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Abstract The Gerdjikov-Ivanov (GI) hierarchy is derived via recursion operator, in this article, we mainly

investigate the third-order flow GI equation. In the framework of the Riemann-Hilbert method, the soliton

matrices of the third-order flow GI equation with simple zeros and elementary high-order zeros of Riemann-

Hilbert problem are constructed through the standard dressing process. Taking advantage of this result, some

properties and asymptotic analysis of single soliton solution and two soliton solution are discussed, and the

simple elastic interaction of two soliton are proved. Compared with soliton solution of the classical second-order

flow, we find that the higher-order dispersion term affects the propagation velocity, propagation direction and

amplitude of the soliton. Finally, by means of a certain limit technique, the high-order soliton solution matrix

for the third-order flow GI equation is derived.
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1 Introduction

As is well known, completely integrable equations have widespread applications in plasma
physics, water wave, field theory and nonlinear optics (see [5, 16, 18]). In these integrable
systems, the nonlinear Schrödinger (NLS) equation is a general mathematical model for con-
trolling weak nonlinearity and dispersive wave packets in one-dimensional physical systems.
Another well-known NLS-type integrable system is the derivative NLS equation

iut + uxx − iu2u∗
x +

1

2
u3u∗2 = 0, (1.1)

the symbol ‘∗’ denotes complex conjugation. Eq.(1.1) was first discovered by Gerdjikov and
Ivanov in Ref.[12], also known as the GI equation. It can be seen as a generalization of NLS
when some higher-order nonlinear effects are considered, which is also known as DNLS III. In
fact, there are three famous DNLS equations, the other two types of derivative NLS equations
are the Kaup-Newell (KN) equation[17]

iut + uxx + i
(
u2u∗)

x
= 0, (1.2)
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which is a typical dispersion equation derived from the magnetohydrodynamic equations with
Hall effect and usually called DNLS I, and the Chen-Lee-Liu (CLL) equation[3]

iut + uxx + iuu∗ux = 0, (1.3)

which describes ultra-short pulses in the optical model, also known as DNLS II. Ref.[9] gives
the unified expression of KN, CLL and GI equations.

The GI equation (1.1) is a model of Alfvén waves propagating parallel to the surrounding
magnetic field in plasma physics. In recent years, many academics have done a lot of research on
classical GI equation, such as its Hamiltonian structures, Darboux transformation[7, 8], algebra-
geometric solutions[4], breather solution[28], the rogue wave and the long-time asymptotic be-
havior of its solution[25, 27]. With the development of research, the importance of higher-order
nonlinear effects in plasma physics and other fields promote us to consider integrable models
with higher nonlinearity.

In this work, we mainly study the soliton solutions and high-order solutions of the third-
order flow GI equation

ut = −1

2
uxxx +

3

2
iuuxu

∗
x − 3

4
|u|4ux (1.4)

with the help of the Riemann-Hilbert method. It has been proved in Ref.[9] that Eq.(1.4) is
Liouville integrable and has multiple Hamiltonian structures.

It is well known that the classical inverse scattering transform (IST) method is a general
method to obtain soliton solutions[1, 2, 11], which was initially solved by using the Gel’Fand-
Levitan-Marchenko (GLM) integral equation. Although the GLM equation can be used to solve
the equation, the solution process is very complex. After that, Shabat used Riemann-Hilbert
problem (RHP) to reconstruct the inverse scattering method[23].As an improved IST method,
Riemann-Hilbert method has become a more popular method to study soliton solutions and
long-time asymptotic behavior of integrable systems in recent years[6, 14, 15, 19, 26, 30, 32, 33, 36].

Higher-order soliton is also an important exact solution of NLS type equation, it can describe
the weak bound state of soliton, which may appear in the study of soliton train transmission
with specific chirp and almost equal velocity and amplitude[10]. Therefore, it is valuable to
investigate the higher-order soliton solutions of DNLS equation.

In this paper, we construct GI hierarchy based on recursive operator. In the framework of
the RHP, soliton matrices corresponding to simple zeros and elementary higher-order zeros of
the third-order flow GI equation are constructed through a standard dressing transformation
method. Different from the NLS-type equation, in this case, a pair of zeros are always treated
at the same time. On the basis of the determinant solution, asymptotic analysis and some
properties of single soliton solution and two soliton solutions are studied. Compared with
the classical second-order flow GI equation, it is find that the higher-order dispersion term
has a great influence on the direction, velocity and amplitude of solitons. In the situation
of elementary higher-order zeros, the higher-order soliton matrix of the third-order flow GI
equation is derived by using the limit process of spectral parameters.

The article is arranged as follows. In Section 2, we derive the GI hierarchy with recursion
operator. The RHP based on the Jost solutions to the Lax pair of the third-order flow GI
equation and scattering data are constructed in section 3. In Section 4, taking advantage of
the Plemelj formula to discuss the solutions of regular and non-regular RHP. In Section 5, we
reconstruct the potential u through the inverse problem, and derive the N-solitons formula of
the third-order flow GI equation by considering the simple zeros in the RHP. In Section 6, the
higher-order soliton matrix corresponding to the elementary higher-order zeros in the RHP is
constructed. The conclusion and discussion are given in the final section.
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2 The GI Hierarchy and Recursion Operator

In the theory of integrable system, an important assignment is to construct new integrable
equations and solve them with the IST method. In this section, we will associate with recursion
operator, and construct the GI hierarchy of integrable equations. The GI hierarchy has the
following spectral problem:

Yx = MY, M =

(
−iλ2 − i

2
uv λu

λv iλ2 +
i

2
uv

)
, (2.1)

Yt = NY, N =

(
A B

C −A

)
, (2.2)

where λ is the spectral parameter, u = u(x, t) and v = v(x, t) are field variables, A,B and C
are the quantities relating to field variables and their derivatives and λ.

Theorem 2.1. According to the consistency of space part (2.1) and time part (2.2) of spectral
problem, infinite hierarchy of GI system can be obtained by recursive operator:(

u

v

)
t

=
(
− 1

2

)n−2

(iσ3)
n−1(L1∂x + L2)

n−1

(
ux

vx

)
, n = 2, 3, · · · , (2.3)

where

L1 =

(
−1 + iu∂−1v iu∂−1u

−iv∂−1v −1− iv∂−1u

)
, σ3 =

(
1 0

0 −1

)
,

and

L2 =

(
−iuv − u∂−1uv2 u∂−1u2v

v∂−1uv2 iuv − v∂−1u2v

)
.

