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In this paper, homotopy perturbation method is directly extended to investigate nonlinear
coupled equations with parameters derivative and to derive their numerical solutions.
These nonlinear coupled equations with parameters derivative contain many important
mathematical physics equations and reaction–diffusion equations. By choosing different
values of the parameters in general formal numerical solutions, as a result, a very rapidly
convergent series solution is obtained. The efficiency and accuracy of the method are ver-
ified by using two famous examples: coupled Burgers and mKdV equations. Numerical
solutions show that good results have been achieved.
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1. Introduction

In the recent years, with the rapid development of nonlinear science, the development of numerical techniques for solving
nonlinear equations is a subject of considerable interest. Because many scientists and engineers have done the excellent
work, the applications of homotopy theory have become a powerful mathematical tool in the nonlinear problems (references
cited therein). For example, since 1986, Watson presented a series of probability-one homotopy algorithms for solving the
nonlinear systems of equations that are globally convergent for a wide range of problems in science and engineering. With
the development of computer simulation, the mathematical software packages HOMPACK90 and POLSYSPLP were given [1–
3]. A more extensive list of references as well as a survey on progress made on this class of problems may be found in [4,5]. In
1992, based on the homotopy in topology, Liao [6] proposed a method, named homotopy analysis method (HAM), which
transforms a nonlinear problem into an infinite number of linear problems without using the perturbation techniques.
The homotopy perturbation method (HPM) [7,8] has been widely used by scientists and engineers to study the linear and
nonlinear problems. As we all know, there exists a number of effective methods [9–17] that are applied to investigate the
explicit and numerical solutions of various equations. Compared with other methods, the HPM always deforms the difficult
problem into a simple and easily solvable one, which is a coupling of the traditional perturbation method and homotopy in
topology. With this method, a series solution can be obtained that is usually rapidly convergent and with easily computable
components.

Recently, many researchers have applied HPM method to various linear and nonlinear problems including reaction–
diffusion equations [18], the fifth-order KdV equation [19], the fractional KdV equation [20], etc. [21–26]. In the recent
decades, because of the extensive applications of the fractional differential equations, it has attracted great attention and
interest in the areas of physics and engineering [27]. With fractional derivative equations, many important phenomena in
electromagnetics, acoustics, viscoelasticity, electrochemistry and material science can be well described [28–31]. However,
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as we know, for the nonlinear coupled equations with parameters derivative, especially fractional parameter derivative, not
much work has been done.

In this paper, we extend the application of HPM to discuss the explicit numerical solutions of a type of nonlinear-coupled
equations with parameters derivative in this form:
oau
ota
¼ L1ðu; vÞ þ N1ðu; vÞ; t > 0;

obv
otb ¼ L2ðu; vÞ þ N2ðu; vÞ; t > 0;

ð1Þ
where Li and Ni ði ¼ 1;2Þ are the linear and nonlinear functions of u and v, respectively, a and b are the parameters that de-
scribe the order of the derivative. Different nonlinear coupled systems can be obtained when one of the parameters a or b
varies. The study to Eq. (1) is very necessary and significant that is because when a and b are integers, it contains many
important mathematical physics equations such as the coupled Burgers equations [32], mKdV equations [33] and many cou-
pled reaction–diffusion equations [34,35]. The aim of this paper is to investigate the numerical solutions of Eq. (1) by intro-
ducing the Caputo derivative [31] and directly extending the application of the HPM in details.

The paper is organized as follows: in Section 2, some necessary description on the fractional calculus as well as the HPM
for the nonlinear equations is given. In Section 3, two famous coupled examples: Burgers and mKdV equations are given to
verify the effectiveness and accuracy of the proposed method. Finally, conclusions are followed.

2. Preliminaries and notations

2.1. Description on the fractional calculus

For the concept of fractional derivative, there exist many mathematical definitions [27–31]. In this paper, the two most
commonly used definitions: the Caputo derivative and its reverse operator Riemann–Liouville integral are adopted. That is
because Caputo fractional derivative [31] allows the traditional assumption of initial and boundary conditions. The Caputo
fractional derivative is defined as
Daf ðtÞ ¼ 1
Cðn� aÞ

Z t

0
ðt � sÞn�a�1f ðnÞðsÞds ðn� 1 < ReðaÞ 6 n;n 2 NÞ; ð2Þ
and the Riemann–Liouville fractional integral is defined as
Jaf ðxÞ ¼ 1
CðaÞ

Z x

0
ðx� tÞa�1f ðtÞdt; x > 0: ð3Þ
Here, we also need two basic properties about them:
DaJaf ðxÞ ¼ f ðxÞ;

JaDaf ðxÞ ¼ f ðxÞ �
X1
k¼0

f kð0þÞ x
k

k!
; x > 0:

ð4Þ
For more details on the fractional derivative and integral, one can consult Ref. [30].

