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Abstract In the present letter, we get the appropriate bilinear forms of (2 + 1)-dimensional KdV equation, extended

(2+1)-dimensional shallow water wave equation and (2+1)-dimensional Sawada–Kotera equation in a quick and natural

manner, namely by appling the binary Bell polynomials. Then the Hirota direct method and Riemann theta function are

combined to construct the periodic wave solutions of the three types nonlinear evolution equations. And the corresponding

figures of the periodic wave solutions are given. Furthermore, the asymptotic properties of the periodic wave solutions

indicate that the soliton solutions can be derived from the periodic wave solutions.
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1 Introduction

Owing to soliton theory are being applied to math-

ematics, physics, biology, astrophysics and other poten-

tial field, the studies on the nonlinear evolution equations

(NNEEs) has arisen great attention during the past few

decades.[1−15] As an important part in the soliton the-

ory, seeking for analytic solutions of the NLEEs is al-

ways the hot research areas.[16−21] Starting from the an-

alytic solutions, we may obtain the properties of corre-

sponding NNEEs and connect them with practical phys-

ical phenomenons. Also, some methods have been pro-

posed to deal with the problem, such as inverse scattering

transformation,[22] Darboux transformation,[23] Hirota di-

rect method.[24] Among these methods, the Hirota method

is a powerful tool and direct approaches to construct ex-

act solutions of nonlinear equations. The advantage of

the Hirota method is that once the bilinear forms of non-

linear evolution equations are obtained, then not only the

multi-soliton solutions, but also the bilinear BT, Lax pairs

are constructed. It is clear that the key problem is trans-

form the given NLEEs into corresponding bilinear forms.

There has some methods to deal with the problem, such as

rational transformation, logarithmic transformation, and

double logarithmic transformation, but there is no univer-

sal method to find the needed transformation. Further-

more, the obtaining process of the bilinear forms for the

given NNEEs are often cockamamie. Lately, Lembert and

Gilson et al.[25−34] proposed a lucid and systematic ap-

proach to obtain the bilinear representations as well as its

bilinear Bäcklund transformation (BT), Lax pairs of the

NLEEs, namely by applying the Bell polynomials. Com-
pare with the traditional methods, the efficiency of the
Bell polynomials is obvious stand to reason.

Once the bilinear forms of the given NNEEs are given,
we could construct the Wronskian solutions, Pfaffian so-
lutions, and explicit periodic wave solutions by use of the
Riemann theta functions.[35−38] Nakamura, Fan et al. have
obtained periodic wave solutions of the KdV and KP equa-
tions by the bilinear approach.[37−39] The appeal and suc-
cess of this approach lies in the fact that we obtain the
periodic wave solutions in a direct approach without ap-
ply algebro-geometric theory. Besides, we could get corre-
sponding soliton solutions via asymptotic analysis for the
periodic wave solutions.

In this paper, (2 + 1)-dimensional KdV equation, ex-
tended (2 + 1)-dimensional shallow water wave equation
and (2 + 1)-dimensional Sawada–Kotera equation will be
dealt with to illustrate the efficiency of obtaining the bi-
linear forms by applying the Bell polynomials. Then,
with the help of the Riemann theta functions and Hirota
method, we obtain the periodic wave solutions of these
three kinds of nonlinear equations. Furthermore, the pe-
riodic wave solutions are reduced to their soliton solutions
via asymptotic analysis.

The paper is organized as follows. In Sec. 2, we give
a brief introduction about the binary Bell polynomial. In
Sec. 3, we give the bilinear form of (2 + 1)-dimensional
KdV equation, extended (2 + 1)-dimensional shallow wa-
ter wave equation and (2+1)-dimensional Sawada–Kotera
equation by appling binary Bell polynomial. In Sec. 4, by
using the Riemann theta functions and Hirota method,
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their periodic wave solutions and reductions are presented,

respectively. Finally, some conclusions are given in Sec. 5.