Proof. The compatibility condition of Eq.(2.1) and Eq.(2.2) leads to

Mt −Nx + [M,N ] = 0, (2.4)

which can lead

i

2
(uv)t +Ax − λuC + λvB = 0, (2.5)

λut −Bx − 2iλ2B − iuvB − 2λuA = 0, (2.6)

λvt − Cx + 2iλ2C + iuvC + 2λvA = 0. (2.7)

From those equations, we can get

A =
−i

2λ
∂−1

(
vBx + uCx + iuv2B − iu2vC

)
+A0, (2.8)

where ∂−1 is an integral in x which can be regarded as either ∂−1 =
∫ x

−∞ dy or ∂−1 = −
∫ +∞
x

dy,
and A0 are x−independent.
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Using (2.8), Eqs.(2.6) and (2.7) may be rewritten as

λ

(
u

v

)
t

+ L1

(
Bx

Cx

)
− 2iλ2

(
B

−C

)
+ L2

(
B

C

)
− 2λA0

(
u

−v

)
= 0, (2.9)

where

L1 =

(
−1 + iu∂−1v iu∂−1u

−iv∂−1v −1− iv∂−1u

)
, L2 =

(
−iuv − u∂−1uv2 u∂−1u2v

v∂−1uv2 iuv − v∂−1u2v

)
.

In order to get the evolution equations, we can expand B and C in the following form(
B

C

)
=

n∑
j=1

(
bj

cj

)
(λ)2j−1. (2.10)

Let A0 = −2iλ2n, substituting (2.10) into (2.9), and taking advantage of the equality of the
values of the same power terms of λ to obtain the following recurrence(

u

v

)
t

+ L1

(
b1

c1

)
x

+ L2

(
b1

c1

)
= 0, (2.11)

and(
bn

cn

)
= 2

(
u

v

)
, L1

(
bj

cj

)
x

− 2iσ3

(
bj−1

cj−1

)
+ L2

(
bj

cj

)
= 0, j = 2, · · · , n.

(2.12)

Eq.(2.11) and (2.12) are used to iterate and derive the GI hierarchy(
u

v

)
t

=
(
− 1

2

)n−2

(iσ3)
n−1(L1∂x + L2)

n−1

(
ux

vx

)
, n = 2, 3, · · · ,

the Theorem can eventually be proved.

Remark 2.2. In the zero curvature equation of GI equation, the derivative of M principal
diagonal to t is not zero, which leads to GI hierarchy recursive form more complex than KN
hierarchy[13] and the AKNS hierarchy[30].

Taking n = 2, the first nontrivial flow in the hierarchy (2.3) is

(
u

v

)
t

=

(
iuxx − u2vx +

i

2
u3v2

−ivxx − v2ux − i

2
u2v3

)
, (2.13)

which form a coupled GI system. The reduction v = −u∗ for (2.13) yields the DNLS III Eq.
(1.1). When n = 3, the second nontrivial flow in the hierarchy (2.3) is

(
u

v

)
t

=

(
−1

2
uxxx − 3i

2
uuxvx − 3

4
(u2v2)ux

−1

2
vxxx +

3i

2
uxvxv −

3

4
(u2v2)vx

)
. (2.14)
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Taking v = −u∗, the Eq.(2.14) is simplified as

ut = −1

2
uxxx +

3

2
iuuxu

∗
x − 3

4
|u|4ux,

which corresponding to Eq.(1.4). In this case, the specific forms of bj and cj are

b3 = 2u, c3 = −2u∗, b2 = iux, c2 = iu∗
x,

b1 = −1

2
uxx +

1

2
iu2u∗

x − 1

4
u3u∗2,

c1 =
1

2
u∗
xx +

1

2
iu∗2ux +

1

4
u∗3u2.

(2.15)

For convenience, we present the spectral problem of Eq.(1.4)

Yx = MY, M = −iλ2σ3 + λQ− i

2
Q2σ3, (2.16)

Yt = NY, N = −2iλ6σ3 + Z5λ
5 + Z4λ

4 + Z3λ
3 + Z2λ

2 + Z1λ+ Z0, (2.17)

where

Q =

(
0 u

−u∗ 0

)
, (2.18)

Z5 = 2Q, Z4 = −iQ2σ3, Z3 = iσ3Qx,

Z2 = −1

2
QQx +

1

2
QxQ+

1

4
iQ4σ3,

Z1 = −1

2
Qxx +

i

2
QQxQσ3 −

1

4
Q5,

Z0 =
i

4
(QQxx +QxxQ)σ3 −

i

4
Q2

xσ3 +
i

8
Q6σ3. (2.19)

It’s easy to find that
QH = −Q, σ3Qσ3 = −Q,

where the symbol ′H′ denotes the Hermitian of a matrix.

3 The Construction of RHP

This section mainly constructs the RHP of Eq.(1.4). In our analysis, we mainly consider the
zero boundary condition, i.e.,

u(x, 0) → 0, x → ±∞,

which belongs to Schwartz space. Therefore, it is easy to take the form of the solution of
Eqs.(2.16) and (2.17) as

Y = Je(−iλ2x−2iλ6t)σ3 . (3.1)

We can know

J(x, t, λ) → I, x → ±∞. (3.2)

The Lax pair of Eq.(2.16)–(2.17) becomes

Jx + iλ2[σ3, J ] = (λQ− i

2
Q2σ3)J, (3.3)
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Jt + 2iλ6[σ3, J ] = (Z5λ
5 + Z4λ

4 + Z3λ
3 + Z2λ

2 + Z1λ+ Z0)J, (3.4)

where Q,Zi (i = 0, · · · , 5) has been given by Eq.(2.19),(2.18).
Next, considing the scattering problem at first. In this situation , the time t is fixed, so

it will be limited in our symbol. Then it is evident that J(x, λ) satisfies the Volterra integral
equations

J−(x, λ) = I +

∫ x

−∞
eiλ

2σ3(y−x)(λQ(y)− i

2
Q2σ3)J−e

iλ2σ3(x−y)dy, (3.5)

J+(x, λ) = I −
∫ +∞

x

eiλ
2σ3(y−x)(λQ(y)− i

2
Q2σ3)J+e

iλ2σ3(x−y)dy. (3.6)

It is easy to prove the uniqueness and existence of Jost solution for the above integral equation
by using the standard iterative method.

