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a b s t r a c t

Based on Hirota bilinear method, four kinds of localized waves, solitons, breathers,
lumps and rogue waves of the extended (3+1)-dimensional Jimbo–Miwa equation
are constructed. Breathers are obtained through choosing appropriate parameters
on soliton solutions, while lumps and rogue waves are derived via the long wave
limit on the soliton solutions. The energy, phase shift, shape, and propagation
direction of these localized waves can be influenced and controlled by parameters.
Considering mixed cases of the above four types of solutions, we also give many
kinds of interaction solutions in the same plane with different parameters or different
planes with the same parameters. Dynamical characteristics of these localized waves
and interaction solutions are further analyzed and vividly demonstrated through
figures.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Soliton [1], lump [2], breather [3], and rogue wave [4] are four types of nonlinear localized waves
with distinct dynamical and physical characteristics in nonlinear systems. Soliton has ionic and stability
properties; lump [5] is a rational function solution and localized in all directions in the space; breather [6]
is localized in one certain direction with periodic structure; Rogue wave [7] is localized in both time
and space. Breathers and rogue waves [8,9] are two typical localized waves with obvious special unstable
nonlinear structures. Breathers can demonstrate rogue wave phenomena and have two typical kinds of
breathers, Akhmediev breathers and Kuznetsov–Ma breathers, which have different propagation directions
and distributions. The high amplitude wave produced during the collision between soliton and breather can
be used to elaborate the generation mechanism of rogue wave. The study of nonlinear localized waves and
interaction solutions [10] among them is one of the important research subject in recent years.
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The well-known (3 + 1)-dimensional Jimbo–Miwa equation

uxxxy + 3uyuxx + 3uxuxy + 2uyt − 3uxz = 0, (1)

can be applied to demonstrate some interesting phenomena in nonlinear physics. It comes from the second
equation of the KP hierarchy [11] and has no Painlevé property, which differs from the KP equation. It
also has lump-type solutions [12]. In [13], Wazwaz proposed the following two extended (3 + 1)-dimensional
Jimbo–Miwa equations (EJM):

uxxxy + 3uyuxx + 3uxuxy + 2uyt − 3(uxz + uyz + uzz) = 0, (2)
uxxxy + 3uyuxx + 3uxuxy + 2(uxt + uyt + uzt) − 3uxz = 0. (3)

These two forms both hold the dimension and order of the normal Jimbo–Miwa equation. In [13,14], multiple
soliton solutions and lump solutions of the three equations were constructed. In [15], lumps and interaction
solutions of the reduced EJM equation (2) were researched by bilinear method.

As far as we know, no one has reported two breathers, two lumps and interaction solutions of the EJM
equation (2). Applying the method adopted in [16], we discover some new interaction solutions, in addition
to some common solutions. The article is organized as follows. In Section 2, we mainly introduce solitons
and breathers, and their mixed cases of EJM equation (2). In Section 3, applying long wave limit on the
multi-soliton solution, lumps, rogue waves and several cases of interacting with each other are derived. The
last section contains a short summary.

2. The soliton solution and breather solution

Eq. (2) can be mapped into bilinear form

(D3
xDy + 2DyDt − 3DyDz − 3DxDz − 3D2

z)(f · f) = 0, (4)

via a dependent variable transformation

u = 2(ln f)x = 2fx

f
, (5)

where f = f(x, y, z, t), and the derivatives D3
xDy, DtDx, DtDy, and D2

z are all bilinear derivative
operators [17] defined by

Dα
x Dβ

y Dγ
z Dδ

t (f · g) = ( ∂

∂x
− ∂

∂x′ )α( ∂

∂y
− ∂

∂y′ )β( ∂

∂z
− ∂

∂z′ )γ

× ( ∂

∂t
− ∂

∂t′ )δf(x, y, z, t)g(x′, y′, z′, t′) |x′=x,y′=y,z′=z,t′=t . (6)

It is quite evident that u = u(x, y, z, t) is a solution of Eq. (2) under the transformation (5), if and only if
f solves Eq. (4).

The N -soliton solutions of the EJM equation are given by substituting

f =
∑

µ=0,1
exp

( N∑
i=1

µiηi +
N∑

1≤i<j

µiµj ln(Aij)
)

, (7)

into (5) through the Hirota method, with

ωi = −k2
i pi − 3piqi − 3q2

i − 3qi

2pi
, ηi = ki(x + piy + qiz + ωit) + η0

i ,

Aij =
(ki(ki − kj)pj + q2

j + qj)p2
i − pj(kj(ki − kj)pj + (2qj + 1)qi + qj)pi + p2

jqi(qi + 1)
(ki(ki + kj)pj + q2

j + qj)p2
i + pj(kj(ki + kj)pj − (2qj + 1)qi − qj)pi + p2

jqi(qi + 1)
(1 ≤ i < j = 2, . . . , N),

(8)
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Fig. 1. The interaction solution between soliton and breather of Eq. (2) in different planes with the same parameters.

Fig. 2. The interaction solution between two types of breathers for Eq. (2) in the (x, y) plane at z = 0.

ki, pi, qi and η0
i are arbitrary parameters.