2 Binary Bell Polynomial

Bell[29] proposed three kinds of exponent-form polyno-

mials, the third type of Bell polynomials is the main tool

used in this paper. For the convenience of the understand-
ing for our description, we briefly introduce the necessary

notations of the Bell polynomials. For details of Bell poly-
nomial, refer to Lembert and Gilson et al. work.[25−34]

The multi-dimensional binary Bell polynomials that
we use are defined as the following

Yn1x1,...,nlxl
(f) ≡ Yn1,...,nl

(fr1x1,...,rlxl
) = e−f∂n1

x1
· · ·∂nl

xl
ef ,

Yn1x1,...,nlxl
(v, w) ≡ Yn1,...,nl

(f)
∣

∣

∣

fr1x1,...,rlxl
=

{

vr1x1,...,rlxl
, r1 + · · · + rl is odd ,

wr1x1,...,rlxl
, r1 + · · · + rl is even ,

(1)

with fr1x1,...,rlxl
= ∂n1

x1
· · · ∂nl

xl
f , r1 = 0, . . . , n1, . . . , rl =

0, . . . , nl.
The first few lowest order binary Bell polynomials are

Yx(v) = vx , Y2x(v, w) = w2x + v2
x ,

Yx,y(v, w) = wx,y + vxvy,

Y3x(v, w) = v3x + 3vxw2x + v3
x, . . . (2)

The link between Y-polynomials and the standard Hirota
expressions can be given by the identity

Yn1x1,...,nlxl
(v = lnF/G, w = lnFG)

= (FG)−1Dn1

x1
· · ·Dnl

xl
F · G . (3)

In the particular case when F = G, the formula becomes

F−2Dn1

x1
· · ·Dnl

xl
F · F = Yn1x1,...,nlxl

(0, q = 2 lnF )

=

{

0 , n1 + · · · + nl is odd ,

Pn1x1,...,nlxl
(q) , n1 + · · · + nl is even ,

(4)

in which the P -polynomials can be characterized by an
equally recognizable even part partitional structure

P2x(q) = q2x , Px,t(q) = qxt , P4x(q) = q4x + 3q2
2x ,

P3x,y(q) = q3xy + 3qxyq2x , . . . (5)

3 Bilinear Form

In this section, we will give the bilinear forms for
the (2 + 1)-dimensional KdV equation, extended (2 + 1)-
dimensional shallow water wave equation and (2 + 1)-
dimensional Sawada–Kotera equation by applying binary
Bell polynomials.

3.1 (2 + 1)-Dimensional KdV Equation[40]

ut + 3uuy + uxxy + 3ux

∫

uy dx = 0 . (6)

Setting u = q2x, substituting it into Eq. (6) and inte-
grating respect to x yields

qx,t + 3qx,yq2x + q3x,y − λ = 0 , (7)

where λ is an integral constant.

Then, Eq. (6) can be written as follows

E(q) = Px,t(q) + P3x,y(q) − λ = 0 . (8)

Introducing a change of dependent variable

q = 2 lnF ⇔ u = q2x = 2(lnF )2x , (9)

we get the bilinear representation of the Eq. (6) in terms
of the identity (3)

G(Dx, Dy, Dt) ≡ (DxDt + D3
xDy)F · F − λF 2 = 0 . (10)

3.2 Extended (2 + 1)-Dimensional Shallow Water

Wave Equation[41]

uy,t + u3x,y − 3u2xuy − 3uxux,y + αux,y = 0 , (11)

where α is a constant.
Setting u = −qx, substituting it into Eq. (11) and in-

tegrating with respect to x yields

qy,t + q3x,y + 3q2xqx,y + αqx,y − γ = 0 , (12)

where γ is an integral constant.
Then, Eq. (11) can be written as follows

Py,t(q) + P3x,y(q) + αPx,y(q) − γ = 0 . (13)

Introducing a change of dependent variable

q = 2 lnF ⇔ u = −qx = −2(lnF )x , (14)

we get the bilinear representation of the Eq. (11) as follows

G(Dx, Dy, Dt) ≡ (DyDt + D3
xDy

+ αDxDy)F · F − γF 2 = 0 . (15)

3.3 (2 + 1)-Dimensional Sawada–Kotera Equat-

ion[42]

ut −

(

u4x + 5uu2x +
5

3
u3 + 5ux,y

)

x

+5

∫

u2y dx − 5uuy − 5ux

∫

uy dx = 0 . (16)