Splitting J± into columns as J = (J [1], J [2]), due to the structure Eqs.(3.5) and (3.6) of the
potential Q, we have

Proposition 3.1. The column vectors J
(1)
− and J

(2)
+ are analytic for λ ∈ D+ and continuous

for λ ∈ D+ ∪R∪ iR, while the columns J
(1)
+ and J

(2)
− are analytical for λ ∈ D− and continuous

for λ ∈ D− ∪ R ∪ iR, where

D+ =
{
λ | arg λ ∈

(
0,

π

2

)
∪
(
π,

3π

2

)}
, D− =

{
λ | arg λ ∈

(π
2
, π
)
∪
(3π

2
, 2π
)}

.

The distribution area of D± is shown in Figure (3.1).

Figure 3.1. The jump contour in the complex λ-plane. Region D+ = {λ ∈ C|ReλImλ > 0},
region D− = {λ ∈ C|ReλImλ < 0}.

In fact, the J+E and J−E are the simultaneous solutions of the Lax pair (3.3). Therefore,
they have following linear relation by the constant matrix S(λ)

J−E = J+ES(λ), λ ∈ R ∪ iR, (3.7)

where E = e−iλ2xσ3 and S(λ) = (sij)2×2. According to Abel’s formula and tr(Q) = 0, we
obtain that the determinant of J is independent of x, then considering the conditions (3.2), we
can get

detJ = 1.

Further, detS(λ) = 1 can be easily obtained according to Eq.(3.7).
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Proposition 3.2. In the scattering matrix, s11 can be analytically extended to D+, and s22
allows analytic extended to D−.

Proof. According to the relation (3.7) we have

S(λ) = lim
x→+∞

E−1J−E = I +

∫ +∞

−∞
E−1

(
λQ(y)− i

2
Q2σ3

)
J−Edx, λ ∈ R ∪ iR. (3.8)

So

S(λ) = I + λ

( ∫ +∞
−∞ uJ21

− dx
∫ +∞
−∞ uJ22

− e2iλ
2xdx

−
∫ +∞
−∞ u∗J11

− e−2iλ2xdx −
∫ +∞
−∞ u∗J12

− dx

)
, (3.9)

i,e,

s11 = 1 + λ

∫ +∞

−∞
uJ21

− dx, s22 = 1− λ

∫ +∞

−∞
u∗J12

− dx,

through the analytic property of J−, it’s easy to know that s11 can be analytically extended to
D+, and s22 allows analytic extended to D−.

In order to construct the RHP, introducing the notation

P+ = (J
[1]
− , J

[2]
+ ) = J−H1 + J+H2 = J+E

(
s11 0

s21 1

)
E−1, (3.10)

where H1 = diag{1, 0} and H2 = diag{0, 1}. Through the previous analysis, we can see that
P+ is analytic in D+ and det (P+) = s11. In order to find the boundary condition of P+ as
λ → ∞, the following asymptotic expansion can be considered

P+ = P
(0)
+ +

1

λ
P

(1)
+ +

1

λ2
P

(2)
+ +O

( 1

λ3

)
. (3.11)

Substituting (3.11) into (3.3) and equating terms with like powers of λ, which lead to

P
(0)
+x = 0, (3.12)

without losing generality, we can set P
(0)
+ = I. This means

P+ → I, λ ∈ D+ → ∞. (3.13)

To receive the analytic correspondence of P+ in D−, the adjoint scattering equation of
Eq.(3.3) is considered

Φx = −iλ2 [σ3,Φ]− λΦQ+
i

2
ΦQ2σ3, (3.14)

using the formula,

0 =
(
JJ−1

)
x
= JxJ

−1 + J
(
J−1

)
x
,

it is easy to get that J−1 satisfies Eq.(3.14), that is to say, J−1 is the solution of Eq.(3.14),
and the boundary condition is also J−1 → I as x → ±∞. Let (J−1

± )[k] be the k-th row of the

matrices J−1
± ,

J−1
± =

(
(J−1

± )[1], (J−1
± )[2]

)T
. (3.15)
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Adopting the same technology as above, we can prove that

P−1
− = H1J

−1
− +H2J

−1
+ = E

(
ŝ11 ŝ12

0 1

)
E−1J−1

+ (3.16)

analytic for D−, where

J−1
− = ES−1E−1J−1

+ , Ŝ = S−1 =

(
ŝ11 ŝ12

ŝ21 ŝ22

)
,

and detP−1
− = ŝ11. Through direct calculation, we can get that P−1

− also satisfies the same
boundary condition (3.13), as λ → ∞. i.e.

P−1
− (x, λ) → I, λ ∈ C− → ∞. (3.17)

Therefore, two matrix functions P±(x, λ), which are analytic functions for λ ∈ D±, have been
constructed. Thus the RHP can be constructed as follow by P+, P

−1
− :

P−1
− (x, λ)P+(x, λ) = G(x, λ) = E

(
1 ŝ12

s21 1

)
E−1, λ ∈ R ∪ iR, (3.18)

with boundary condition

P± → I, λ → ∞. (3.19)

In the end of this section, the time evolution of scattering matrices S(λ) and Ŝ(λ) are
considered. Since J satisfies the temporal Eq.(3.4) of the Lax pair and the relation (3.7), then
reviewing the evolution property (3.7) and Q → 0, Zi(i = 1, · · · , 5) → 0 as |x| → ∞, we have

St + 2iλ6 [σ3, S] = 0.

The time evolution of Ŝ(λ) can be similarly obtained as

Ŝt + 2iλ6[σ3, Ŝ] = 0.

These two equations lead that

s11,t = ŝ11,t = 0,

s12(t;λ) = s12(0;λ) exp
(
− 4iλ6t

)
, (3.20)

ŝ21(t;λ) = ŝ21(0;λ) exp
(
4iλ6t

)
. (3.21)

4 Solution of the RHP

In this section, we discuss how to solve the matrix RHP (3.18) in the complex λ plane. When
det (P+) = s11 ̸= 0 and det(P−1

− ) = ŝ11 ̸= 0 , the RHP (3.18) constructed above is regular, and

RHP is called nonregular when det(P+) = 0 and det(P−1
− ) = 0 are in some discrete positions.