Remark 1. In this paper, we need to discuss the fractional derivative for the type of nonlinear-coupled equations. When
a 2 Rþ we just need to copy (2); when a ¼ n 2 N, the fractional derivative reduces to the commonly used integer derivative.
That is to say
Da
t uðx; tÞ ¼ oauðx; tÞ

ota
¼

1
Cðn�aÞ

R t
0ðt � sÞn�a�1 onuðx;sÞ

osn ds; n� 1 < a < n;
onuðx;tÞ

otn ; a ¼ n 2 N:

8<
: ð5Þ
2.2. Analysis on the homotopy perturbation method

To illustrate the basic ideas of the HPM, consider the operator form of Eq. (1):
Da
t u ¼ L1ðu; vÞ þ N1ðu; vÞ; t > 0;

Db
t v ¼ L2ðu; vÞ þ N2ðu; vÞ; t > 0;

ð6Þ
where the operators Da
t and Db

t stand for the fractional derivative and are defined as in Eq. (5). The initial conditions are as-
sumed as
uðx;0Þ ¼ f ðxÞ; vðx; 0Þ ¼ gðxÞ: ð7Þ
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According to the homotopy perturbation method, we construct the following simple homotopy:
ð1� pÞDa
t uþ pðDa

t u� L1ðu; vÞ � N1ðu; vÞÞ ¼ 0;

ð1� pÞDb
t uþ pðDb

t v� L2ðu; vÞ � N2ðu; vÞÞ ¼ 0;
ð8Þ
or
Da
t u� pðL1ðu; vÞ þ N1ðu; vÞÞ ¼ 0;

Db
t u� pðL2ðu; vÞ þ N2ðu; vÞÞ ¼ 0;

ð9Þ
where p is an embedding parameter and it monotonously increases from zero to unit. When p ¼ 0, Eq. (9) becomes a set of
linear equations Da

t u ¼ 0 and Db
t v ¼ 0, which are easy to be solved; when p ¼ 1, Eq. (9) becomes the original one Eq. (6). In

topology, this is called deformation, and Da
t u; Da

t u� L1ðu; vÞ � N1ðu; vÞ and Db
t v; Db

t v� L2ðu; vÞ � N2ðu; vÞ are called
homotopic.

The basic assumption is that the solutions of Eq. (6) can be expressed as a power series of p:
u ¼
Xþ1
i¼0

piui ¼ u0 þ pu1 þ p2u2 þ p3u3 þ � � � ;

v ¼
Xþ1
i¼0

pivi ¼ v0 þ pv1 þ p2v2 þ p3v3 þ � � � :
ð10Þ
The approximate solutions of Eq. (6) can be obtained when p! 1:
u ¼ lim
p!1

X
piui ¼ u0 þ u1 þ u2 þ u3 þ � � � ;

v ¼ lim
p!1

X
pivi ¼ v0 þ v1 þ v2 þ v3 þ � � � :

ð11Þ
The convergence of the method has been proved in Ref. [38].
Substituting Eq. (10) into Eq. (9), we can obtain a set of algebraic equations of pi ði ¼ 0;1; . . .Þ. Equating the terms with the

identical powers of pi and setting them to zero yields a series of over-determined differential equations with respect to
un; vn ðn ¼ 0;1; . . .Þ. Solving these over-determined differential equations, we can get the corresponding un and vn. That is
to say, we can obtain the numerical solutions of Eq. (6).

Remark 2. The parameters a and b can be arbitrarily chosen as, integer or fraction, bigger or smaller than 1. When the
parameters are bigger than 1, collecting the coefficient of p0 yields Da

t u0 ¼ 0. Applying the inverse operator Ja to it, we get
JaDa

t u0 ¼ u0ðx; tÞ � u0ðx;0Þ � tu0tðx;0Þ � � � � � tn

n! uðnÞ0t ; n ¼ ½a�: That is to say, we will need more initial and boundary conditions
such as u0tðx;0Þ;u000tðx;0Þ; . . . and the calculations will become more complicated correspondingly. In order to illustrate the
problem and make it convenient for the readers, we only confine the parameters to [0,1] to discuss.

