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The nonlinear Schrödinger equation is a classical integrable equation which contains plenty of significant properties
and occurs in many physical areas. However, due to the difficulty of solving this equation, in particular in high dimen-
sions, lots of methods are proposed to effectively obtain different kinds of solutions, such as neural networks among others.
Recently, a method where some underlying physical laws are embeded into a conventional neural network is proposed to
uncover the equation’s dynamical behaviors from spatiotemporal data directly. Compared with traditional neural networks,
this method can obtain remarkably accurate solution with extraordinarily less data. Meanwhile, this method also provides
a better physical explanation and generalization. In this paper, based on the above method, we present an improved deep
learning method to recover the soliton solutions, breather solution, and rogue wave solutions of the nonlinear Schrödinger
equation. In particular, the dynamical behaviors and error analysis about the one-order and two-order rogue waves of non-
linear integrable equations are revealed by the deep neural network with physical constraints for the first time. Moreover,
the effects of different numbers of initial points sampled, collocation points sampled, network layers, neurons per hidden
layer on the one-order rogue wave dynamics of this equation have been considered with the help of the control variable
way under the same initial and boundary conditions. Numerical experiments show that the dynamical behaviors of soli-
ton solutions, breather solution, and rogue wave solutions of the integrable nonlinear Schrödinger equation can be well
reconstructed by utilizing this physically-constrained deep learning method.
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1. Introduction
In recent decades, more and more attention has been paid

to the nonlinear problems in fluid mechanics, condensed mat-
ter physics, optical fiber communication, plasma physics, and
even biology.[1–4] After establishing nonlinear partial differen-
tial equations to describe these nonlinear phenomena and then
analyzing the analytical and numerical solutions of these non-
linear models, the essence of these nonlinear phenomena can
be understood.[5] Therefore, the research of these nonlinear
problems is essentially transformed into the study of nonlin-
ear partial differential equations which describe these physi-
cal phenomena. Due to many basic properties of linear dif-
ferential equations are not applicable to nonlinear differential
equations, these nonlinear differential equations which the fa-
mous nonlinear Schrödinger equation belongs to are more dif-
ficult to solve compared with the linear differential equations.
It is well known that the Schrödinger equation can be used
to describe the quantum behavior of microscopic particles in

quantum mechanics.[6] Furthermore, various solutions of this
equation can describe the nonlinear phenomena in other phys-
ical fields, such as optical fiber, plasma, Bose–Einstein con-
densates, fluid mechanics, and Heisenberg ferromagnet.[7–16]

With the explosive growth of available data and comput-
ing resources, deep neural networks, i.e., deep learning,[17]

are applied in many areas including image recognition,
video surveillance, natural language processing, medical di-
agnostics, bioinformatics, financial data analysis, and so
on.[18–23] In scientific computing, especially, the neural net-
work method[24–26] provides an ideal representation for the
solution of differential equations[27] due to its universal ap-
proximation properties.[28] Recently, a physically constrained
deep learning method called physics-informed neural network
(PINN)[29] and its improvement[30] has been proposed which
is particularly suitable for solving differential equations and
corresponding inverse problems. It is found that the PINN
architecture can obtain remarkably accurate solution with ex-
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traordinarily less data. Meanwhile, this method also provides
a better physical explanation for predicted solutions because of
the underlying physical constraints which is usually described
explicitly by the differential equations. In this paper, the com-
putationally efficient physics-informed data-driven algorithm
for inferring solutions to more general nonlinear partial differ-
ential equations, such as the integrable nonlinear Schrödinger
equation, is studied.

As is known to all, the study of exact solutions for in-
tegrable equations which are used to describe complex phys-
ical phenomena in the real world have been paid more and
more attention in plasma physics, optical fiber, fluid dynam-
ics, and others fields.[13,31–35] The Hirota bilinear method, the
symmetry reduction method, the Darboux transformation, the
Bäcklund transformations, the inverse scattering method, and
the function expansion method are powerful means to solve
nonlinear integrable equations, and many other methods are
based on them.[5,36–42] Although the computational cost of
some direct numerical solutions of integrable equations is very
high, with the revival of neural networks, the development of
more effective deep learning algorithms to obtain data-driven
solutions of nonlinear integrable equations has aroused great
interest.[43–47] Li and Chen constructed abundant numerical
solutions of second-order and third-order nonlinear integrable
equations with different initial and boundary conditions by
deep learning method based on the PINN model.[43,46,47] Pre-
vious works mainly focused on some simple solutions (e.g., N-
soliton solutions, kink solutions) of given system or integrable
equation. Relatively, the research results of machine learning
for constructing rogue waves are rare. In Ref. [48], the bias
function including two backward shock waves and soliton gen-
eration and the generation of rogue waves are studied by using
a single wave-layer feed forward neural network. As far as we
know, the soliton solutions, breather solution, and rogue wave
solutions[8,9] of the integrable nonlinear Schrödinger equation
have not been given out by the deep learning method based
on PINN. Therefore, we introduce the deep learning method
with underlying physical constraints to construct the soliton
solutions, breathing solution, and rogue wave solutions of in-
tegrable nonlinear Schrödinger equation in this work.