In fact, nonregular RHP can be converted into regular RHP, so we consider regular case at first.
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4.1 Solution to the Regular RHP

In this subsection, we consider the regular RHP of (3.18), i.e., in their analytic domain. Rewrit-
ing Eq.(3.18) as

(P+)−1(λ)− P−1
− (λ) = Ĝ(λ)(P+)−1(λ), λ ∈ R ∪ iR, (4.1)

where

Ĝ = I −G = −E

(
0 ŝ12

s21 0

)
E−1. (4.2)

On the basis of Plemelj formula, the formal solution of this problem can be given

(
P+
)−1

(λ) = I +
1

2πi

∫
T

Ĝ(ξ)
(
P+
)−1

(ξ)

ξ − λ
dξ, λ ∈ D+, (4.3)

and T = (−i∞, 0] ∪ (i∞, 0] ∪ [0,−∞) ∪ [0,∞).
Under the canonical normalization condition (3.19), the solution to this regular RHP is

unique. Assume that (3.18) has two solutions P± and P̃±. So there is

P−1
− (λ)P+(λ) = P̃−1

− (λ)P̃+(λ),

and thus

P̃−(λ)P
−1
− (λ) = P̃+(λ)P

−1
+ (λ), λ ∈ R ∪ iR. (4.4)

Because of P̃+(λ)P
−1
+ (λ) is analytic in D+, P̃−(λ)P

−1
− (λ) is analytic in D−, and they are equal

in R∪ iR. So they define a matrix function together, which is resolves on the entire plane of λ.
With the boundary condition (3.19), by applying Liouville’s theorem, we obtain

P̃−1
− (λ)P−(λ) = P̃+(λ)P

−1
+ (λ) = I (4.5)

for all λ. In other words, P̃± = P±, which means that the solution of RHP (3.18) is unique.

4.2 Solution to the Nonregular RHP

In the more general case, the RHP (3.18) is not regular, i.e., detP+(λ) = s11(λ) = 0 and
detP−1

− (λ) = ŝ11(λ) = 0 at certain discrete locations. For the sake of research the non-regular
RHP, we need to consider the symmetry of these zeros. Note that s11(λ) and ŝ11(λ) are
independent of t, so the roots of s11(λ) and ŝ11(λ) are also independent of t.

The Hermitian of the spectral Eq.(3.3) is

(JH)x = −iλ2
[
σ3, J

H]− λJHQ+
i

2
JHQ2σ3, (4.6)

where QH = −Q is considered. It is easy to find that JH(x, λ∗) also satisfies the adjoint
scattering Eq.(3.14), so JH (x, λ∗) and J−1(x, λ) are definitely linearly related. Looking back
at the boundary conditions of the Jost solution J, we further see that JH (x, λ∗) and J−1(x, λ)
possess the same boundary conditions as x → ±∞, and therefore they have to be equal,

J−1(x, λ) = JH(x, λ∗), (4.7)

so there is

P−1
− (λ) =

(
P+

)H
(λ∗). (4.8)
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Besides, reviewing the scattering relation (3.7) between J+ and J−, it is easy to know that the
involution property of S(λ) satisfies is

S−1(λ) = SH(λ∗). (4.9)

Moreover , from the symmetric property σ3Qσ3 = −Q and σ3Q
2σ3 = Q, we conclude that

J(λ) = σ3J(−λ)σ3. (4.10)

It follows that

P±(−λ) = σ3P±(λ)σ3, (4.11)

and

S(−λ) = σ3S(λ)σ3. (4.12)

From the (4.9) and (4.12), we obtain the relations

ŝ11(λ) = s∗11(λ
∗), ŝ12(λ) = s∗21(λ

∗), ŝ21(λ) = s∗12(λ
∗), λ ∈ R ∪ iR, (4.13)

and

s11(λ) = s11(−λ), s12(−λ) = −s12(λ), s21(−λ) = −s21(λ), s22(λ) = s22(−λ). (4.14)

Thus s11(λ) is an even function, and each zero λk of s11 is accompanied with zero−λk. Similarly,
ŝ11(λ) has two zeros ±λ̄k.

Here we first consider the case of simple zeros {±λk ∈ D+, 1 ≤ k ≤ N} and {±λ̄k ∈
D−, 1 ≤ k ≤ N}, where N is the number of these zeros. According to the involution property
(4.13), the following involution relation is obtained

λ̄k = λ∗
k. (4.15)

It follows that symmetry relation (4.13) and (4.14), in this case, the kernels of ker
(
P+

(
± λk

))
and ker(P−1

−
(
± λ̄k

)
) contain only a single column vector

∣∣vk⟩ and row vector
⟨
vk
∣∣,

P+

(
λk

)∣∣vk⟩ = 0,
⟨
vk
∣∣P−1

−
(
λ̄k

)
= 0, 1 ≤ k ≤ N. (4.16)

On the basis of the symmetry relation (4.8), which can lead to∣∣vk⟩ = ⟨vk∣∣H. (4.17)

Next, we discuss the evolution of kernel function with time and space, the first equation of
differential (4.16) with respect to both sides of x and t, and reviewing the Lax (3.3)–(3.4), we
get

P+(λk;x)
(d|vk⟩

dx
+ iλ2σ3|vk⟩

)
= 0, P+(λk;x)

(d|vk⟩
dt

+ 2iλ6σ3|vk⟩
)
= 0.

It concludes that ∣∣vk⟩ = e−iλ2
kσ3x−2iλ6

kσ3t
∣∣vk0⟩,

where vk0 = vk
∣∣
x=0

.
On the basis of the above analysis, we obtain the following theorem for the solution of

non-regular RHP under normalization condition (3.19).
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Theorem 4.1. The solution to the nonregular RHP (3.18) with simple zeros with the canonical
normalized condition (3.13) and (3.17) is

P+ = P̂+Γ, P−1
− = Γ−1P̂−1

− , (4.18)

where

Γ(λ) = ΓN (λ)ΓN−1(λ) · · ·Γ1(λ), Γ−1(λ) = Γ−1
1 (λ)Γ−1

2 (λ) · · ·ΓN (λ),

Γk(λ) = I +
Ak

λ− λ∗
k

− σ3Akσ3

λ+ λ∗
k

, (4.19)

Γ−1
k (λ) = I +

AH
k

λ− λk
− σ3A

H
k σ3

λ+ λk
, k = 1, 2, . . . , N, (4.20)

Ak =
λ∗2
k − λ2

k

2

(
α∗
k 0

0 αk

)∣∣wk

⟩⟨
wk

∣∣, (4.21)

α−1
k = ⟨wk|

(
λk 0

0 λ∗
k

)
|wk⟩, (4.22)

and

det Γk(λ) =
λ2 − λ2

k

λ2 − λ∗2
k

,
∣∣wk

⟩
= Γk−1(λk) · · ·Γ1(λk)

∣∣vk⟩, ⟨
wk| = |wk

⟩H
. (4.23)

Therefore, Γ(x, t, λ) and Γ−1(x, t, λ) collect all zero of the RHP, and P̂−1
± is the only solution to

the following regular RHP:

P̂−1
− (λ)P̂+(λ) = Γ(λ)G(λ)Γ−1(λ), λ ∈ R ∪ iR, (4.24)

and the boundary condition P̂± → I as λ → ∞, where P̂± are analytic in D± respectively.