In the following, we will give two famous nonlinear-coupled examples: Burgers and mKdV equation to illustrate the
effectiveness of the method in details.
3. Applications of the HPM with two famous nonlinear-coupled examples

3.1. The nonlinear coupled Burgers equations with parameters derivative

To construct the explicit and numerical solutions for the coupled Burgers equations, we take the system written in an
operator form:
Da
t u ¼ Lxxuþ 2uLxu� Lxuv; ð0 < a 6 1Þ;

Db
t v ¼ Lxxvþ 2vLxv� Lxuv; ð0 < b 6 1Þ;

ð12Þ
where t > 0, Lx ¼ o=ox and the fractional operators Da
t and Db

t are defined as in Eq. (5).
As for the choice of the initial conditions, we generally take them based on its exact solutions that are known to compare

an approximate error. Assuming the initial value as
uðx;0Þ ¼ sin x;

vðx; 0Þ ¼ sin x:
ð13Þ
The exact solutions of Eq. (12) for the special case: a ¼ b ¼ 1 are
uðx; tÞ ¼ e�t sin x;

vðx; tÞ ¼ e�t sin x:
ð14Þ
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Extending the HPM to Eq. (12), according to Eq. (9), we get
Da
t u ¼ pðLxxuþ 2uLxu� LxuvÞ;

Db
t v ¼ pðLxxvþ 2vLxv� LxuvÞ:

ð15Þ
With the aid of Maple, substituting Eq. (10) into Eq. (15) yields a set of algebraic equations of pi ði ¼ 0;1; � � �Þ. Setting the
coefficients of these terms pi to zero, we can obtain a set of equations of un; vn ðn ¼ 0;1; . . .Þ. For convenience, we just list the
first few terms:
Da
t u0 ¼ 0;

Db
t v0 ¼ 0;

Da
t u1 ¼ Lxxu0 þ 2u0Lxu0 � Lxu0v0;

Db
t v1 ¼ Lxxv0 þ 2v0Lxv0 � Lxu0v0;

Da
t u2 ¼ Lxxu1 þ 2Lxu0u1 � Lxu0v1 � Lxu1v0;

Db
t v2 ¼ Lxxv1 þ 2Lxv0v1 � Lxu0v1 � Lxu1v0; . . .

ð16Þ
Applying the operators Ja; Jb, the inverse operators of Da;Db on both sides of the corresponding Eq. (16), yields
u0 ¼ f0ðxÞ; u1 ¼ f1ðxÞ þ f 1 ta

Cðaþ 1Þ ;

v0 ¼ g0ðxÞ; v1 ¼ g1ðxÞ þ g1 tb

Cðbþ 1Þ ;

u2 ¼ f2ðxÞ þ f 2 ta

Cðaþ 1Þ þ f 3 t2a

Cð2aþ 1Þ þ f 4 taþb

Cðaþ bþ 1Þ ;

v2 ¼ g2ðxÞ þ g2 tb

Cðbþ 1Þ þ g3 t2b

Cð2bþ 1Þ þ g4 taþb

Cðaþ bþ 1Þ ; . . . ;
where
fiðxÞ ¼ uiðx;0Þ;
X1
i¼0

fiðxÞ ¼ f ðxÞ; f 1 ¼ f0xx þ 2f 0f0x � ðf0g0Þx;

giðxÞ ¼ viðx;0Þ;
X1
i¼0

giðxÞ ¼ gðxÞ; g1 ¼ g0xx þ 2g0g0x � ðf0g0Þx;

f 2 ¼ f1xx þ 2ðf0f1Þx � ðf0g1 þ g0f1Þx; f 3 ¼ f 1
xx þ 2ðf0f 1Þx � ðg0f 1Þx;

g2 ¼ g1xx þ 2ðg0g1Þx � ðf0g1 þ g0f1Þx; g3 ¼ g1
xx þ 2ðg0g1Þx � ðf0g1Þx;