This paper is organized as follows. In Section 2, we
introduce the physically constrained deep learning method
and briefly present some problem setups. In Section 3, the
one-soliton solution and two-soliton solution of the nonlinear
Schrödinger equation are obtained by this approach, and the
breather solution is derived in comparison with the two-soliton
solution. Section 4 provides rogue wave solutions which con-
tain one-order rogue wave and two-order rogue wave for the
nonlinear Schrödinger equation, and the relative L2 errors of
simulating the one-order rogue wave of nonlinear Schrödinger
equation with different numbers of initial points sampled, col-

location points sampled, network layers, and neurons per hid-
den layer are also given out in detail. Conclusion is given in
the last section.

2. Method
In this paper, we consider (1+1)-dimensional nonlinear

Schrödinger equation as follows:

iqt +αqxx +β |q|2q = 0, (1)

where α,β are arbitrary parameters, i =
√
−1 and q are

complex-valued solutions with respect to x and t. Based on
the theory of integrable systems and PINN, we establish a
physically-constrained deep learning method to approximate
the potential solution |q(x, t)| of this integrable equation. Here,
the underlying laws of physics are described explicitly by this
equation and embedded into the architecture with the help
of automatic differentiation.[49] The physical constraints re-
garded as a kind of regularization are introduced into the net-
work via this mechanism which enables us to understand the
network architecture and the predicted solutions better. In ad-
dition, due to the physical constraints, the network is trained
just with few data.

Specifically, the complex value solution q(x, t) is formu-
lated as q = u+ iv, where u(x, t) and v(x, t) are real-valued
functions of x, t, and real part and imaginary part of q(x, t),
respectively. Then, equation (1) can be converted into

ut +αvxx +β (u2 + v2)v = 0, (2)

vt −αuxx−β (u2 + v2)u = 0. (3)

Accordingly, we define the physics-informed neural net-
works fu(x, t) and fv(x, t) respectively

fu : = ut +αvxx +β (u2 + v2)v, (4)

fv : = vt −αuxx−β (u2 + v2)u, (5)

and the solution q(x, t) is trained to satisfy the networks (4)
and (5) which are embedded into the mean-squared objective
function (also called loss function)

Loss = Lossu +Lossv +Loss fu +Loss fv , (6)

where

Lossu =
1

Nq

Nq

∑
i=1
|u(xi

u, t
i
u)−ui|2, (7)

Lossv =
1

Nq

Nq

∑
i=1
|v(xi

v, t
i
v)− vi|2, (8)

Loss fu =
1
Nf

Nf

∑
j=1
| fu(x

j
fu , t

j
fu)|

2, (9)

Loss fv =
1
Nf

Nf

∑
j=1
| fv(x

j
fv , t

j
fv)|

2. (10)
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Here the initial and boundary value data about q(x, t) are
denoted by {xi

u, t
i
u,u

i}Nq
i=1 and {xi

v, t
i
v,v

i}Nq
i=1. Similarly, the

collocation points for fu(x, t) and fv(x, t) are specified as
{x j

fu , t
j
fu}

N f
j=1 and {x j

fv , t
j
fv}

N f
j=1 which are sampled using the

classical latin hypercube sampling (LHS) technique.[50] The
Loss function (6) corresponds to the initial-boundary data and
the networks (4) and (5) penalize Eqs. (2) and (3) not being
satisfied on the collocation points. Specifically, the first and
second terms on the right hand side of Eq. (6) attempt to fit the
solution data, and the third and fourth terms learn to satisfy the
networks fu and fv. The convergence of the loss function has
been analyzed in previous works.[51]

In this paper, we optimize all loss functions simply us-
ing the L-BFGS algorithm which is a full-batch gradient-based
optimization algorithm based on a quasi-Newton method.[52]

In addition, we use relatively simple multilayer perceptrons
(MLPs) with the Xavier initialization and the hyperbolic tan-
gent (tanh) activation function.[43] All codes in this article are
based on Python 3.7 and Tensorflow 1.15, and all numerical
examples reported here are run on a DELL Precision 7920
Tower computer with 2.10 GHz 8-core Xeon Silver 4110 pro-
cessor and 64-GB memory.