∑
µ=0,1 is the summation that covers all possible combinations

of ηi, ηj ∈ {0, 1}(i, j = 1, 2, . . . , N).
By taking complex conjugate method for arbitrary parameters in Eq. (7), breather solutions of the EJM

equation can be constructed in different planes. When N = 2, one line breather can be derived in (x, y)
plane and general breathers can be obtained in (x, t), (y, t) and (z, t) planes with the parameters constrained
as k1 = k∗

2 = ia, p1 = p2 = b, q1 = q∗
2 = c + id.

For N = 3 in Eq. (7), interaction solutions between solitons and breathers can be derived with the
appropriate parameters. A kink soliton interacting with a breather can be seen in Fig. 1 with the following
parameters k1 = k∗

3 = i, p1 = p∗
3 = 2 + 3i, q1 = q3 = 2, k2 = 1, p2 = 2, q2 = 1 , η0

1 = η0
2 = η0

3 = 0.
Different planes exhibit different physical phenomena and dynamical behavior, especially in (x, z) plane.
The breathers have different periods in six different planes.

For N = 4 in Eq. (7), by giving appropriate values to arbitrary parameters, we can construct the
interaction solutions between line breathers and general breathers in different planes, such as (x, y) and (x, z)
planes. The initial state is only the general breather, and as time goes on, the line breather appears to interact
with the general breather, and it disappears finally, leaving only the general breather. Their collision process
is shown in Fig. 2 with k1 = k∗

2 = i, k3 = k∗
4 = 2i, p1 = p∗

2 = 1+i, q3 = q∗
4 = 2+2i, p3 = p4 = q1 = q2 = 2.

Cross general breathers also can be constructed in the (y, z) plane, whose collision process is illustrated in
Fig. 3. There is a large amplitude at the intersection point.
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Fig. 3. The interaction solution between two general breathers for Eq. (2) in the (y, z) plane with the same parameters chosen in Fig. 2
at x = 0.

3. The lump solution and rogue wave solution

In this section, we will derive the lump solutions and rogue wave solutions by using the long wave limits
on the multi-soliton solutions [2]. From the two soliton solutions, first order lump solutions and rogue wave
solutions can be obtained. From the three soliton solutions, interaction solutions between kink solitons and
lump solutions or rogue wave solutions can be derived by selecting different parameters. From the four
soliton solutions, interaction solutions between lump solutions and rogue wave solutions can be constructed
based on the parameter selection method.

Case 1. Lump solution
For N = 2, lump solutions can be obtained by utilizing the long wave limit method on the two soliton

solutions with appropriate parameters. By setting the parameters in Eq. (7) as k1 = l1ϵ, k2 = l2ϵ, η0
1 =

η0∗
2 = iπ, and taking the limit as ϵ → 0, the lump solutions of the EJM equation (2) can be constructed in

the following form,
u = 2(θ1 + θ2)

θ1θ2 + θ0
. (9)

with

θ0 = − 2p2p1(p1 + p2)
((q2 + 1)p1 − p2(q1 + 1))(p1q2 − p2q1) , θi = x + piy + qiz + 3t(1 + qipi + q2

i )
2pi

(i = 1, 2). (10)

If setting p1 = p∗
2, q1 = q∗

2 , the solution u in Eq. (9) is obvious nonsingular. In order to demonstrate the
characteristics of the solution (10), we assume p1 = a1 + ib1, q1 = a2 + ib2, and a1, a2, b1, b2 are all real
constants.

When a1 ̸= 0, the solution u in Eq. (9) is a constant along the trajectory defined by the path [x(t), y(t)],
namely

x + a1y + a2z + 3(a2
1a2 + a1a2

2 − a1b2
2 + a2b2

1 + 2a2b1b2 + a1a2 + b1b2)
2(a2

1 + b2
1) t

−
√

a1(a2
1 + b2

1)
(a1b2 − a2b1 − b1)(a1b2 − a2b1) = 0,

b1y + b2z + 3(a2
1b2 + 2a1a2b2 − a2

2b1 + b2
1b2 + b1b2

2 + a1b2 − a2b1)
2(a2

1 + b2
1) t = 0.

(11)

The rational solution keeps permanent lump condition during the moving process in six different planes.
For N = 3, interaction solutions between solitons and lumps can be constructed through the long wave

limit method on three soliton solutions. With similar parameters constrained in N = 2, the corresponding
f can be rewritten as

f = (θ1θ2 + a12)l1l2 + (θ1θ2 + a12 + a13θ2 + a23θ1 + a13a23)l1l2eη3 (12)
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Fig. 4. Interaction solution between kink soliton and lump for Eq. (2) in different planes with p1 = 2 + i, q1 = 3 + 2i, p3 = 2, q3 =
1, η0

3 = 0, k3 = 1.

with

θi = x + piy + qiz + 3t(1 + qipi + q2
i )

2pi
, aij = − 2p2p1(p1 + p2)

((q2 + 1)p1 − p2(q1 + 1))(p1q2 − p2q1) (i < j),

ai3 = − 2p3pi(pi + p3)k3

(q2
3 + q3)p2

i + p3(p3k2
3 − (2q3 + 1)qi − q3)pi + (qi + 1)p2

3qi
(i, j = 1, 2).