f 4 ¼ �f0xg1 � f0g1
x ; g4 ¼ �g0xf 1 � g0f 1

x :
So we get the approximate solutions of nonlinear coupled Burgers equations with parameters derivative Eq. (14) in a fi-
nite series as
u ¼
X1
i¼0

ui ¼ f ðxÞ þ f 1 ta

Cðaþ 1Þ þ f 2 ta

Cðaþ 1Þ þ f 3 2a
Cð2aþ 1Þ þ f 4 taþb

Cðaþ bþ 1Þ þ � � � ;

v ¼
X1
i¼0

vi ¼ gðxÞ þ g1 tb

Cðbþ 1Þ þ g2 tb

Cðbþ 1Þ þ g3 2b
Cð2bþ 1Þ þ g4 taþb

Cðaþ bþ 1Þ þ � � �
ð17Þ
Remark 3. In fact, as we all know, for various perturbation methods, low-order approximate solution can produce high
accuracy, usually 2–4 terms are enough only if we choose proper fiðxÞ and giðxÞ. In order to illustrate the convergent speed
that depends on the initial conditions and the derivative operator, not to lose the generality, we take the parameters as
a ¼ b ¼ 1, f0ðxÞ ¼ g0ðxÞ ¼ sin x and fiðxÞ ¼ giðxÞ � 0; substituting these into the above expressions, we can easily get

ui ¼ vi ¼ ð�tÞi
i! sin x. So the series solutions of Eq. (14) are u ¼ v ¼

P1
i¼0
ð�tÞi

i! sin x ¼ e�t sin x, which are rapidly convergent to the
exact solutions.

Remark 4. Up to now, there is no valid method to obtain the exact solutions for the differential equation of fractional order
according to the existing literature. So it is nearly impossible to analyze the actual error between the exact solutions and the
numerical solutions of the fractional differential equation. Here, we only limit to discuss the fractional differential equation
in which the fractional order equals to integer. However, in this paper, we just employ a graphical simulation to roughly
evaluate the accuracy of the numerical solutions obtained. As to the higher accurate analysis, it will be further discussed
and investigated (see Table 1).



Table 1
The approximate solution of /n ¼

Pn
i¼0un , exact solution uðx; tÞ and relative error when a ¼ b ¼ 1

x t /n uðx; tÞ juðx; tÞ � /nj

�2 0.01 �0.9002497658 �0.9002497662 0.4546487134e–10
�2 0.02 �0.8912921314 �0.8912921314 0.9092974268e–11
�2 0.03 �0.8824236263 �0.8824236265 0.4546487134e–10
5 0.01 �0.9493828183 �0.9493828187 0.4794621374e–10
5 0.02 �0.9399363019 �0.9399363019 0.9589242747e–11
5 0.03 �0.9305837792 �0.9305837793 0.4794621374e–10
10 0.01 �0.5386080102 �0.5386080104 0.2720105554e–10
10 0.02 �0.5332487712 �0.5332487712 0.5440211109e–11
10 0.03 �0.5279428571 �0.5279428572 0.2720105554e–10
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Fig. 1. Explicit numerical solutions for Burgers Eq. (12): (a) uðx; tÞ, (b) vðx; tÞ with a ¼ 1
4 and b ¼ 1
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From the table, we can obviously see the approximate numerical solutions /5 in Eq. (17) when a ¼ b ¼ 1, the exact
solution (14) as well as the relative error between them. Fig. 1 shows the numerical solutions of the nonlinear coupled
Burgers equations with parameters derivative with a ¼ 1

4 and b ¼ 1
3. Fig. 2 depicts the exact solutions of the classical Burger

equations with a ¼ b ¼ 1. Fig. 3 shows the residual graph between the two different kind of solutions with a ¼ b ¼ 1 at
t ¼ 0:02. The table and the residual figures fully show that the numerical solutions obtained by us can rapidly converge to
the exact solutions derived by Liu et al. So we conclude that HPM is an effective method for the nonlinear coupled Burgers
equations with parameters derivative.
3.2. The nonlinear coupled mKdV equations with parameters derivative