3. Soliton solutions and breather solution of the
nonlinear Schrödinger equation
The (1+1)-dimensional focusing nonlinear Schrödinger

equation is a classical integrable field equation for describing
quantum mechanical systems, nonlinear wave propagation in
optical fibers or waveguides, Bose–Einstein condensates, and
plasma waves. In optics, the nonlinear term is generated by the
intensity dependent index of a given material. Similarly, the
nonlinear term for Bose–Einstein condensates is the result of
the mean-field interactions about the interacting N-body sys-
tem. We consider the focusing nonlinear Schrödinger equation
along with Dirichlet boundary conditions given by

iqt +qxx +2|q|2q = 0,x ∈ [x0,x1], t ∈ [t0, t1],
q(x, t0) = q0(x),
q(x0, t) = q(x1, t),

(11)

where q0(x) is an arbitrary complex-valued function of space
variable x, x0, and x1 represent the lower and upper boundaries
of x respectively, t0 and t1 represent the initial and terminal
time instants of t respectively. In addition, this equation corre-
sponds to Eq. (1) with α = 1 and β = 2. Equation (11) is often
used to describe the evolution of weakly nonlinear dispersive
wave modulation. In view of the characteristic of its solu-
tion, it is called “self focusing” nonlinear Schrödinger equa-
tion. For water wave modulation, there is usually coupling be-
tween modulation and wave induced current, so in some cases,
water wave modulation can also be described by the nonlinear
Schrödinger equation.[2] The N-soliton solutions and breather

solution of the above equation have been obtained by many
different methods.[36,38,53] Here, we simulate the soliton so-
lutions and breather solution using the physically constrained
deep learning method, and compare them with the known ex-
act solutions, so as to prove the effectiveness of solving the
numerical solutions q(x, t) by neural networks. Specifically,
the N-soliton solution of nonlinear Schrödinger equation have
been derived by the Riemann–Hilbert method,[53] and the N-
soliton solution is formed as

q(x, t) =−2i
detR
detM

, (12)

where M is a matrix of N×N,

M =


M11 M12 · · · M1N
M21 M22 · · · M2N

...
...

...
...

MN1 MN2 · · · MNN

 , (13)

with

M jk =
e−(θk+θ∗j )+ c∗jck eθk+θ∗j

ζ ∗j −ζk
, j,k = 1, . . . ,N, (14)

and R is a matrix of (N +1)× (N +1),

R =


0 c1 eθ1 · · · cN eθN

e−θ∗1 M11 · · · M1N
...

...
...

...
e−θ∗N MN1 · · · MNN

 , (15)

with θk = −iζkx − 2iζ 2
k t (k = 1, . . . ,N), ζk and ci (i =

1, . . . ,N) are complex value constants. After taking the pos-
itive integer N, one can obtain the corresponding N-soliton
solutions and breather solution of the nonlinear Schrödinger
Eq. (11).

3.1. One-soliton solution

In this subsection, we numerically construct one-soliton
solution of Eq. (11) based on the neural network structure with
9 hidden layers and 40 neurons per hidden layer. When N = 1,
we have

R =

(
0 c1 eθ1

e−θ∗1 M11

)
, M11 =

e−(θ1+θ∗1 )+ c∗1c1 eθ1+θ∗1

ζ ∗1 −ζ1
,

detR =−c1 eθ1−θ∗1 ,detM = M11, so the solution (12) is

q(x, t) = −2i
detR
detM

= 2i(ζ ∗1 −ζ1)
c1 eθ1−θ∗1

e−(θ1+θ∗1 )+ |c1|2 eθ1+θ∗1
. (16)

Letting

ζ1 = ξ + iη , c1 = e−2ηx0+iσ0 ,

where ξ , η are the real and imaginary parts of ζ1 respectively,
and x0,σ0 are real parameters. Then the above one-soliton so-
lution (16) can be reduced to

q(x, t) = 2ηsech[2η(x+4ξ t− x0)]
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× e[−2iξ x−4i(ξ 2−η2)t+iσ0]. (17)