5 The Inverse Problem

The ultimate purpose of inverse scattering is to obtain the potential u. Based on (3.11),
substitute it into the Eq.(2.16) and compare the coefficients of the λ to get

Q = i[σ3, P
(1)
+ ], (5.1)

from this formula, we can get the potential

u = 2i(P
(1)
+ )12. (5.2)

As we all know that the soliton solutions correspond to the disappearance of scattering
coefficients, G = I, Ĝ = 0. Thus, we intend to solve the corresponding RHP(4.24). In the inverse
scattering transform method, the product representations Γ(λ) and Γ−1(λ) is not convenient
for subsequent calculations ,so it needs to be simplified the expression of Γ(λ) and its inverse,
in fact,

Γ(λ) = I +
N∑
j=1

[ Bj

λ− λ∗
j

− σ3Bjσ3

λ+ λ∗
j

]
, (5.3)
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and

Γ−1(λ) = I +
N∑
j=1

[ BH
j

λ− λj
−

σ3B
H
j σ3

λ+ λj

]
with Bj =

∣∣zj⟩⟨vj∣∣. To determine the form of matrix Bj , we take advantage of the equation
Γ(λ)Γ(λ)−1 = I. Considering the residue condition at λj , Resλ=λj Γ(λ)Γ

−1(λ) = Γ(λj)B
H
j = 0,

and it yields [
I +

N∑
k=1

(∣∣zk⟩⟨vk∣∣
λj − λ∗

k

−
σ3

∣∣zk⟩⟨vk∣∣σ3

λj + λ∗
k

)]∣∣∣vj⟩ = 0, j = 1, 2, · · ·N, (5.4)

it’s easy to figure out ∣∣zk⟩1 =
N∑
j=1

(M−1)jk
∣∣vj⟩1, (5.5)

where
∣∣zk⟩l denotes the l−th element of

∣∣zk⟩, matrix M is defined as

(M)jk =

⟨
vk
∣∣σ3

∣∣vj⟩
λj + λ∗

k

− ⟨vk | vj⟩
λj − λ∗

k

. (5.6)

Guided by these equations, we can get

P
(1)
+ =

N∑
j=1

(Bj − σ3Bjσ3),

by Eq.(5.1), we can obtain that the potential function u is

u = 2i
[ N∑
j=1

(Bj − σ3Bjσ3)12

]
, (5.7)

and substituting above expressions of
∣∣zk⟩l and ∣∣vj⟩l into Eq.(5.7) to obtain

u = −4i
detF

detM
, (5.8)

where M defined as (5.6), and

F =


M11 · · · M1N

∣∣v1⟩1
...

. . .
...

...

MN1 · · · MNN

∣∣vN⟩1⟨
v1
∣∣
2

· · ·
⟨
vN
∣∣
2

0

 .

According to the dressing method [21], it can be directly verified that (5.8) satisfies the third-
order flow GI equation.

Next, our major work is to obtain the soliton solutions of the third-order flow GI equation.
For the sake of obtain an explicit N -soliton solutions, we can∣∣vk⟩ = ( cke

θk

e−θk

)
,

⟨
vk
∣∣ = (c∗ke

θ∗
k e−θ∗

k),

where θk = −iλ2
kx − 2iλ6

kt. Let λj = ξj + iηj , then zj = 2mj(x − (8m2
j − 6β2

j )t), ϕj =

−βjx − 2(β3
j − 12m2

jβj)t, mj = ξjηj , βj = ξ2j − η2j , where zj , ϕj are the real and imaginary
parts of θj . Next, we will study the properties of soliton solutions in more detail by taking
single-soliton and two-soliton solutions as examples.
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5.1 Single-soliton Solution

Taking N = 1 in formula (5.8), the single soliton solution is

u(x, t) = −2i(λ2
1 − λ∗2

1 )
c1e

θ1−θ∗
1

λ1e−(θ1+θ∗
1 ) + λ∗

1|c1|2eθ1+θ∗
1

. (5.9)

Therefore, it is easy to receive the velocity of the single soliton solution is v1 = 8ξ21η
2
1 −

6(ξ21 − η21)
2, and its behavior occurring along the line

x− v1t+
1

4m1
ln |c1| = 0.

Let c1 = 1, the intensity profile for |u|2 are given by

|u(x, t)|2 =
64ξ21η

2
1

2|λ1|2 cosh(4z1) + λ2
1 + λ∗2

1

.

More, ξ1η1 > 0 if λ1 ∈ D+. By selecting the same parameters as in Ref.[20], in the subregion
ξ1 > η1 and ξ1 < η1 of D+, the single-soliton is a left traveling wave (see Figure (5.1) and Figure
(5.2)). On the line ξ1 = η1, the single-soliton is a right traveling wave (see Figure (5.3)).When

ξ1 = ±
√
3η1 or ξ1 = ±

√
3
3 η1, it is a stable wave(see Figure (5.4)).

(a) (b) (c)

Figure 5.1. Single-soliton u(x, t) in (5.9) with the parameters chosen as ξ1 = 1
2
, η1 = 1, c1 =

1. Red line absolute value of u, blue line real part of u and green line imaginary
of u.

(a) (b) (c)

Figure 5.2. Single-soliton solution for |u|, where ξ1 = 1, η1 = 1
2
, c1 = 1.

Compared with the classical second-order flow GI Eq.(1.1), the position of the stable wave
changes. Mainly because the wave propagation speed has changed, the classical GI equation
velocity is: 4(ξ21 − η21), and the velocity of third-order flow GI equation is: 8ξ21η

2
1 − 6(ξ21 − η21)

2.
Besides, the amplitude of the soliton solution of the higher-order GI equation is also affected.
Compared with the classical GI, the amplitude of the third-order flow GI equation becomes
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higher. That is to say, the introduction of third-order dispersion and fifth-order nonlinearity
will affect the velocity, position and amplitude of solution.

