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By means of a more general ansatz and the computerized symbolic system Maple, a
generalized algebraic method to uniformly construct solutions in terms of special function
of nonlinear evolution equations (NLEEs) is presented. We not only successfully recover
the previously-known traveling wave solutions found by Fan’s method, but also obtain
some general traveling wave solutions in terms of the special function for the asymmetric
Nizhnik–Novikov–Vesselov equation.
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1. Introduction

The tanh method1–3 is considered to be one of the most straightforward and ef-

fective algorithm to obtain solitary wave solutions for large NLEEs. Parkes and

Duffy mentioned the difficulty of applying the tanh method by hand and to find

more general exact solutions but simple NLEEs, due to the complicated and tedious

algebraic calculation and differential computation. Recently, the application of com-

puter algebra to science has a bright future. Parkes and Duffy automated, to some

degree, the tanh method using symbolic computation software Mathematica.1 In

line with the development of computerized symbolic computation, much work has

been concentrated on the various extensions and applications of the tanh method,
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such as the extended tanh method by Fan,4 the improved tanh method by Yan,5

the modified extended tanh-function method by Elwakil et al.,6 and the generalized

extended tanh-function method by Chen and Zheng.7

On the other hand, Gao and Tian8–10 presented a generalized hyperbolic-

function method by introducing coefficient functions to find soliton-like solution

to NLEEs. Based on the method8–10 by Gao and Tian and the tanh function

method,1–7 Chen and Li11 extended tanh function method and presented the gen-

eralized Riccati equation expansion method to construct soliton-like solution of

NLEEs. In Refs. 12 and 13, Fan developed a new algebraic method with symbolic

computation to obtain the above-mentioned various traveling wave solutions in a

unified way and provided us with new and more general traveling wave solutions in

terms of special functions such as hyperbolic, rational, triangular, Weierstrass and

Jacobi elliptic double periodic functions.

The present work is motivated by the desire to extend the transformation in

Refs. 12 and 13 to more general transformations and use symbolic computation to

solve the asymmetric Nizhnik–Novikov–Vesselov equation,14 the (2+1)-dimensional

KdV equation (also named the asymmetric NNV (ANNV) equation or BLMP

(Boiti–Leon–Manna–Pempinelli) equation).15 We not only successfully recover the

previously-known traveling wave solutions found by Fan’s method, but also obtain

some general traveling wave solutions in terms of special function for the asymmet-

ric Nizhnik–Novikov–Vesselov equation.

2. Summary of the Improved Method: Generalized Extended

Tanh-Function Method

In the following we outline the main steps of our general method.

Step 1. Given the nonlinear partial differential equation (NPDE) system with

some physical fields ui(x, y, t) in three variables x, y, t,

Fi(ui, uit, uix, uiy, uitt, uixt, uiyt, uixx, uiyy, uixy, . . .) = 0 , (1)

by using the wave transformation

ui(x, y, t) = ui(ξ) , ξ = k(x + ly − λt) , (2)

where k, l and λ are constants to be determined later, then the nonlinear partial

differential equation (1) is reduced to a nonlinear ordinary differential equation

(ODE):

Gi(ui, u
′
i, u

′′
i , . . .) = 0 . (3)

Step 2. We introduce a new and more general ansatz in the forms:

ui(ξ) = ai0 +

mi
∑

j=1







aijφ
j + bijφ

−j + fijφ
j−1

√

√

√

√

r
∑

p=0

cpφp + kij

√

∑r

p=0 cpφp

ϕj







, (4)
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where the new variable φ = φ(ξ) satisfying

φ′ =
dφ

dξ
=

√

√

√

√

r
∑

p=0

cpφp , (5)

and ai0, aij , bij , fij , kij (i = 1, 2, . . . ; j = 1, 2, . . . , mi) are constants to be deter-

mined later.

