PINN and two-stage PINN (fine-tuning) based on conserved quantities.

Order 
number

PINN Two-stage PINN (fine-tuning) Error 
reduction 
rate

u Iteration 
times

u Iteration 
times

1 3.311141E-03 4569 3.234553E-03 4642 2.31%
2 1.046591E-03 7784 1.009713E-03 7812 3.52%
3 6.646270E-03 8437 6.581568E-03 8466 0.97%
4 1.834566E-03 4798 1.761212E-03 4961 4.00%
5 1.857327E-03 7942 1.803327E-03 7961 2.91%
6 9.397016E-03 7985 9.323797E-03 8125 0.78%
7 2.178783E-03 5965 2.174527E-03 5985 0.20%
8 2.440131E-03 6890 2.413878E-03 6911 1.08%
9 8.043736E-03 7525 7.715137E-03 7625 4.09%
10 1.689550E-03 5662 1.688073E-03 5670 0.09%

Table 19
M-shape double-peak soliton of the Sawada-Kotera equation under the condition of different initial seeds: relative L2 errors, itera-
tion times and error reduction rates of PINN and two-stage PINN (fine-tuning) based on conserved quantities.

Order 
number

PINN Two-stage PINN (fine-tuning) Error 
reduction 
rate

u Iteration 
times

u Iteration 
times

1 1.931914E-03 4433 1.958975E-03 4481 -1.40%
2 2.831166E-03 6521 2.814291E-03 6579 0.60%
3 2.332973E-01 4627 2.308335E-01 4724 1.06%
4 3.268729E-03 2750 3.087881E-03 2809 5.53%
5 1.437975E-03 4299 1.395023E-03 4347 2.99%
6 3.341850E-03 8592 3.201241E-03 8652 4.21%
7 2.065562E-03 6318 2.040382E-03 6381 1.22%
8 1.281252E-03 5576 1.194092E-03 5610 6.80%
9 2.276220E-03 4354 2.177705E-03 4487 4.33%
10 2.107036E-01 4537 2.108079E-01 4579 -0.05%
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Table 20
Plateau soliton of the Sawada-Kotera equation under the condition of different initial seeds: relative L2 errors, iteration times and 
error reduction rates of PINN and two-stage PINN (fine-tuning) based on conserved quantities.

Order 
number

PINN Two-stage PINN (fine-tuning) Error 
reduction 
rate

u Iteration 
times

u Iteration 
times

1 2.473586E-03 6573 2.581013E-03 6604 -4.34%
2 1.107452E-01 5203 1.102495E-01 5328 0.45%
3 2.488100E-03 4265 2.444347E-03 4323 1.76%
4 2.208977E-03 8569 2.252917E-03 8632 -1.99%
5 1.975001E-03 3688 2.229998E-03 3717 -12.91%
6 1.992681E-03 6067 1.912539E-03 6117 4.02%
7 3.450265E-03 9691 3.614261E-03 9760 -4.75%
8 2.220231E-03 6090 2.196172E-03 6158 1.08%
9 1.479445E-03 5495 1.483570E-03 5542 -0.28%
10 2.880094E-03 6673 3.112008E-03 6734 -8.05%

Table 21
Single-peak soliton of the Sawada-Kotera equation under the condition of different initial seeds: relative L2 errors, iteration times 
and error reduction rates of PINN and two-stage PINN (fine-tuning) based on conserved quantities.

Order 
number

PINN Two-stage PINN (fine-tuning) Error 
reduction 
rate

u Iteration 
times

u Iteration 
times

1 5.163666E-03 1351 4.851073E-03 1659 6.05%
2 1.040870E-02 2320 1.124872E-02 2418 -8.07%
3 2.276302E-02 2062 2.356507E-02 2135 -3.52%
4 8.646699E-03 1332 9.117324E-03 1399 -5.44%
5 2.357372E-02 3227 2.474661E-02 3354 -4.98%
6 9.075930E-03 2746 1.059646E-02 2798 -16.75%
7 5.091968E-03 1724 5.115509E-03 1759 -0.46%
8 3.080010E-03 1771 3.588833E-03 1819 -16.52%
9 3.939520E-03 2110 4.252574E-03 2162 -7.95%
10 4.703115E-03 1720 4.622005E-03 1793 1.72%
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