(a) (b) (c)

Figure 5.3. Single-soliton solution for |u| with ξ1 = 1
2
, η1 = 1

2
, c1 = 1.

(a) (b) (c)

Figure 5.4. Single-soliton solution for |u|, with the parameters as ξ1 =
√
3, η1 = 1, c1 = 1.

5.2 Two-soliton Solution

When N = 2, the two-soliton solution of the third-order flow GI equation also can be written
out as follows

u(x, t) =
a1e

Θ
′
1−Θ2 + a2e

Θ
′
1+Θ2 + a3e

−Θ1+Θ
′
2 + a4e

Θ1+Θ
′
2

b1e−Θ1−Θ2 + b2eΘ1+Θ2 + b3eΘ
′
1−Θ

′
2 + b4e−Θ

′
1+Θ

′
2 + b5eΘ1−Θ2 + b6e−Θ1+Θ2

, (5.10)

where

Θ1 = θ1 + θ∗1 ; Θ
′

1 = θ1 − θ∗1 ; Θ2 = θ2 + θ∗2 ; Θ
′

2 = θ2 − θ∗2 ;

a1 = c1λ2(λ
2
1 − λ∗2

1 )(λ2
1 − λ∗2

2 )(λ∗2
2 − λ∗2

1 );

a2 = c1|c2|2λ∗
2(λ

2
1 − λ∗2

1 )(λ2
2 − λ∗2

1 )(λ2
1 − λ2

2);

a3 = c2λ1(λ
2
2 − λ∗2

2 )(λ2
2 − λ∗2

1 )(λ∗2
1 − λ∗2

2 );

a4 = |c1|2c2λ∗
1(λ

2
2 − λ∗2

2 )(λ2
1 − λ∗2

2 )(λ2
2 − λ2

1);

b1 = 2λ1λ2(λ
2
1 − λ2

2)(λ
∗2
2 − λ∗2

1 );

b2 = 2|c1|2|c2|2λ∗
1λ

∗
2(λ

2
1 − λ2

2)(λ
∗2
2 − λ∗2

1 );

b3 = −2c1c
∗
2|λ2|2(λ2

1 − λ∗2
1 )(λ2

2 − λ∗2
2 );

b4 = −2c∗1c2|λ1|2(λ2
1 − λ∗2

1 )(λ2
2 − λ∗2

2 );

b5 = 2|c1|2λ∗
1λ2(λ

2
1 − λ∗2

2 )(λ2
2 − λ∗2

1 );

b6 = 2|c2|2λ1λ
∗
2(λ

2
1 − λ∗2

2 )(λ2
2 − λ∗2

1 ).



372 J.Y. ZHU, Y. CHEN

We show the two-soliton solution behaviors in Figure (5.5) with λ1 = 1 + 3
10 i, c1 = 1, λ2 =

1+ 1
2 i, c2 = 1. From Figure (5.5)(a) we can see that the solution consists of two single solitons

that are far apart from each other and moving toward each other as t → −∞. When they
collide, the interaction gets stronger. But when t → +∞, these solitons reappear from the
interaction without any change in shape or speed, and no energy radiates into the far field.
Thus the interaction of two single solitons is elastic. In effect, each soliton gains a position shift
and a phase shift after the interaction. The position of each soliton always moves forward, as
if the soliton accelerates during interactions.

(a) (b) (c)

Figure 5.5. (Color online) Two soliton solutions for |u|, (a) Three dimensional plot; (b)
The density plot; (c) The plot for the two-soliton solutions evolution. where
λ1 = 1 + 3

10
i, c1 = 1, λ2 = −1 + 1

2
i, c2 = 1.

To better illustrate this fact, we analyze the asymptotic states of the solution (5.8) as
t → ±∞. On the premise of generality, suppose ξiηi > 0 and v1 < v2. This means that soliton-
1 is located on the right side of soliton-2 and moves slowly at t → −∞, , and the two solitons are
in the moving frame with velocity vi = 8ξ2i η

2
i − 6(ξ2i − η2i )

2. Note that z1 = 2m1(x− v1t), z2 =
2m2(x− v2t), it yields

m2z1 −m1z2 = 2m1m2(v2 − v1)t.

When t → −∞, |z1| < ∞, z2 → +∞. In this case, the asymptotic state of the solution Eq.(5.10)
is

u(x, t) → −2i(λ2
1 − λ∗2

1 )
c−1 e

θ1−θ∗
1

λ1e−(θ1+θ∗
1 ) + λ∗

1|c
−
1 |2eθ1+θ∗

1

, t → −∞,

where c−1 = c1
(λ2

1−λ2
2)

(λ2
1−λ∗2

2 )
. Comparing this expression with Eq.(5.9), we find that this asymptotic

solution is a single-soliton solution with velocity 8ξ21η
2
1 − 6(ξ21 − η21)

2 and the intensity profile

of |u|2 is
64ξ21η

2
1

2|λ1|2 cosh(4z1)+λ2
1+λ∗2

1
.

When t → +∞, |z1| < ∞, z2 → −∞. In this case, the asymptotic state is

u(x, t) → −2i(λ2
1 − λ∗2

1 )
c+1 e

θ1−θ∗
1

λ1e−(θ1+θ∗
1 ) + λ∗

1|c
+
1 |2eθ1+θ∗

1

, t → +∞,

where c+1 = c1
(λ2

1−λ∗2
2 )

(λ2
1−λ2

2)
, which is also a single-soliton solution with velocity 8ξ21η

2
1 − 6(ξ21 − η21)

2

and peak amplitude
64ξ21η

2
1

2|λ2
1|+λ2

1+λ∗2
1
. This shows that the shape and velocity of the soliton will

not change after collision. However, its phase and position have changed, as shown in Figure
(5.5)(b). Here we give the specific offset of the position

∆x01 = − 1

8ξ1η1

(
ln
∣∣c+1 ∣∣− ln

∣∣c−1 ∣∣) = 1

4ξ1η1
ln
∣∣∣ λ2

1 − λ2
2

λ2
1 − λ∗2

2

∣∣∣,
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and the phase shift is

∆σ01 = arg
(
c+1
)
− arg

(
c−1
)
= −2 arg

( λ2
1 − λ2

2

λ2
1 − λ∗2

2

)
.