(13)

Under a suitable choice of parameters, interaction solutions between kink solitons and lumps can be
derived in different planes, whose dynamical phenomena are exhibited in Fig. 4. Both the three dimensions
and the projected images are given out to demonstrate the characteristics. Under the same parameters, the
amplitudes of the lumps in different planes are distinct, while the peaks and valleys are divided by the kink
solitons. Obviously, the peaks and valleys are located in the high amplitudes and low amplitudes of the kink
soliton surfaces, respectively.

For N = 4, second order lump solutions can be constructed with four soliton solutions by the above
method. Taking

k1 = l1ϵ, k2 = l2ϵ, k3 = l3ϵ, k4 = l4ϵ, η0
1 = η0∗

2 = η0
3 = η0∗

4 = iπ, (14)

then the corresponding function f can be rewritten in the following form

f = (θ1θ2θ3θ4 + a12θ3θ4 + a13θ2θ4 + a14θ2θ3 + a23θ1θ4 + a24θ1θ3 + a34θ1θ2 + a12a34

+ a13a24 + a14a23)l1l2l3l4ϵ4 + O(ϵ5) (15)

where
θi = x + piy + qiz + 3t(1 + qipi + q2

i )
2pi

,

aij = − 2pjpi(pi + pj)
((qj + 1)pi − pj(qi + 1))(piqj − pjqi)

(i, j = 1, 2, 3, 4).
(16)

In the same way, assuming p1 = p∗
2 = a1 + ib1, p3 = p∗

4 = a2 + ib2, q1 = q∗
2 = c1 + id1, q3 = q∗

4 = c2 + id2,
and ai, bi, ci, di, (i = 1, 2) are all real constants. In fact, different interaction solutions can be constructed
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Fig. 5. Overtaking collision between two lumps for Eq. (2) in (x,y) plane with parameters a1 = 2, b1 = 1, a2 = 1, b2 = 2, c1 = 2, d1 =
3, c2 = 3, d3 = 1.

Fig. 6. Two line rogue waves for Eq. (2) in the (x, z) plane with parameters a1 = 1, b1 = 2, a2 = 3, b2 = 5, c1 = 3, c2 = −4, d1 = d2 = 0
at y = 0.

with different parameters. Dynamical behavior of second order lumps in the (x,y) plane can be clearly seen
from Fig. 5.

Case 2. Rogue wave solution
Except for lump solutions mentioned in case 1, another kind of dynamical phenomenon is also available.

In the following, we will construct rogue waves and interaction solutions for the EJM equation (2). For
N = 2, when b2 = 0, namely p1 and p2 are all real constants, line rogue wave is able to be derived under
the same parameters constrained in case 1. The line rogue wave is a rational solution with the process of
growth and decay. For N = 3, interaction solutions between kink solitons and rogue waves can be derived
from the limitation of the three solitons. Taking p1 = p2∗ and q1, q2, q3, p3, η0

3 , k3 are real parameters, thus
interaction solutions can be derived with appropriate parameters.

For N = 4, second order line rogue waves can be constructed with appropriate parameters. From Fig. 6,
dynamical behavior of second order line rogue wave can be clearly seen. There is a downward deformation
at the intersection point of two line rogue waves, and the amplitude is up to 8.0063 at t = 0. The whole
dynamical process come from a constant background and finally return to the constant background again,
which are consistent with the first order line rogue wave.

Case 3. Interaction solutions between lumps and rogue waves
In addition, combining the methods mentioned in Case 1 and Case 2, we also obtain the interaction

solutions between lumps and line rogue waves. The associated graph for this interaction solution in the
(x, z) plane is presented in Fig. 7. These collision processes between line rogue waves and lumps are similar
with the collision between line rogue waves and solitons. It should be noted that the amplitude of the lump
increases significantly at t = 0 and can reach 5.9535. Interestingly, the interaction of these two types of waves
implies a downward deformation of the line rogue wave at t = 0. Finally, the line rogue wave disappears into
the constant background, and the moving lump is preserved eventually.
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Fig. 7. The interaction solution between line rogue wave and lump solution for Eq. (2) in the (x, z) plane with parameters a1 = 1, b1 =
1, a2 = 2, b2 = 1, c1 = −1, d1 = 2, c2 = 3, d2 = 0 at y = 0.

4. Summary and discussions

To conclude, many kinds of localized wave solutions of EJM equation are obtained in this article, such as
kink soliton, breather, lump and line rogue wave. Their higher order solutions are also derived. In addition,
considering their mixed cases, we also obtain many types of interaction solutions in the same plane with
different parameters and the different plane with the same parameters. We analyze their dynamic behavior
and vividly demonstrate their evolution process. The methods used in this paper can also be applied in
other equations (include Eq. (3)) to obtain localized wave solutions. Next, we look forward to applying
numerical methods to simulate these kinds of dynamic phenomena. It is worthy of further exploration that
using numerical solutions to verify the above theoretical solutions and their stability in the future.
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