Step 3. The underlying mechanism for a series of fundamental solutions such as

polynomial, exponential, solitary wave, rational, triangular periodic, Jacobi and

Weierstrass doubly periodic solutions to occur is that different effects that act to

change wave forms in many nonlinear equations, i.e., dispersion, dissipation and

nonlinearity, either separately or various combinations, are able to balance out. We

define the degree of ui(ξ) as D[ui(ξ)] = ni, which gives rise to the degrees of other

expressions as

D[u
(α)
i ] = ni + α , D[uα

i (u
(β)
j )s] = niα + (β + nj)s . (6)

Therefore we can get the value of mi in Eq. (4). If ni is a non-negative integer, then

we first make the transformation ui = ωni .

Step 4. Substitute Eq. (4) into Eq. (3) along with Eq. (5) and then set all co-

efficients of φα(
√

∑r

p=0 cpφp)β (β = 0, 1; α = 0, 1, 2, . . .) to zero to get an over-

determined system of nonlinear algebraic equations with respect to λ, l, k, ai0, aij ,

bij , fij and kij (i = 1, 2, . . . ; j = 1, 2, . . . , mi).

Step 5. Solving the over-determined system of nonlinear algebraic equations by

using Maple, we end up with the explicit expressions for λ, l, k, ai0, aij , bij , fij

and kij (i = 1, 2, . . . ; j = 1, 2, . . . , mi).

Step 6. By using the results obtained in the above steps, we can derive a series

of fundamental solutions such as polynomial, exponential, solitary wave, rational,

triangular periodic, Jacobi and Weierstrass doubly periodic solutions. We are inter-

ested only in solitary wave, Jacobi and Weierstrass doubly periodic solutions. The

tan and cot type solutions appear in pairs with tanh and coth type solutions. The

polynomial and rational triangular periodic solutions are omitted in this paper. By

considering the different values of c0, c1, c2, c3 and c4, Eq. (5) has many kinds of

solitary wave, Jacobi and Weierstrass doubly periodic solutions as follows:

(i) Solitary wave solutions:

(a) Bell-shaped solitary wave solutions:

φ =

√

−c2

c4
sech(

√
c2ξ) , c0 = c1 = c3 = 0 , c2 > 0 , c4 < 0 , (7)

φ = −c2

c3
sech2

(√
c2

2
ξ

)

, c0 = c1 = c4 = 0 , c2 > 0 . (8)
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(b) Kink-shaped solitary wave solutions:

φ =

√

− c2

2c4
tanh

(√

−c2

2
ξ

)

,

(9)

c0 =
c2
2

4c4
, c1 = c3 = 0 , c2 < 0 , c4 > 0 .

(c) Solitary wave solutions:

φ =
c2sech

2
((

1
2

)√
c2ξ
)

2
√

c2c4tanh
((

1
2

)√
c2ξ
)

− c3

, c0 = c1 = 0 , c2 > 0 . (10)

(ii) Jacobi and Weierstrass doubly periodic solutions:

φ =

√

−c2m2

c4(2m2 − 1)
cn

(√

c2

2m2 − 1
ξ

)

,

(11)

c4 < 0 , c2 > 0 , c0 =
c2
2m

2(1 − m2)

c4(2m2 − 1)2
,

φ =

√

−m2

c4(2 − m2)
dn

(√

c2

2 − m2
ξ

)

,

(12)

c4 < 0 , c2 > 0 , c0 =
c2
2(1 − m2)

c4(2 − m2)2
,

φ =

√

−c2m2

c4(m2 + 1)
sn

(√

− c2

m2 + 1
ξ

)

,

(13)

c4 > 0 , c2 < 0 , c0 =
c2
2m

2

c4(m2 + 1)2
,

where m is a modulus.

φ = ℘

(√
c3

2
ξ, g2, g3

)

, c2 = 0 , c3 > 0 , (14)

where g2 = −4(c1/c3) and g3 = −4(c0/c3) are called invariants of Weierstrass

elliptic function. The Jacobi elliptic functions are doubly periodic and possess

properties of triangular functions:

sn2ξ + cn2ξ = 1 , dn2ξ = 1 − m2sn2ξ ,

(sn ξ)′ = cn ξdn ξ , (cn ξ)′ = −sn ξ , (dn ξ)′ = −m2sn ξcn ξ .