Setting u = 3q2x, substituting it into Eq. (16) and
integrating with respect to x yields

qxt + 5q2y − (q6x + 15q2xq4x + 15q3
2x)

− 5(q3xy + 3q2xqxy) − ς = 0 , (17)

where ς is an integral constant.
Then, Eq. (16) can be written as follows

E(q) = Px,t(q)+5P2y(q)−P6x(q)−5P3x,y(q)−ς = 0 . (18)

Introducing a change of dependent variable

q = 2 lnF ⇔ u = 3q2x = 6(lnF )2x , (19)

we get the bilinear representation of the Eq. (16) as follows

G(Dx, Dy, Dt) ≡ (DxDt + 5D2
y − D6

x
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− 5D3
xDy)F · F − ςF 2 = 0 . (20)

From the above process for seeking the bilinear forms
of three kinds of (2 + 1)-dimensional nonlinear equation,
we could find that binary Bell polynomials provide us a
direct and simple approach for constructing the bilinear
forms for some nonlinear equations.

4 Periodic Wave Solutions
We notice that D-operators have good property when

acting on exponential functions[43−44]

Dm
x Ds

yDn
t eξ1

· eξ2

= (κ1 − κ2)
m(ι1 − ι2)

s(ω1 − ω2)
n eξ1+ξ2 , (21)

where ξj = κjx + ιjy + ωjt + ξ
(0)
j , j = 1, 2.

More generally, we have

G(Dx, Dy, Dt) eξ1 · eξ2

= G(κ1 − κ2, ι1 − ι2, ω1 − ω2) eξ1+ξ2 . (22)

In the following, we will use the Riemann theta func-

tion, Hirota direct method as well as property (22) to

construct periodic wave solutions of Eqs. (6), (11), and

(16).

4.1 (2 + 1)-Dimensional KdV Equation

We consider the Riemann theta function solution of

Eq. (6)

F =
∞
∑

n=−∞

e2π inξ+π in2τ , (23)

where n ∈ Z, τ ∈ C, Imτ > 0, and ξ = κx + ιy + ωt, with

κ, ι, and ω are constants to be determined.

Inserting Eq. (23) into Eq. (10), we have

GF · F = G(Dx, Dy, Dt)

∞
∑

n=−∞

e2π inξ+π in2τ

∞
∑

m=−∞

e2π imξ+π im2τ

=

∞
∑

n=−∞

∞
∑

m=−∞

G(Dx, Dy, Dt) e2π inξ+π in2τ · e2π imξ+π im2τ

=

∞
∑

n=−∞

∞
∑

m=−∞

G(2π i(n − m)κ, 2π i(n − m)ι, 2π i(n − m)ω) e2π i(n+m)ξ+π i(n2+m2)τ

=
∞
∑

p=−∞

{

∞
∑

n=−∞

G[2π i(2n − p)κ, 2π i(2n − p)ι, 2π i(2n − p)ω] eπ i(n2+(p−n)2)τ
}

e2π ipξ =
∞
∑

p=−∞

Ḡ(p) e2π ipξ . (24)

Noting that

Ḡ(p) =

∞
∑

n=−∞

G[2π i(2n − p)κ, 2π i(2n − p)ι, 2π i(2n − p)ω] eπ i(n2+(p−n)2)τ

=

∞
∑

h=−∞

G[2π i(2h − (p − 2))κ, 2π i(2h − (p − 2))ι, 2π i(2h − (p − 2))ω] eπ i((h+1)2+(p−h−1)2)τ

=

∞
∑

h=−∞

G[2π i(2h − (p − 2))κ, 2π i(2h − (p − 2))ι, 2π i(2h − (p − 2))ω] eπ i(h2+(p−h−2)2)τ
· e2π i(p−1)τ

= Ḡ(p − 2) e2π i(p−1)τ , (25)

where p = m + n.