In this section, we will take the nonlinear coupled mKdV equations with parameters derivative as an example to illustrate
the feasibleness and accuracy of the HPM.
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Fig. 2. Exact solutions (14) for Eq. (12): (a) uðx; tÞ, (b) vðx; tÞ with a ¼ 1 and b ¼ 1.
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Fig. 3. Residual graph between the numerical solutions (17) and the exact ones (14) at t ¼ 0:02: (a) uðx; tÞ, (b) vðx; tÞ with a ¼ 1 and b ¼ 1.
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The coupled mKdV equations are given in the operator form:
Da
t u ¼ 1

2
uxxx � 3u2ux þ

3
2

vxx þ 3ðuvÞx � 3kux;

Db
t v ¼ �vxxx � 3vvx � 3uxvx þ 3u2vx þ 3kvx;

ð18Þ
with the initial conditions
uðx;0Þ ¼ b
2k
þ k tanhðkxÞ; vðx;0Þ ¼ k

2
1þ k

b

� �
þ b tanhðkxÞ:
Implementing the HPM into Eq. (18), and according to the homotopic expressions (9), yields
Da
t u ¼ p

1
2

uxxx � 3u2ux þ
3
2

vxx þ 3ðuvÞx � 3kux

� �
;

Db
t v ¼ pð�vxxx � 3vvx � 3uxvx þ 3u2vx þ 3kvxÞ:

ð19Þ
The steps are the same as above: substituting the series u ¼
P

piui and v ¼
P

pivi, balancing the same powers of pi and set-
ting them into them as zero, then we can obtain a series of over-determined equations, and by solving them we can get the
results. Here, we just give the first three terms of pi ði ¼ 0;1;2Þ and the corresponding numerical solutions:
Da
t u0 ¼ 0;

Db
t v0 ¼ 0;

Da
t u1 ¼

1
2

u0xxx � 3u2
0u0x þ

3
2

v0xx þ 3ðu0v0Þx � 3ku0x;

Db
t v1 ¼ �v0xxx � 3v0v0x � 3u0xv0x þ 3u2

0v0x þ 3kv0x;

Da
t u2 ¼

1
2

u1xxx � 3ðu2
0u1x þ 2u0u0xu1Þ þ

3
2

v1xx þ 3ðu0v1 þ u1v0Þx � 3ku1x;

Db
t v2 ¼ �v1xxx � 3ðv0v1Þx � 3ðu0xv1x þ u1xv0xÞ þ 3ðu2

0v1x þ 2u0u1v0xÞ þ 3kv1x:
Solve them and get ui; vi ði ¼ 0;1;2Þ as
u0 ¼ f0ðxÞ; u1 ¼ f1ðxÞ þ f 1 ta

Cðaþ 1Þ ;

v0 ¼ g0ðxÞ; v1 ¼ g1ðxÞ þ g1 tb

Cðbþ 1Þ ;

u2 ¼ f2ðxÞ þ f 2 ta

Cðaþ 1Þ þ f 3 t2a

Cð2aþ 1Þ þ f 4 taþb

Cðaþ bþ 1Þ ;

v2 ¼ g2ðxÞ þ g2 tb

Cðbþ 1Þ þ g3 t2b

Cð2bþ 1Þ þ g4 taþb

Cðaþ bþ 1Þ ; � � � ;
where
fiðxÞ ¼ uiðx;0Þ;
X1
i¼0

fiðxÞ ¼ f ðxÞ; f 1 ¼ 1
2

f0xxx � 3f 2
0 f0x þ

3
2

g0xx þ 3ðf0g0Þx � 3kf0x;

giðxÞ ¼ viðx;0Þ;
X1
i¼0

giðxÞ ¼ gðxÞ; g1 ¼ �g0xxx � 3g0g0x � 3f 0xg0x þ 3f 2
0 g0x þ 3kg0x;

f 2 ¼ 1
2

f1xxx � 3ðf 2
0 f1Þx þ

3
2

g1xx þ 3ðf0g1 þ f1g0Þx � 3kf1x;

g2 ¼ �g1xxx � 3ðg0g1Þx � 3ðf0xg1x þ f1xg0xÞ þ 3ðf 2
0 g1x þ 2f 0f1g0xÞ þ 3kg1x;
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Fig. 4. Explicit numerical solutions for Eq. (20): (a) uðx; tÞ, (b) vðx; tÞ with a ¼ 1
2, b ¼ 2