When m → 1, the Jacobi functions degenerate to the hyperbolic functions, i.e.,

sn ξ → tanh ξ , cn ξ → sech ξ .
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When m → 0, the Jacobi functions degenerate to the triangular functions, i.e.,

sn ξ → sin ξ , cn ξ → cos ξ .

More detailed notations for the Weierstrass and Jacobi elliptic functions can

be found in Refs. 16 and 17.

Remark 1. Compared with the method proposed by Fan,12,13 our ansatz is more

general. When bij = fij = kij = 0, Eq. (4) becomes the ansatz proposed by Fan.

Remark 2. The method can be extended to find soliton-like solutions and more

types double periodic solutions of PDE (1). Only the restriction on ξ(x, y, t) as

merely a linear function x, y, t and the restrictions on the coefficients ai0, aij , bij ,

fij , kij and ci as constants will be removed.

3. Exact Solutions of ANNV Equation

Let us consider the ANNV equations,14

{

ut − uxxx + α(uv)x = 0 ,

ux + βvy = 0 ,
(15)

where α, β 6= 0 are all constants. This system also named the (2 + 1)-dimensional

KdV equation or BLMP (Boiti–Leon–Manna–Pempinelli) equation by Boiti et al.15

using the idea of the weak Lax pair. The ANNV equation (15) can also be obtained

from the inner parameter-dependent symmetry constraint of the KP equation.18

Lou pointed out that the ANNV equation (15) is an asymmetric part of the Nizhnik–

Novikov–Vesselov (NNV) equation.19 For more detail about the results of this sys-

tem, the reader is advised to see the remarkable achievements in Refs. 14, 15, and

18–21.

According to the above method, to seek the solutions of Eq. (15), we make the

following transformation:

u(x, t) = σ(ξ) , v(ξ) = τ(ξ) , ξ = x + ly − λt , (16)

where λ is constant to be determined later, and thus Eq. (15) becomes

{

−λσ′ − σ′′′ + α(στ)′ = 0 ,

σ′ + βlτ ′ = 0 .
(17)

According to Step 1 in Sec. 2, if a 6= 0 and β 6= 0, by balancing σ′′′(ξ) and (σ(ξ)τ(ξ))′

as well as τ ′(ξ) and σ′(ξ) in Eq. (17), we suppose that Eq. (17) has the following
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formal solutions:






























































































σ = a0 + a1φ +
b1

φ
+ f1

√

√

√

√

4
∑

i=0

ciφi + k1

√

∑4
i=0 ciφi

φ
+ a2φ

2 +
b2

φ2

+ f2φ

√

√

√

√

4
∑

i=0

ciφ
i + k2

√

∑4
i=0 ciφi

φ2
,

τ = A0 + A1φ +
B1

φ
+ F1

√

√

√

√

4
∑

i=0

ciφi + K1

√

∑4
i=0 ciφi

φ
+ A2φ

2 +
B2

φ2

+ F2φ

√

√

√

√

4
∑

i=0

ciφ
i + K2

√

∑4
i=0 ciφi

φ2
,

(18)

where φ(ξ) satisfies Eq. (5), where a0, a1, b1, f1, k1, a2, b2, f2, k2, A0, A1, B1, F1,

K1, A2, B2, F2 and K2 are constants to be determined later.

With the aid of Maple, substituting Eq. (18) along with Eq. (5) into Eq. (17), we

yield a set of algebraic equations for φp(ξ)(
√

∑4
i=0 ciφi)q , (p = 0, 1, . . . ; q = 0, 1).

Setting the coefficients of these terms φp(ξ)(
√

∑4
i=0 ciφi)q to zero yields a set of

over-determined algebraic equations with respect to a0, a1, b1, f1, k1, a2, b2, f2,

k2, A0, A1, B1, F1, K1, A2, B2, F2, K2, l, and λ.