In view of Eq. (25) and by induction method, we can

get that

Ḡ(p) =

{

Ḡ(0) eπ inpτ , p = 2n ,

Ḡ(1) eπ i(2n+2n2)(p+1)τ , p = 2n + 1 .
(26)

In this way, we may let

Ḡ(0) =

∞
∑

n=−∞

(−16n2π2κω + 256n4π4κ3ι− λ) e2π in2τ = 0 ,

Ḡ(1) =

∞
∑

n=−∞

(−4(2n − 1)2π2κω + 16(2n− 1)4π4κ3ι − λ)

× eπ i(2n2−2n+1)τ = 0 . (27)

For the sake of convenience, if we denote that

q1(n) = e2πin2τ , q2(n) = eπ i(2n2−2n+1)τ ,

a11 =

∞
∑

n=−∞

−16n2π2κq1(n) , a12 =

∞
∑

n=−∞

q1(n) ,

a21 =
∞
∑

n=−∞

−4(2n − 1)2π2κq2(n) , a22 =
∞
∑

n=−∞

q2(n) ,

b1 =

∞
∑

n=−∞

(256n4π4κ3ι)q1(n) ,

b2 =

∞
∑

n=−∞

(16(2n − 1)4π4κ3ι)q2(n) . (28)
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Then Eq. (27) can be written as

a11ω + b1 − λa12 = 0 , a21ω + b2 − λa22 = 0 . (29)

Solving this system, we obtain

ω =
a12b2 − b1a22

a11a22 − a21a12
, λ =

a11b2 − b1a21

a11a22 − a21a12
. (30)

Thus, we obtain the periodic wave solution

u = 2 ln(F )2x , (31)

where F and ω are given by Eqs. (23) and (30), respec-

tively.

Fig. 1 (a) The figure represents periodic solution (31) with κ = 0.03, τ = i, ι = 0.03; (b) Along x-axis; (c)
Along y-axis.

We are interested in the asymptotic properties of the
periodic wave solutions of Eq. (6). From Eq. (23), we
write F as

F = 1+η( e2π iξ + e−2π iξ)+η4( e4π iξ + e−4πiξ)+ · · · (32)

where η = eπiτ .
Setting

κ′ = 2π iκ , ι′ = 2π iι , ω′ = 2π iω ,

ξ′ = κ′x + ι′y + ω′t + π iτ ,

we get

F = 1 + η( e2π iξ + e−2π iξ) + η4( e4π iξ + e−4π iξ) + · · ·

= 1 + eξ′

+ η2( e−ξ′

+ e2ξ′

) + η6( e−2ξ′

+ e3ξ′

) + · · ·

→ 1 + eξ′

, as η → 0 . (33)

It is interesting that if we can prove that

ω′
→ −κ′2ι′ , (34)

then the periodic wave solutions (31) turns to the soliton
solution

u = 2 ln(F )x , F = 1 + eξ′

,

ξ′ = κ′x + ι′y + ω′t + π iτ , ω′ = −κ′2ι′ . (35)

In fact, it is easy to see that

a11 = −32π2κ(η2 + 4η4 + · · ·) ,

a12 = 1 + 2η2 + 2η8 + · · · ,

a21 = −8π2κ(η + 9η5 + · · ·) ,

a22 = 2η + 2η5 + · · · , b1 = 2 · 256π4κ3ιη2 + · · · ,

b2 = 2(16π4κ3ι)η + 2(16 · 34π4κ3ι)η5 + · · · , (36)

which lead to

a12b2 − b1a22 = 32π4κ3ιη + o(η), a11a22 − a12a21

= 8π2κη + o(η) , (37)

so we have ω → 4π2κ2ι, as η → 0, which is equivalent to
ω′ → −κ′2ι′, as η → 0.