One can obtain the exact one-soliton solution of the non-
linear Schrödinger Eq. (11) after taking η = 1,ξ = 1,x0 =

0,σ0 = 1 into Eq. (17) as follows:

q(x, t) = 2sech(8t +2x)e(−2ix+i). (18)

Then we take [x0,x1] and [t0, t1] in Eq. (11) as [−5.0,5.0]
and [−0.5,0.5], respectively. The corresponding initial con-
dition is obtained by substituting a specific initial value into
Eq. (18)

q0(x) = 2sech(2x−4)e(−2ix+i). (19)

We employ the traditional finite difference shcemes on
even grids in MATLAB to simulate Eq. (11) with the initial
data (19) to acquire the training data. Specifically, dividing
space [−5.0,5.0] into 513 points and time [−0.5,0.5] into 401
points, one-soliton solution q is discretized into 401 snap-
shots accordingly. We sub-sample a smaller training dataset
that contain initial-boundary subsets by randomly extracting
Nq = 100 from original initial-boundary data and Nf = 10000
collocation points which are generated by LHS.[50] After giv-
ing a dataset of initial and boundary points, the latent one-
soliton solution q(x, t) is successfully learned by tuning all

learnable parameters of the neural network and regulating the
loss function (6). The model achieves a relative L2 error of
2.566069×10−2 in about 726 seconds, and the number of iter-
ations is 8324.

In Fig. 1, the density diagrams, the figures at different
instants of the latent one-soliton solution q(x, t), the error di-
agram about the difference between exact one-soliton solu-
tion and hidden one-soliton solution, and the loss curve fig-
ure are plotted respectively. The panel (a) of Fig. 1 clearly
compares the exact solution with the predicted spatiotempo-
ral solution. Obviously, combining with the panel (b), we can
see that the error between the numerical solution and the exact
solution is very small. We particularly present a comparison
between the exact solution and the predicted solution at dif-
ferent time instants t = −0.25,0,0.25 in the bottom panel of
panel (a). It is obvious that as time t increases, the one-soliton
solution propagates along the negative direction of the x axis.
The three-dimensional motion of the predicted solution and
the loss curve at different iterations are given out in detail in
panels (c) and (d) of Fig. 1. The results show that the loss curve
is very smooth which proves the effectiveness and stability of
the integrable deep learning method.
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Fig. 1. The one-soliton solution q(x, t): (a) the density diagrams and figures at three different instants, respectively; (b) the error density diagram; (c)
the three-dimensional motion; (d) the loss curve figure.
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3.2. Two-soliton solution and breather solution

Now, we numerically construct the two-soliton solution
and breather solution of Eq. (11) based on the neural network
architecture with 9 hidden layers and 80 neurons per hidden
layer. When N = 2, the solution (12) can also be written out
explicitly. We have

F =

 0 c1 eθ1 c2 eθ2

e−θ∗1 M11 M12

e−θ∗2 M21 M22

 , M =

(
M11 M12
M21 M22

)
,

where

M11 =
e−(θ1+θ∗1 )+ c∗1c1 eθ1+θ∗1

ζ ∗1 −ζ1
,

M12 =
e−(θ2+θ∗1 )+ c∗1c2 eθ2+θ∗1

ζ ∗1 −ζ2
,

M21 =
e−(θ1+θ∗2 )+ c∗2c1 eθ1+θ∗2

ζ ∗2 −ζ1
,

M22 =
e−(θ2+θ∗2 )+ c∗2c2 eθ2+θ∗2

ζ ∗2 −ζ2
,

with θ1 = −iζ1x− 2iζ 2
1 t,θ ∗1 = iζ ∗1 x+ 2iζ ∗21 t,θ2 = −iζ2x−

2iζ 2
2 t,θ ∗2 = −iζ ∗2 x− 2iζ ∗22 t, ζ j ( j = 1,2) are complex value

constants, so one can derive the general form of two-soliton
solution as follows:

q(x, t) = 2i
c2M11 eθ2−θ∗2 − c2M12 eθ2−θ∗1 − c1M21 eθ1−θ∗2 + c1M22 eθ1−θ∗1

M11M22−M12M21
. (20)

According to the relationship between the two-soliton
solution and the breather solution, we can know that when
Re(ζ1) 6= Re(ζ2), the solution q(x, t) is a two-soliton solution,
and when Re(ζ1) = Re(ζ2), the solution q(x, t) degenerates
into a bound state which is also called the breather solution.
Given appropriate parameters