By using Maple, solving the over-determined algebraic equations, we get the

following results.

Case 1.

c3 = −2

3
A1α , c0 = −1

6
αB2 , c1 = −1

3
B1α ,

λ =
α(−6B2a0 + 6A0βlB2 − B2

1βl)

6βlB2
, (19)

c2 = −B2
1α

6B2
, b2 = −βlB2 , b1 = −βlB1 , a1 = −βlA1 ,

c4 = a2 = f1 = f2 = k1 = k2 = A2 = F1 = F2 = K1 = K2 = 0 .

Case 2.

a0 = −βl(λ − αA0)

α
, k2 = −βlK2 , c1 = −2

3
B1α , c0 =

1

9
α2K2

2 ,

b2 =
1

3
βlK2

2α , B2 = −1

3
K2

2α , b1 = −βlB1 , (20)

c2 = c4 = a1 = a2 = f1 = f2 = k1 = A1 = A2 = F1 = F2 = K1 = 0 .
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Case 3.

c2 = −A2
1α

6A2
, λ =

α(−6A2a0 + 6A0βlA2 − A2
1βl)

6βlA2
, c1 = −2

3
B1α ,

c4 = −1

6
αA2 , c3 = −1

3
A1α , a2 = −βlA2 , b1 = −βlB1 , a1 = −βlA1 ,

c0 = f1 = f2 = b2 = k1 = k2 = F1 = F2 = B2 = K1 = K2 = 0 .

(21)

Case 4.

k2 = −βlK2 , b2 =
1

3
βlK2

2α , f1 = −βlF1 , c4 =
1

9
α2F 2

1 , A2 = −1

3
αF 2

1 ,

a0 = −βl(−3αA0 − 3c2 + 3λ + 2α2K2F1)

3α
, a2 =

1

3
βlαF 2

1 , c0 =
1

9
α2K2

2 , (22)

B2 = −1

3
K2

2α , c1 = c3 = a1 = f2 = b1 = k1 = A1 = F2 = B1 = K1 = 0 .

Case 5.

c3 = −2

3
A1α , f1 = −βlF1 , λ =

−αa0 + αβlA0 + βlc2

βl
,

c4 =
1

9
α2F 2

1 , A2 = −1

3
αF 2

1 , a2 =
1

3
βlαF 2

1 , a1 = −βlA1 , (23)

f2 = b1 = b2 = k1 = k2 = F2 = B1 = B2 = K1 = K2 = 0 .

From Eqs. (16), (18) and Cases 1–5, we obtain the following solutions for Eq. (15)

Family 1. From Eq. (19), when A1 = 0, we obtain the following solutions for the

ANNV equations:

u1 = a0 +
βlB1

exp(
√

c2ξ) − c1

2c2

− βlB2

(exp(
√

c2ξ) − c1

2c2
)2

, (24)

v1 = A0 −
B1

exp(
√

c2ξ) − c1

2c2

+
B2

(exp(
√

c2ξ) − c1

2c2
)2

, (25)

where ξ = x + ly−λt, λ = α(−6B2a0 + 6A0βlB2 −B2
1βl)/6βlB2, c2 = −B2

1α/6B2,

a0, A0, l, B1 and B2 are arbitrary constants.

Family 2. From Eq. (20), we obtain the following solutions for the ANNV

equations:
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u2 = −βl(λ − αA0)

α
− βlB1

℘
(√

c3

2 ξ, g2, g3

) +
βlK2

2α

3℘2
(√

c3

2 ξ, g2, g3

)

+

βlK2

√

c0 + c1℘
(√

c3

2 ξ, g2, g3

)

+ c3℘3
(√

c3

2 ξ, g2, g3

)

℘2
(√

c3

2 ξ, g2, g3

) , (26)

v2 = A0 +
B1

℘
(√

c3

2 ξ, g2, g3

) − K2
2α

3℘2
(√

c3

2 ξ, g2, g3

)

+

K2

√

c0 + c1℘
(√

c3

2 ξ, g2, g3

)

+ c3℘3
(√

c3

2 ξ, g2, g3

)

℘2
(√

c3

2 ξ, g2, g3

) , (27)

where ξ = x + ly − λt, g2 = −4(c1/c3), g3 = −4(c0/c3), c0 = (1/9)α2K2
2 , c1 =

−(2/3)B1α, c3 > 0, l, B1, K2 and λ are arbitrary constants.