3, k ¼ 0:1; b ¼ 1 and k ¼ 1
3.
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f 3 ¼ 1
2

f 1
xxx þ 3ðg0f 1 � f 2

0 f 1Þx � 3kf 1
x ;

g3 ¼ �3g1
xxx þ 3f 2

0 g1
x � 3ðg0g1Þx � 3f 0xg1

x Þ þ 3kg1
x ;

f 4 ¼ 3
2

g1
xx þ 3ðf0g1Þx; g4 ¼ 6f 0f 1g0x � 3g0f 1

x :
So the final numerical results are
u ¼
X1
i¼0

ui ¼ f ðxÞ þ f 1 ta

Cðaþ 1Þ þ f 2 ta

Cðaþ 1Þ þ f 3 2a
Cð2aþ 1Þ þ f 4 taþb

Cðaþ bþ 1Þ þ � � � ;

v ¼
X1
i¼0

vi ¼ gðxÞ þ g1 tb

Cðbþ 1Þ þ g2 tb

Cðbþ 1Þ þ g3 2b
Cð2bþ 1Þ þ g4 taþb

Cðaþ bþ 1Þ þ � � �
ð20Þ
As we know, when a ¼ b ¼ 1, Eq. (18) has the kink-type soliton solutions
uðx; tÞ ¼ b
2k
þ k tanhðknÞ;

vðx; tÞ ¼ k
2

1þ k
b

� �
þ b tanhðknÞ;

ð21Þ
constructed by Fan [39], where n ¼ xþ 1
4 ð�4k2 � 6kþ 6kk

b þ 3b2

k2 Þt, k–0 and b–0:
The effectiveness and accuracy of the numerical results can be seen by making a comparison of the figures. Figs. 3 and 4

show the numerical solutions (20) with a ¼ 1
2 ; b ¼ 2

3 and the exact ones (21) with a ¼ b ¼ 1 when k ¼ 0:1; b ¼ 1; k ¼ 1
3,

respectively. Fig. 6 is the error graph between the two solutions with a ¼ b ¼ 1 at t ¼ 0:002. From Fig. 6, we can know that
the series solutions converge rapidly by HPM, so we say that a good approximation has been achieved (Fig. 5).

Remark 5. In fact, the operators Liðu; vÞ and Niðu; vÞ ði ¼ 1;2Þ can also contain fractional derivative. In this case, the system
will become another type of coupled system with time- and space-parameters derivative. The HPM is also effective to them.
As the main steps are similar to the above, we omit these complex calculations here.
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Fig. 5. Exact solutions (21) for (18): (a) uðx; tÞ, (b) vðx; tÞ with a ¼ 1, b ¼ 1, k ¼ 0:1; b ¼ 1 and k ¼ 1
3 :



a

—3e—05

—2e—05

—1e—05

1e—05

2e—05

3e—05

u

—15 —10 —5 5 10 15x

b

2e—05

4e—05

6e—05

8e—05

0.0001

0.00012

v

—15 —10 —5 0 5 10 15x
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4. Conclusion

In this paper, we have investigated a type of nonlinear coupled equations with parameters derivative. When the param-
eters derivative is a fractional derivative, we assume them to satisfy the Caputo derivative. The HPM has been successfully
extended to derive its explicit numerical solutions. Actually, the study on the type of coupled equations with parameters
derivative is very interesting and significant because when the parameters are integers, the system contains many important
mathematical physics models as well as many coupled reaction–diffusion equations. Two different test systems: coupled
Burgers and mKdV equations are used to illustrate the validity of the proposed method. A comparison of the results between
the numerical and the exact solutions implies that we have achieved a good result. So the HPM is a very powerful tool to
solve a wide class of linear and nonlinear problems, especially the weak nonlinearity. Hayat and Sajid [36,37] proved that
the HPM [7,8] is a special case when �h ¼ �1 of the HAM. The HAM has more advantages, such as providing a simple way
to control and adjust the convergence region both for weak and for strong nonlinearity. However, in this paper, we employ
the HPM to investigate the problems of weak nonlinearity in order to avoid the heavy calculation by auxiliary parameter �h. In
addition, the technique can also be extended to a generalized type of coupled equations with time- and space-parameters
derivative. The question of whether we can introduce other new feasible derivative operators or algorithms to solve the sys-
tems and whether we can adopt other techniques to accelerate the convergent speed of the solutions will be further studied.
At the same time, how to find an effective method to obtain the exact solution for the differential equation of fractional order
will be deeply explored later.
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