ζ1 = 0.1+0.7i, ζ2 =−0.1+0.4i, c1 = c2 = 1, (21)

we can obtain the exact two-soliton solution from the formu-
lae (20)

q(x, t) =
−2iA

B
, (22)

where

A = (0.224+0.158i)e i(1.92t+0.32it−0.2x−0.8ix)

−(0.224+0.232i)e−i(−0.6t+0.56it−0.2x+1.4ix)

+(0.224−0.232i)e i(0.6t+0.56it+0.2x+1.4ix)

+(0.518i−0.224)e−i(−1.92t+0.32it+0.2x−0.8ix),

B = 1.25e0.88t+0.6x +0.13e−0.24t−2.2x

+1.25e−0.88t−0.6x−1.12e i(1.32t−0.4x)

−1.12e−i(1.32t−0.4x)+0.13e0.24t+2.2x.

On the other hand, given other appropriate parameters

ζ1 = 0.7i, ζ2 = 0.4i, c1 = c2 = 1, (23)

one can obtain the exact breather solution

q(x, t) =
−2iC

D
, (24)

where

C = −0.246i e−i(−0.64t+1.4ix)+0.462i e−i(−1.96t−0.8ix)

−0.264i e i(0.64t+1.4ix)+0.462i e−i(−1.96t+0.8ix),

D = 1.21e−0.6x +1.21e0.6x−1.12e1.32it

+0.09e2.2x−1.12e−1.32it +0.09e−2.2x.

Now we take [x0,x1] and [t0, t1] in Eq. (11) as [−5.0,5.0]
and [−3.0,3.0], respectively. For instance, we consider the
initial condition of the two-soliton solution based on Eq. (22)

q0(x) =
−2iA′

B′
, (25)

where

A′ = (0.224+0.158i)e i(−5.76−0.96i−0.2x−0.8ix)

−(0.224+0.232i)e−i(1.8−1.68i−0.2x+1.4ix)

+(0.224−0.232i)e i(−1.8−1.68i+0.2x+1.4ix)

+(0.518i−0.224)e−i(5.76−0.96i+0.2x−0.8ix),

B′ = 1.25e−2.64+0.6x +0.13e0.72−2.2x

+1.25e2.64−0.6x−1.12e i(−3.96−0.4x)

−1.12e−i(−3.96−0.4x)+0.13e−0.72+2.2x.

Similarly, the initial condition of the breather solution is
given

q0(x) =
−2iC′

D′
, (26)

where

C′ = −0.246i e−i(1.92+1.4ix)+0.462i e−i(5.88−0.8ix)

−0.264i e i(−1.92+1.4ix)+0.462i e−i(5.88+0.8ix),

D′ = 1.21e−0.6x +1.21e0.6x−1.12e−3.96i

+0.09e2.2x−1.12e3.96i +0.09e−2.2x.

With the same data generation and sampling method in
Subsection 3.1, we numerically simulate the two-soliton so-
lution and the breather solution of the nonlinear Schrödinger

060202-5
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equation (11) using the physically-constrained deep learn-
ing method mentioned above. After training the two-soliton
solution, the neural network achieves a relative L2 error
of 5.500792×10−2 in about 2565 seconds, and the num-
ber of iterations is 17789. However, the network model
for learning breather solution achieves a relative L2 error of
9.689267×10−3 in about 1934 seconds, and the number of it-
erations is 13488. Apparently, since the breather solution is
a special form of the two-soliton solution and accordingly the
solution structure is simpler, the training of the breather solu-
tion takes remarkably less time, the relative error is obviously
smaller, and moreover the result is better than that of the two-
soliton solution from Figs. 2 and 3.

Figures 2 and 3 show the density diagrams, the profiles at
different instants and error density diagrams of the two-soliton
solution and the breather solution, respectively. From the bot-
tom panel of panels (a) in Fig. 2, we can clearly see that the
intersection of two solitary waves with different wave widths

and amplitudes produces a peak of a higher amplitude differ-
ent from the former two solitary waves, which satisfies the law
of conservation of energy. We reveal the profiles of the three
moments at t = −1.50, 0, 1.50, respectively, and find that the
amplitude is the largest when t = 0. From soliton theory, we
know that the two solitary waves have elastic collision. Simi-
larly, one can look at the breather solution shown in panel (a)
of Fig. 3 it is a special bound state two-soliton solution formed
by two solitary waves with the same wave velocity, wave width
and amplitude, and has a periodic motion with respect to time
t. The panel (b) of Figs. 2 and 3 shows the error dynamics
of the difference between the exact solution and the predicted
solution for the two-soliton solution and the breather solution,
respectively. In Fig. 4, the corresponding three-dimensional
motion of the two-soliton solution and the breather solution
are shown, respectively. It is evident that the breather solution
is more symmetric than the general two-soliton solution.
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Fig. 4. The three-dimensional motion of q(x, t): (a) the two-soliton so-
lution; (b) the breather solution.