Family 3. From Eq. (21), we obtain the following solutions for the ANNV

equations:

u3 = a0 − βlA1

c2sech
2
(

1
2

√
c2ξ
)

2
√

c2c4 tanh
(

1
2

√
c2ξ
)

− c3

−βlA2

(

c2sech
2
(

1
2

√
c2ξ
)

2
√

c2c4 tanh
(

1
2

√
c2ξ
)

− c3

)2

, (28)

v3 = A0 + A1

c2sech
2
(

1
2

√
c2ξ
)

2
√

c2c4 tanh
(

1
2

√
c2ξ
)

− c3

+ A2

(

c2sech
2
(

1
2

√
c2ξ
)

2
√

c2c4 tanh
(

1
2

√
c2ξ
)

− c3

)2

, (29)

where ξ = x + ly−λt, λ = α(−6A2a0 + 6A0βlA2 −A2
1βl)/6βlA2, c2 = −A2

1α/6A2,

c3 = −(1/3)A1α, c4 = −(1/6)αA2, a0, A0, A1, A2 and l are arbitrary con-

stants.

Family 4. From Eq. (22), we can obtain the following solutions for the ANNV

equations:

u4 = a0 −
a2c2m

2

c4(2m2 − 1)
cn2

(√

c2

2m2 − 1
ξ

)

− b2
c4(2m2 − 1)

c2m2
nc2

(√

c2

2m2 − 1
ξ

)

+ f1

√

c0−
c2
2m

2

c4(2m2 − 1)
cn2

(√

c2

2m2−1
ξ

)

+
c2
2m

4

c4(2m2−1)2
cn4

(√

c2

2m2−1
ξ

)
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− k2

√

c0 −
c2
2
m2cn2

(
√

c2

2m2
−1

ξ
)

c4(2m2−1) +
c2
2
m4cn4

(
√

c2

2m2
−1

ξ
)

c4(2m2−1)2

c2m2

c4(2m2−1)cn
2
(
√

c2

2m2−1ξ
) , (30)

v4 = A0 −
A2c2m

2

c4(2m2 − 1)
cn2

(√

c2

2m2 − 1
ξ

)

− B2
c4(2m2 − 1)

c2m2
nc2

(√

c2

2m2 − 1
ξ

)

+ F1

√

c0−
c2
2m

2

c4(2m2−1)
cn2

(√

c2

2m2−1
ξ

)

+
c2
2m

4

c4(2m2−1)2
cn4

(√

c2

2m2−1
ξ

)

−K2

√

c0 −
c2
2
m2cn2

(
√

c2

2m2
−1

ξ
)

c4(2m2−1) +
c2
2
m4cn4

(
√

c2

2m2
−1

ξ
)

c4(2m2−1)2

c2m2

c4(2m2−1)cn
2
(
√

c2

2m2−1ξ
) , (31)

where ξ = x + ly − λt, k2 = −βlK2, b2 = (1/3)βlK2
2α, f1 = −βlF1, A2 =

−(1/3)αF 2
1 , a0 = −βl(−3αA0 − 3c2 + 3λ + 2α2K2F1)/3α, a2 = (1/3)βlαF 2

1 , B2 =

−(1/3)K2
2α, c0 = (1/9)α2K2

2 , c4 = (1/9)α2F 2
1 , c2

2 = c0c4(2m2 − 1)2/m2(1 − m2),

A0, F1, K2, l and λ are arbitrary constants.