After the similar calculation, we find that the asymptotic solutions of soliton-2 are both
single-soliton with the same velocity and intensity profile as t → ±∞, the relation of soliton
constant c±2 before and after collision is as follows

c+2 = c−2
(λ2

1 − λ2
2)

2

(λ∗2
1 − λ2

2)
2
.

Therefore, after the collision, the position shift of the soliton-2 is

∆x02 = − 1

8ξ2η2

(
ln |c+2 | − ln |c−2 |

)
= − 1

4ξ2η2
ln
∣∣∣ λ2

1 − λ2
2

λ∗2
1 − λ2

2

∣∣∣,
and a phase shift

∆σ02 = arg(c+2 )− arg(c−2 ) = 2 arg
( λ2

1 − λ2
2

λ∗2
1 − λ2

2

)
.

6 Soliton Matrix for High-order Zeros

In this section, we will further consider the higher-order zeros in the RHP of the third-order
flow GI equation. We suppose that detP+(λ) has high-order zeros {±λj}Nj=1, according to the

symmetries (4.2) and (4.14), {±λ∗
j}Nj=1 are high-order zeros of detP

−1
− (λ). Therefore, detP+(λ)

and detP−1
− (λ) can be expanded as follows:

detP+(λ) = s11(λ) =
(
λ2 − λ2

1

)n1
(
λ2 − λ2

2

)n2 · · ·
(
λ2 − λ2

N

)nN
s0(λ),

detP−1
− (λ) = ŝ11(λ) =

(
λ2 − λ∗2

1

)n1
(
λ2 − λ∗2

2

)n2 · · ·
(
λ2 − λ∗2

N

)nN
ŝ0(λ),

where s0(λ) ̸= 0 for all λ ∈ D+, and ŝ0(λ) ̸= 0 for all λ ∈ D−.
First of all, we let functions P+(λ) and P−1

− (λ) from above RHP have only one pair of zero
of order n1, i.e. {λ1,−λ1} and {λ∗

1,−λ∗
1}. Hence, it is necessary to construct a matrix Γ(λ)

whose determinant is
(λ2−λ2

1)
n1

(λ2−λ∗2
1 )n1

. For multiple zeros, its kernel vector will no longer be one. The

geometric multiplicity of ±λi(±λ∗
i ) is defined as the number of the null vectors in the kernel of

detP+( detP
−1
− ). It is easy to prove that the order of zero is always greater than or equal to

its geometric multiplicity.
For an elementary high-order zero, we derive a matrix Γ(λ) and its inverse, the results are

presented in the lemma below.

Lemma 6.1 ([29], Lemma 1). Consider a pair of elementary high-order zeros of order n:
{λ1,−λ1} in D+ and {λ∗

1,−λ∗
1} in D−. The corresponding soliton matrix Γ(λ) and its in-

verse can be constructed in the following form

Γ−1(λ) = I +
(∣∣p1⟩, · · · , ∣∣p̃n⟩)D(λ)


⟨
qn
∣∣

...⟨
q̃1
∣∣
 ,

Γ(λ) = I +
(∣∣q̄n⟩, · · · , ∣∣¯̃q1⟩)D(λ)


⟨
p̄1
∣∣

...⟨
p̃n
∣∣
 ,

(6.1)
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where the matrices D(λ) and D(λ) are defined as

D(λ) =

(
K+
(
λ− λ1

)
0n×n

0n×n K+
(
λ+ λ1

) ), D(λ) =

(
K−(λ− λ∗

1

)
0n×n

0n×n K−(λ+ λ∗
1

) ),
K+(f),K−(f) are upper triangular and lower triangular Toeplitz matrices defined as:

K+(f) =


f−1 f−2 · · · f−n

0
. . .

. . .
...

...
. . . f−1 f−2

0 · · · 0 f−1

 , K−(f) =


f−1 0 · · · 0

f−2 f−1 . . .
...

...
. . .

. . . 0

f−n · · · f−2 f−1

 ,

and vectors |pj⟩, |p̃j⟩, ⟨p̄j |, ⟨qj |, |q̄j⟩, |¯̃qj⟩(j = 1, · · · , n) are independent of λ.

The rest of the vector parameters in (6.1) can be derived to calculate the poles of each order
in the identity Γ(λ)Γ−1(λ) = I at λ = λ1 and λ = −λ1,

Γ(λ1)


∣∣p1⟩
...∣∣pn⟩
 = 0, Γ(−λ1)


∣∣p̃1⟩
...∣∣p̃n⟩
 = 0,

where

Γ(λ) =



Γ(λ) 0 · · · 0

d

dλ
Γ(λ) Γ(λ)

. . .
...

...
. . .

. . . 0
1

(n− 1)!

dn−1

dλn−1
Γ(k) · · · d

dλ
Γ(λ) Γ(λ)


.

Hence, on the part of the independent vector parameters, the results (6.1) can be expressed in
a more compact form as described in Ref.[24], and we are omitting these overlaps here. Using
this method, the process of solving soliton solution is very complex. In the following, we derive
dressing matrix of higher-order poles via the method of unipolar point limit. The specific results
are given by the following theorem.

Lemma 6.2. For one pair of elementary high-order zero, the dressing matrix of the third-order
flow GI equation can be expressed as:

Γ = Γ
[n−1]
1 · · ·Γ[0]

1 , Γ−1 = Γ
[0]−1
1 · · ·Γ[n−1]−1

1 ,

where

Γ
[j]
1 = I +

A
[j]
1

λ− λ∗
1

− σ3A
[j]
1 σ3

λ+ λ∗
1

,

Γ
[j]−1
1 = I +

A
H[j]
1

λ− λ1
− σ3A

H[j]
1 σ3

λ+ λ1
,

A
[j]
1 =

λ2
1 − λ∗2

1

2

(
α
[j]
1 0

0 α
∗[j]
1

)
|v[j]1 ⟩⟨v[j]1 |,
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(α
[j]
1 )−1 = ⟨v[j]1 |

(
λ∗
1 0

0 λ1

)
|v[j]1 ⟩,

and

|v[j]1 ⟩ = lim
δ→0

(Γ
[j−1]
1 · · ·Γ[0]

1 )|λ=λ1+δ

δj
|v1⟩(λ1 + δ),

⟨v[j]1 | = lim
δ→0

⟨v1|(λ∗
1 + δ)

(Γ
[0]−1
1 · · ·Γ[j−1]−1

1 |)λ=λ∗
1+δ

δj
.