For the numerical simulation of the three-soliton solution,
we only need to take N = 3 in Eqs. (12)–(15) to get the ex-
act solution of the three-soliton solution, and then discretize
the initial and boundary value data of the exact solution as
our original dataset and train our network to simulate the cor-
responding three-soliton solution numerically. Similarly, N-
soliton solutions can be learned by the same approach. Of
course, the higher the order of soliton solution, the more com-
plex the form of the solution, then the longer the resulting net-
work training time takes.

4. Rogue wave solutions of the nonlinear
Schrödinger equation
Recently, the research of rogue wave has been one of

the hot topics in many areas such as optics, ocean dynamics,
plasma, Bose–Einstein condensate, and even finance.[8,9,54–56]

In addition to the peak amplitude more than twice of the back-
ground wave, rogue waves also have the characteristics of in-
stability and unpredictability. Therefore, the study and ap-
plication of rogue waves play a momentous role in real life,
especially in avoiding the damage to ships caused by ocean
rogue waves. As a one-dimensional integrable scalar equa-
tion, the nonlinear Schrödinger equation plays a key role in
describing rogue waves. In 1983, Peregrine[2] first gave a
rational rogue waves to the nonlinear Schrödinger equation,
whose generation principle is identified as the evolution of
the breather waves when the period tends to infinity. At
present, the researches on rogue wave of this equation through
data-driven methods, such as machine learning, are relatively

less. Marcucci et al.[48] have studied the computational ma-
chine in which nonlinear waves replace the internal layers of
neural networks, discussed learning conditions, and demon-
strated functional interpolation, datasets, and Boolean opera-
tions. When considering the solitons, rogue waves, and shock
waves of the nonlinear Schrödinger equation, highly nonlinear
and even discontinuous regions play a leading role in the net-
work training and solution calculation. In this section, we con-
struct the rogue wave solutions of the nonlinear Schrödinger
equation by the neural network with underlying physical con-
straints. Here, we consider the another form of focusing non-
linear Schrödinger equation along with Dirichlet boundary
conditions given by

iqt +
1
2 qxx + |q|2q = 0,x ∈ [x0,x1], t ∈ [t0, t1],

q(x, t0) = q0(x),

q(x0, t) = q(x1, t),

(27)

where q0(x) is an arbitrary complex-valued function of space
variable x, here x0, x1 represent the lower and upper bound-
aries of x respectively, and t0, t1 represent the initial and ter-
minal time instants of t respectively. In addition, this equation
corresponds to Eq. (1) with α = 1/2 and β = 1. The rogue
wave solutions of Eq. (27) can be obtained by lots of differ-
ent tools.[11] Therefore, we can get respectively the one-order
rogue wave and the two-order rogue wave of Eq. (27) as fol-
lows:

q(x, t) =
[

1− 4(1+2it)
4t2 +4x2 +1

]
e it , (28)

q(x, t) =
(

1+
G+ itH

D

)
e it , (29)

where

G =
3
8
−3x2−2x4−9t2−10t4−12t2x2,

H =
15
4

+6x2−4x4−2t2−4t4−8t2x2,

D =
3

32
+

9
8

x2 +
1
2

x4 +
2
3

x6 +
33
8

t2 +
9
2

t4

+
2
3

t6−3t2x2 +2t2x4 +2t4x2.

In the following two parts, we will construct the train-
ing dataset to reconstruct our predicted solutions based on the
above two rogue wave solutions by constructing a neural net-
work with 9 hidden layers and 40 neurons per hidden layer.