Family 5. From Eq. (22), we can obtain the following solutions for the ANNV

equations:

u5 = a0 −
a2m

2

c4(2 − m2)
dn

(√

c2

2 − m2
ξ

)

− b2
c4(2 − m2)

m2
nd2

(√

c2

2 − m2
ξ

)

+ f1

√

√

√

√

c0 −
c2m2dn2

(
√

c2

2−m2 ξ
)

c4(2 − m2)
+

m4dn4
(
√

c2

2−m2 ξ
)

c4(2 − m2)2

− k2

√

c0 −
c2m2dn2

(
√

c2

2−m2 ξ
)

c4(2−m2) +
m4dn4

(
√

c2

2−m2 ξ
)

c4(2−m2)2

m2

c4(2−m2)dn2
(
√

c2

2−m2 ξ
) , (32)

v5 = A0 −
A2m

2

c4(2 − m2)
dn

(√

c2

2 − m2
ξ

)

− B2
c4(2 − m2)

m2
nd2

(√

c2

2 − m2
ξ

)

+ F1

√

√

√

√

c0 −
c2m2dn2

(
√

c2

2−m2 ξ
)

c4(2 − m2)
+

m4dn4
(
√

c2

2−m2 ξ
)

c4(2 − m2)2

−K2

√

c0 −
c2m2dn2

(
√

c2

2−m2 ξ
)

c4(2−m2) +
m4dn4

(
√

c2

2−m2 ξ
)

c4(2−m2)2

m2

c4(2−m2)dn2
(
√

c2

2−m2 ξ
) , (33)
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where ξ = x + ly − λt, k2 = −βlK2, b2 = (1/3)βlK2
2α, f1 = −βlF1, A2 =

−(1/3)αF 2
1 , a0 = −βl(−3αA0 − 3c2 + 3λ + 2α2K2F1)/3α, a2 = (1/3)βlαF 2

1 ,

F2 = −(1/3)K2
2α, c0 = (1/9)α2K2

2 , c4 = (1/9)α2F 2
1 , c2

2 = c0c4(2 − m2)2/(1 − m2),

A0, F1, K2, l and λ are arbitrary constants.

Family 6. From Eq. (22), we can obtain the following solutions for the ANNV

equations:

u6 = a0 −
a2c2m

2

c4(m2 + 1)
sn2

(
√

−c2

m2 + 1
ξ

)

− b2
c4(m

2 + 1)

c2m2
ns2
(
√

−c2

m2 + 1
ξ

)

+ f1

√

√

√

√

c0 −
c2
2m

2sn2
(√

−c2

m2+1ξ
)

c4(m2 + 1)
+

c2
2m

4sn4
(√

−c2

m2+1ξ
)

c4(m2 + 1)2

− k2

√

c0 −
c2
2
m2sn2

(√

−c2

m2+1
ξ
)

c4(m2+1) +
c2
2
m4sn4

(√

−c2

m2+1
ξ
)

c4(m2+1)2

c2m2

c4(m2+1) sn
2
(√

−c2

m2+1ξ
) , (34)

v6 = A0 −
A2c2m

2

c4(m2 + 1)
sn2

(
√

−c2

m2 + 1
ξ

)

− B2
c4(m

2 + 1)

c2m2
ns2
(
√

−c2

m2 + 1
ξ

)

+ F1

√

√

√

√

c0 −
c2
2m

2sn2
(√

−c2

m2+1ξ
)

c4(m2 + 1)
+

c2
2m

4sn4
(√

−c2

m2+1ξ
)

c4(m2 + 1)2

−K2

√

c0 −
c2
2
m2sn2

(√

−c2

m2+1
ξ
)

c4(m2+1) +
c2
2
m4sn4

(√

−c2

m2+1
ξ
)

c4(m2+1)2

c2m2

c4(m2+1)sn
2
(√

−c2

m2+1ξ
) , (35)

where ξ = x + ly − λt, k2 = −βlK2, b2 = (1/3)βlK2
2α, f1 = −βlF1, A2 =

−(1/3)αF 2
1 , a0 = −βl(−3αA0 − 3c2 + 3λ + 2α2K2F1)/3α, a2 = (1/3)βlαF 2

1 ,

B2 = −(1/3)K2
2α, c0 = (1/9)α2K2

2 , c4 = (1/9)α2F 2
1 , c2

2 = c0c4(m
2 + 1)2/m2,

A0, F1, K2, l and λ are arbitrary constants.