4.2 Extended (2 + 1)-Dimensional Shallow Water

Wave Equation

With the silimiar calculation process as subsec. 4.1, we
have

Ḡ(0) =

∞
∑

n=−∞

(−16n2π2ιω +256n4π4κ3ι−16αn2π2κι−γ)

× e2πin2τ = 0 ,

Ḡ(1) =
∞
∑

n=−∞

(−4(2n− 1)2π2ιω + 16(2n− 1)4π4κ3ι

− 4α(2n − 1)2π2κι − γ) eπ i(2n2−2n+1)τ = 0 . (38)

For the sake of convenience, we denote that

q1(n) = e2πin2τ , q2(n) = eπ i(2n2−2n+1)τ ,

a11 =

∞
∑

n=−∞

−16n2π2ιq1(n) , a12 =

∞
∑

n=−∞

q1(n) ,

a21 = −

∞
∑

n=−∞

4(2n − 1)2π2ιq2(n) , a22 =

∞
∑

n=−∞

q2(n) ,
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b1 =
∞
∑

n=−∞

(256n4π4κ3ι − 16αn2π2κι)q1(n) ,

b2 =

∞
∑

n=−∞

(16(2n−1)4π4κ3ι−4α(2n−1)2π2κι)q2(n) , (39)

then Eq. (38) can be written as

a11ω + b1 − ςa12 = 0 , a21ω + b2 − ςa22 = 0 . (40)

Solving this system, we obtain

ω =
a12b2 − b1a22

a11a22 − a21a12
, ς =

a11b2 − b1a21

a11a22 − a21a12
. (41)

Thus, we obtain the periodic wave solution

u = −2 ln(F )x , (42)

where F and ω are given by Eqs. (23) and (41), respec-
tively.

Fig. 2 (a) The figure represents periodic solution (42) with α = 4, κ = 0.03, τ = i, ι = 0.03; (b) Along x-axis;
(c) Along y-axis.

From Eq. (23), we write F as

F = 1+δ( e2π iξ+ e−2π iξ)+δ4( e4π iξ+ e−4π iξ)+· · · , (43)

where δ = eπ iτ .

Setting κ′ = 2π iκ, ι′ = 2π iι, ω′ = 2π iω, ξ′ =

κ′x + ι′y + ω′t + π iτ , we get

F = 1 + δ( e2π iξ + e−2π iξ) + δ4( e4π iξ + e−4π iξ) + · · ·

= 1 + eξ′

+ δ2( e−ξ′

+ e2ξ′

) + δ6( e−2ξ′

+ e3ξ′

) + · · ·

→ 1 + eξ′

, as δ → 0 . (44)

It is interesting that if we can prove that

ω′ → −κ′(κ′2 + α) , (45)

then the periodic wave solutions (42) turns to the soliton

solution

u = −2 ln(F )x , F = 1 + eξ′

,

ξ′ = κ′x + ι′y + ω′t + π iτ , ω′ = −κ′(κ′2 + α) . (46)

In fact, it is easy to see that

a11 = −32π2ι(δ2 +4δ4 + · · ·) , a12 = 1+2δ2 +2δ8 + · · · ,

a21 = −8π2ι(δ + 9δ5 + · · ·) , a22 = 2δ + 2δ5 + · · · ,

b1 = (256π4κ3ι − 16απ2κι)δ2 + · · · ,

b2 = 2(16π4κ3ι − 4απ2κι)δ + 2(16 · 34π4κ3ι

− 4α · 32π2κι)δ5 + · · · , (47)

which lead to

a12b2 − b1a22 = (32π4κ3ι − 8απ2κι)δ + o(δ) ,

a11a22 − a12a21 = 8π2ιδ + o(δ) , (48)

so we have ω → −4π2κ3 + ακ, as δ → 0, which is equiva-

lent to ω′ → −κ′(κ′2 + α), as δ → 0.

4.3 (2+1)-Dimensional Sawada–Kotera Equation

With the silimiar calculation process as Sec. 4.1, we

have

Ḡ(0) =

∞
∑

n=−∞

(−16n2π2κω − 1280n4π4κ3ι − 80n2π2ι2

+ 4096n6π6κ6 − γ) e2π in2τ = 0 ,

Ḡ(1) =

∞
∑

n=−∞

((−4(2n − 1)2π2κω

− 80(2n− 1)4π4κ3ι − 4(2n − 1)2π2ι2

+ 64(2n− 1)6π6κ6) − γ) eπ i(2n2−2n+1)τ = 0 . (49)