4.1. One-order rogue wave

In this subsection, we will numerically uncover the one-
order rogue wave of the nonlinear Schrödinger equation using
the neural network method above. Now, we take [x0,x1] and
[t0, t1] in Eq. (27) as [−2.0,2.0] and [−1.5,1.5], respectively.
The corresponding initial condition is obtained from Eq. (28),
we have

q0(x) =
(

1+
−4+12i
4x2 +10

)
e−1.5i . (30)
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Next, we obtain the initial and boundary value dataset by
the same data discretization method in Subsection 3.1, and
then we can simulate precisely the one-order rogue wave so-
lution by feeding the data into the network. By randomly
subsampling Nq = 100 from the original dataset and select-
ing Nf = 10000 configuration points which are generated by
LHS, a training dataset composed of initial-boundary data and
collocation points is generated. After training, the neural net-
work model achieves a relative L2 error of 7.845201×10−3 in
about 871 seconds, and the number of iterations is 9584.

Our experiment results are summarized in Fig. 5, and we
simulate the solution q(x, t) and then obtain the density dia-
grams, profiles at different instants, error dynamics diagrams,
three dimensional motion and loss curve figure of the one-
order rogue wave. Specifically, the magnitude of the predicted

spatio-temporal solution |q(x, t)| is shown in the top panel of
panel (a) of Fig. 5. It can be simply seen that the amplitude of
the rogue wave solution changes greatly in a very short time
from the bottom panel of Fig. 5(a). Meanwhile, we present
a comparison between the exact and the predicted solution
at different time instants t = −0.75,0,0.75. Figure 5(b) re-
veals the relative L2 error becomes larger as the time increases.
From Fig. 5(d), we can observe that when the number of iter-
ations is more than 2000, there are some obvious fluctuations
which we could call “burr” in the training, it does not exist dur-
ing the training process about the one-soliton solution of the
nonlinear Schrödinger equation. With only a handful of initial-
boundary data, one can accurately capture the intricate nonlin-
ear dynamical behavior of the integrable Schrödinger equation
by this method.
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q


(a)

error dynamics
(b)

 
t

↩

↩



↩





1

2

x

↩

↩



1

2





2

1

2

3

1

2

3

1

2

3

↩ 
t

↩

↩



1

2

x

(c) (d)

t/↩. t/0 t/.
exact
prediction

exact
prediction

exact
prediction

training loss

0

2.0

3.0

1.0

1.0

1.0


↩. ↩.
x

x
↩2

x

t

b


↩  
t

↩

↩2
x

0
Iterations

-4

-3

-2

-1

0

1

lo
ss

(l
o
g
)

 

.

↩.



Fig. 5. The one-order rogue wave solution q(x, t): (a) the density diagram and profiles at three different instants; (b) the error density diagram;
(c) the three-dimensional motion; (d) the loss curve.

In addition, based on the same initial and boundary values of the one-order rogue waves in the case of Nq = 100 and
Nf = 10000, we employ the control variable method often used in applied sciences to study the effects of different numbers of
network layers and neurons per hidden layer on the one-order rogue wave dynamics of nonlinear Schrödinger equation. The
relative L2 errors of different network layers and different neurons per hidden layer are given in Table 1. From the data in
Table 1, we can see that when the number of network layers is fixed, the more the number of single-layer neurons, the smaller
the relative error becomes. Due to the influence of randomness caused by some factors, there are some cases that do not conform
with the above conclusion. However, when the number of single-layer neurons is fixed, the influence of the number of network
layers on the relative error is not obvious. To sum up, we can draw the conclusion that the network layers and the single-layer
neurons jointly determine the relative L2 error to some extent. In the case of the same training dataset. Table 2 shows the relative
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L2 error with 9 network layers and 40 neurons per hidden layer when taking different numbers of subsampling points Nq in the
initial-boundary data and collocation points Nf. From Table 2, we can see that the influence of Nq on the relative L2 error of
the network is not obvious, which also indicates the network model with physical constraints can uncover accurate predicted
solutions with smaller initial-boundary data and relatively many sampled collocation points.