Family 7. From Eq. (23), when c0 = c1 = 0, then we can obtain the following

solutions for the ANNV equations:

u7 = a0 − βlA1

c2sech
2
(

1
2

√
c2ξ
)

2
√

c2c4 tanh
(

1
2

√
c2ξ
)

− c3

+
1

3
βlαF 2

1

(

c2sech
2
(

1
2

√
c2ξ
)

2
√

c2c4 tanh
(

1
2

√
c2ξ
)

− c3

)2

−
(

βlF1c2sech
2
(

1
2

√
c2ξ
)

2
√

c2c4 tanh
(

1
2

√
c2ξ
)

− c3

)
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×

√

√

√

√c2 + c3

c2sech
2
(

1
2

√
c2ξ
)

2
√

c2c4 tanh
(

1
2

√
c2ξ
)

− c3

+ c4

(

c2sech
2
(

1
2

√
c2ξ
)

2
√

c2c4 tanh
(

1
2

√
c2ξ
)

− c3

)2

,

(36)

v7 = A0 + A1

c2sech
2
(

1
2

√
c2ξ
)

2
√

c2c4 tanh
(

1
2

√
c2ξ
)

− c3

− 1

3
αF 2

1

(

c2sech
2
(

1
2

√
c2ξ
)

2
√

c2c4 tanh
(

1
2

√
c2ξ
)

− c3

)2

+

(

F1c2sech
2
(

1
2

√
c2ξ
)

2
√

c2c4 tanh
(

1
2

√
c2ξ
)

− c3

)

×

√

√

√

√c2 + c3

c2sech
2
(

1
2

√
c2ξ
)

2
√

c2c4 tanh
(

1
2

√
c2ξ
)

− c3

+ c4

(

c2sech
2
(

1
2

√
c2ξ
)

2
√

c2c4 tanh
(

1
2

√
c2ξ
)

− c3

)2

,

(37)

where ξ = x + ly − λt, λ = (−αa0 + αβlA0 + βlc2)/βl, c3 = −(2/3)A1α, c4 =

(1/9)α2F 2
1 , c2 > 0, l, a0, A0, A1 and F1 are arbitrary constants.

Remark 1. Up to now we have obtained some new forms of solutions which cannot

be obtained by Fan’s method, such as the solutions of Families 2, 4–7. When b1 =

f1 = k1 = B1 = B2 = F1 = F2 = K1 = K2 = 0, the form of the solutions

of Families 2, 4–7 become the form that can be obtained by Fan’s method. This

further shows that our method is more general than Fan’s method.

Remark 2. Some solutions derived by the generalized transformation are singular

soliton solution and singular Jacobi elliptic doubly periodic wave solution. Although

the wave patterns generally symmetric, sometimes some special wave patterns ap-

pear, these are the singularities in the nonlinear systems. A lot of spatio-temporal

systems show this phenomena, e.g., nonlinear optical systems exhibit self-focusing

effects, which may lead to the collapse of the optical power density into local diver-

gences that may have important consequences on the integrity of optical fibers and

laser system. This method is helpful to study singular solutions of partial differential

equations that model nonlinear physical systems.

4. Summary and Conclusions

In summary, based on symbolic computation, by introducing a new and more gen-

eral ansatz than the one in Refs. 12 and 13, we have proposed a generalized al-

gebraic method to search for more types and general exact solutions for NPDEs.

The asymmetric Nizhnik–Novikov–Vesselov equation is chosen to illustrate this al-

gorithm such that we can successfully obtain the solutions found by the method

presented by Fan12,13 and find other new and more general solutions at the same

time. The method can easily be extended to other NPDEs and is sufficient to seek

more new formal solution of NPDEs.
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