For the sake of convenience, we denote that

q1(n) = e2π in2τ , q2(n) = eπ i(2n2−2n+1)τ ,

a11 =

∞
∑

n=−∞

−16n2π2κq1(n) , a12 =

∞
∑

n=−∞

q1(n) ,
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a21 =
∞
∑

n=−∞

−4(2n− 1)2π2κq2(n) , a22 =
∞
∑

n=−∞

q2(n) ,

b1 =

∞
∑

n=−∞

(−1280n4π4κ3ι−80n2π2ι2+4096n6π6κ6)q1(n) ,

b2 =

∞
∑

n=−∞

(−80(2n− 1)4π4κ3ι − 20(2n− 1)2π2ι2

+ 64(2n− 1)6π6κ6)q2(n) , (50)

then Eq. (49) can be written as

a11ω + b1 − ςa12 = 0 , a21ω + b2 − ςa22 = 0 . (51)

Solving this system, we obtain

ω =
a12b2 − b1a22

a11a22 − a21a12
, ς =

a11b2 − b1a21

a11a22 − a21a12
. (52)

Thus, we obtain the periodic wave solution

u = 6 ln(F )x , (53)

where F and ω are given by Eqs. (23) and (52), respec-
tively.

Fig. 3 (a) The figure represents periodic solution (53) with κ = 0.03, τ = i, ι = 0.03; (b) Along x-axis; (c) Along
y−axis.

From Eq. (23), we write F as

F = 1+δ( e2π iξ+ e−2π iξ)+δ4( e4π iξ+ e−4π iξ)+· · · , (54)

where δ = eπ iτ .
Setting

κ′ = 2π iκ , ι′ = 2π iι , ω′ = 2π iω ,

ξ′ = κ′x + ι′y + ω′t + π iτ ,

we get

F = 1 + δ( e2π iξ + e−2π iξ) + δ4( e4πiξ + e−4π iξ) + · · ·

= 1 + eξ′

+ δ2( e−ξ′

+ e2ξ′

) + δ6( e−2ξ′

+ e3ξ′

) + · · ·

→ 1 + eξ′

, as δ → 0 . (55)

It is interesting that if we can prove that

ω′ → 5κ′2 −
5ι′2

κ′
+ κ′5 , (56)

then the periodic wave solutions (53) turns to the soliton
solution

u = −2 ln(F )x , F = 1 + eξ′

,

ξ′ = κ′x + ι′y + ω′t + π iτ ,

ω′ = 5κ′2 −
5ι′2

κ′
+ κ′5 . (57)

In fact, it is easy to see that

a11 = −32π2κ(δ2 + 4δ4 + · · ·) ,

a12 = 1 + 2δ2 + 2δ8 + · · · ,

a21 = −8π2κ(δ + 9δ5 + · · ·) ,

a22 = 2δ + 2δ5 + · · · ,

b1 = (−1280π4κ3ι − 80π2ι2 + 4096π6κ6)δ2 + · · · ,

b2 = 2(−80π4κ3ι − 20π2ι2 + 64π6κ6)δ + 2(−80 · 34π4κ3ι

− 4 · 32π2ι2 + 64 · 36π6κ6)δ5 + · · · , (58)

which lead to

a12b2 − b1a22 =(−160π4κ3ι −40π2ι2 + 128π6κ6)δ+ o(δ) ,

a11a22 − a12a21 = 8π2κδ + o(δ) , (59)

so we have

ω → −20π2κ2ι −
5ι2

κ
+ 16π4κ5 , as δ → 0 ,

which is equivalent to ω′ → 5κ′2 − 5ι′2/κ′ + κ′5, as δ → 0.

5 Conclusions
In this paper, we investigate (2 + 1)-dimensional KdV

equation, extended (2+1)-dimensional shallow water wave
equation, and (2 + 1)-dimensional Sawada–Kotera equa-
tion. Their bilinear forms are given by applying binary
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Bell polynomials which has proved to be a quick and sim-
ple method. Then, we get their periodic solutions with
the help of Riemann theta function and Hirota method.

Futhermore, we obtain the corresponding soliton solutions
via asymptotic analysis for their periodic wave solutions.
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