Table 1. One-order rogue wave of the nonlinear Schrödinger equation: Relative final prediction error estimations in the L2 norm for different
numbers of network layers and neurons per hidden layer.
`````````̀Neurons

Layers
20 30 40 50 60

5 2.765905×10−3 2.903368×10−4 4.961406×10−4 5.232502×10−4 9.323978×10−4

7 2.699082×10−3 1.328768×10−3 4.030658×10−4 3.633812×10−4 1.448091×10−3

9 2.732954×10−3 2.618465×10−3 7.845201×10−3 6.880915×10−4 6.797486×10−4

11 4.641999×10−3 1.779715×10−3 1.440061×10−3 9.148106×10−4 1.581767×10−3

Table 2. One-order rogue wave of the nonlinear Schrödinger equation: Relative final prediction error measurements in the L2 norm for different
numbers of Nq and Nf.
XXXXXXXXNq

Nf 6000 8000 10000 12000 14000

80 1.473695×10−2 9.200569×10−3 7.967294×10−3 6.034213×10−3 3.575678×10−3

100 1.176106×10−2 3.082057×10−3 7.845201×10−3 5.495886×10−3 1.332274×10−2

120 1.525780×10−2 1.265775×10−2 4.175621×10−2 2.402183×10−3 6.568740×10−3

4.2. Two-order rogue wave

In the next example, we consider the two-order rogue wave of the nonlinear Schrödinger equation, and properly take [x0,x1]

and [t0, t1] in Eq. (27) as [−2.0,2.0] and [−0.5,0.5]. Here we consider the corresponding initial condition from Eq. (29) as
follows:

q0(x) =
[

1+
−70.5−30x2−2x4−1.5i(−21−12x2−4x4)

39.75+4.5x2 +5x4 +(2/3)x6

]
e−1.5i . (31)
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Fig. 6. The two-order rogue wave solution q(x, t): (a) the density diagrams and the snapshots at three different instants; (b) the error density
diagram; (c) the three-dimensional motion; (d) the loss curve figure.

060202-9



Chin. Phys. B Vol. 30, No. 6 (2021) 060202

We use the same data discretization method in Subsec-
tion 3.1 to collect the initial and boundary data. In the network
architecture, initial and boundary training dataset of Nq = 100
are randomly subsampled from the original initial-boundary
data. In addition, configuration points of Nf = 10000 are sam-
pled by LHS. Finally, the hidden two-order rogue wave solu-
tion of nonlinear Schrödinger equation is approximated fairly
accurately by constraining the loss function with underlying
physical laws. The neural network model achieves a relative
L2 error of 1.665401×10−2 in about 1090 seconds, and the
number of iterations is 11450.

The detailed illustration is shown in Fig. 6. The top panel
of Fig. 6(a) gives the density map of hidden solution q(x, t),
and when combing Fig. 6(b) with the bottom panel in Fig. 6(a),
we can see that the relative error is relatively large at t = 0.25.
From Fig. 6(d), in contrast with the one-order rogue wave so-
lution, the fluctuation (burr phenomenon) of the loss function
is obvious when the number of iterations is less than 3000.

5. Summary and discussion
In this paper, we introduced a physically-constrained

deep learning method based on PINN to solve the classical in-
tegrable nonlinear Schrödinger equation. Compared with tra-
ditional numerical methods, it has no mesh size limits. More-
over, due to the physical constraints, the network is trained
with just few data and has a better physical interpretability.
This method showcases a series of results of various prob-
lems in the interdisciplinary field of applied mathematics and
computational science which opens a new path for using deep
learning to simulate unknown solutions and correspondingly
discover the parametric equations in scientific computing.

Specifically, we apply the data-driven algorithm to de-
duce the soliton solutions, breather solution, and rogue wave
solutions to the nonlinear Schrödinger equation. We outline
how different types of solutions (such as general soliton so-
lutions, breather solution, and rogue wave solutions) are gen-
erated due to different choices of initial and boundary value
data. Remarkably, these results show that the deep learning
method with physical constraints can exactly recover different
dynamical behaviors of this integrable equation. Furthermore,
the sizes of space-time variable x and interval t are selected by
the dynamical behaviors of these solutions. For the breathers,
in particular, the wider the interval of time variable t, the bet-
ter we can see the dynamical behavior in this case. However,
with a wider range of time interval t, the training effect is not
very good. So more complex boundary conditions, such as
Neumann boundary conditions, Robin boundary conditions or
other mixed boundary conditions, may be considered. Simi-
larly, for the integrable complex modified Korteweg–de Vries
(mKdV) equation, the Dirichlet boundary conditions cannot
recover the ideal rogue wave solutions.

The influence of noise on our neural network model is
not introduced in this paper. This kind of physical factors
in real life should be considered to show the network’s ro-
bustness. Compared with static LHS sampling with even
mesh sizes, more adaptive sampling techniques should be con-
sidered in some special problems, for example, discontinu-
ous fluid flows such as shock wave. In addition, more gen-
eral nonlinear Schrödinger equation, such as the derivative
Schrödinger equation, is not investigated in this work. These
new problems and improvements will be considered in the fu-
ture research.
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