Then by techniques similar to those used above, we can get

u = 2i
( n−1∑

j=0

[B
[j]
1 − σ3B

[j]
1 σ3]12

)
.

As before, the above formulas also could be rewritten with the determinant form

u = −4i
detF̂

detM̂
, (6.2)

where

F̂ =



M̂11 M̂12 · · · M̂1n |v1⟩[0]1

M̂21 M̂22 · · · M̂2n |v1⟩[1]1
...

...
. . .

...
...

M̂n1 M̂n2 · · · M̂nn |v1⟩[n−1]
1

⟨v1|[0]2 ⟨v1|[1]2 · · · ⟨v1|[n−1]
2 0


,

and

M̂jk =
1

(j − 1)!(k − 1)!

∂j+k−2

∂λ∗j−1∂λk−1

⟨v1 | v1⟩
λ− λ∗ − ⟨v1|σ3|v1⟩

λ+ λ∗ |λ=λ1,λ∗=λ∗
1
.

Where |v1⟩[l], ⟨v1|[l] can be written as follows

|v1⟩[l] =
1

(l)!

∂l

∂(λ)l
|v1⟩|λ=λ1 , ⟨v1|[l] =

1

(l)!

∂j

∂(λ)l
⟨v1|λ=λ∗

1
. (6.3)

Thus, the elementary higher-order zeros solution formula is derived from Eq.(6.2). WhenN = 1,
it corresponds to a single soliton solution, and when N ≥ 2, it corresponds to higher-order
soliton. It should be noted that that the general expression of the high-order soliton solution
of Eq.(6.2) is very complicated and is not explicitly given.

Here, we give the simplest form of higher-order 1-soliton solution with reference to Ref.[34].
Explicitly, taking N = 2, λ = ξ + iη and c1 = 1 in Eq.(6.2), and the form of the corresponding
solution is

u(x, t) =
un

ud
exp(60itη2ξ4 − 60itη4ξ2 − 4itξ6 + 4itη6 + 2ixη2 − 2ixξ2), (6.4)
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where

un = h1e
ϑ + g1e

−ϑ;

ud = h2e
2ϑ + g2e

−2ϑ +ϖ;

ϑ = 4xηξ + 24tη5ξ − 80tη3ξ3 + 24tηξ5;

h1 = −64iηξ(iξ − η)(144iη6tξ2 − 480iη4tξ4 + 144iη2tξ6 + 24η7tξ − 360η5tξ3

+ 360η3tξ5 − 24ηtξ7 + 8iη2xξ2 + 4η3xξ − 4ηxξ3 − iηξ − η2 + ξ2);

g1 = −64iηξ(iξ + η)(144iη6tξ2 − 480iη4tξ4 + 144iη2tξ6 − 24η7tξ + 360η5tξ3

− 360η3tξ5 + 24ηtξ7 + 8iη2xξ2 − 4η3xξ + 4ηxξ3 + iηξ − η2 + ξ2);

h2 = 4(ξ + iη)(ξ − iη)3;

g2 = 4(ξ + iη)3(ξ − iη);

ϖ = 8η4 + 8ξ4 − 768itξ8η2 + 11520itξ6η4 − 11520itξ4η6 + 768itξ2η8 − 128ixξ4η2

+ 128ixξ2η4 + 3072tξ10xη2 − 12288tξ8xη4 − 30720tξ6xη6 − 12288tξ4x8

+ 3072tξ2xη10 + 256ξ6x2η2 + 512ξ4x2η4 + 256ξ2x2η6 + 9216t2ξ2η14 + 9216t2ξ14η2

+ 55296t2ξ12η4 + 138240t2ξ10η6 + 184320t2ξ8η8 + 138240t2ξ6η10 + 55296t2ξ4η12.

(a) (b) (c)

Figure 6.1. high-order 1-soliton solution for |u|.(a) Three dimensional plot; (b) The density
plot; (c) The plot for the high-order 1-soliton solution evolution. where λ =
1 + 1

2
i, c1 = 1.

Further, ξ = 1 and η = 1
2 are selected, and the solution is

u(x, t) =
d1e

11
4 t+2x + d2e

− 11
4 t−2x

d3e−
11
2 t−4x + d4e

11
2 t+4x + d5

e
117
16 it− 3

2 ix,

where

d1 = 570t+ 615it+ 32− 4i− 80x+ 40ix;

d2 = −570t+ 615it+ 32 + 4i+ 80x+ 40ix;

d3 =
15

4
+ 5i;

d4 =
15

4
− 5i;

d5 =
140625

16
t2 + 351it− 525tx− 24ix+ 100x2 +

17

2
,

which is plotted in Figure (6.1). In addition, with the help of Maple, Mathlab and other
computer software, double-pole solution of different orders can be obtained by using formula
(6.2).
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7 Conclusion

In summary, the GI hierarchy is derived by using recursive operator. The recursive operator
here contains two operators, which is more complex than the form of AKNS hierarchy and KN
hierarchy. The main reason is that the derivative of the main diagonal of M to t is not 0, but
a function related to the potential functions u and v, which leads to the complex expression
of A. Then, the inverse scattering method is applied to the third-order flow GI equation. By
considering the related RHP, a simple representation of the determinant form of N -solitons is
obtained successfully. Because of the symmetry properties of Jost solution and scattering data,
the corresponding zeros in the RHP of higher-order GI equation always appear in pairs, which
is the same as the 3 × 3 Sasa-Satsuma equation[29]. Later, taking single soliton solution and
two-soliton solutions as examples, the long-time behavior of the solution is studied. Compared
with the classical GI direction of the second-order flow, it is found that the motion direction and
wave height of the soliton solution are affected by the third-order dispersion and the fifth-order
nonlinearity. These analysis results have important reference value for the study of GI hierarchy
or other nonlinear integrable dynamic systems of higher order flow equations, and provide a
theoretical basis for possible experimental research and application. Finally, the corresponding
higher-order soliton solution matrix is derived by analyzing the limiting behavior of spectral
parameters.

In recent years, there are many achievements in the study of the classical second-order
flow GI equation with non-zero boundary conditions[22, 31, 35]. This paper only considers the
simple zeros and a pair of elementary higher-order zeros of the third-order flow GI equation
with vanishing boundary conditions. Whether the behavior of soliton solutions with non-zero
boundary and more multiplicity will have more abundant forms and long time behavior can be
studied in the future.
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