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Abstract We study some novel patterns of rogue wave in the coupled cubic-quintic nonlinear Schrödinger equations.
Utilizing the generalized Darboux transformation, the higher-order rogue wave pairs of the coupled system are generated.
Especially, the first- and second-order rogue wave pairs are discussed in detail. It demonstrates that two classical
fundamental rogue waves can be emerged from the first-order case and four or six classical fundamental rogue waves
from the second-order case. In the second-order rogue wave solution, the distribution structures can be in triangle,
quadrilateral and ring shapes by fixing appropriate values of the free parameters. In contrast to single-component
systems, there are always more abundant rogue wave structures in multi-component ones. It is shown that the two
higher-order nonlinear coefficients ρ1 and ρ2 make some skews of the rogue waves.
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1 Introduction
Rogue waves (RWs) are modeled as a unique phe-

nomenon that seems to appear from nowhere and dis-
appear without a trace,[1] and can appear in a vari-
ety of fields, such as atmosphere,[2] superfluidity,[3] Bose-
Einstein condensates,[4] nonlinear optics[5] and finance[6]

and so on. These kinds of waves are characterized as being
localized in both space and time, and are always written as
rational form solutions in mathematics. It is well known
that the standard nonlinear Schrödinger (NLS) equation
is an ideal model that describes the RW phenomenon.
Besides, various types of rogue wave solutions associated
with the NLS equation have been widely reported by many
authors.[7−9]

There have been many articles on rogue waves of other
single-component systems besides the standard NLS equa-
tion, such as the derivative NLS equation,[10−11] the Hi-
rota equation,[12] the Kundu-Eckhaus equation,[13−14] the
(3+1)-dimensional Jimbo-Miwa equation[15] and so on.
Based on the fact that a variety of complex systems usu-
ally involve more than one component, such as nonlinear
optical fibers and Bose-Einstein condensates, etc., recent
studies were extended to multi-component systems.[16−18]

Cross-phase modulation effects are usually included in
the coupled system, and the cross-phase modulation term

can vary the instability regime.[19] For single-component
systems, the RW solutions can be always correlated by
Galileo transformation. Thus, the velocity of the back-
ground has no real effect of RWs’ structures. For multi-
component coupled models, the relative velocity between
different components cannot be annihilated by some spe-
cial Galileo transformations, and this kind of velocity
plays an important role in controlling various structures
of RW solutions.[19−21]

Compared to single-component systems, a variety of
novel and interesting results appeared in multi-component
systems.[22−23] The four-petaled flower structure RWs
were constructed in the three-component NLS equations
through the Darboux transformation (DT).[20] The W-
shaped soliton complexes and RWs were obtained in
AB system.[21] Recently, various types interactional solu-
tions were constructed in many different multi-component
systems.[24−25] Bright-dark-rogue solutions were con-
structed in two-component NLS equations[26] and Hirota
equations[27] by DT, respectively. Besides, the hybrid
solutions that higher-order RWs interacting with multi-
soliton (or multi-breather) were constructed in various
multi-component systems.[28−30]

In recent years, there have been several studies on
RW pairs in multi-component coupled systems,[19,31−32]
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in which this kind of first-order RW pair solutions can in-

clude two first-order classical RWs. In this paper, we focus

on constructing higher-order RW pairs of the following

coupled cubic-quintic nonlinear Schrödinger (CCQNLS)

equations, which describe the effects of quintic nonlinear-

ity on the ultrashort optical pulse propagation in non-Kerr

media,[33−40]

iq1t+q1xx+2(|q1|2+|q2|2)q1+(ρ1|q1|2 + ρ2|q2|2)2q1
−2i[(ρ1|q1|2 + ρ2|q2|2)q1]x+2i(ρ1q

∗
1q1x + ρ2q

∗
2q2x)q1=0 ,

iq2t+q2xx+2(|q1|2+|q2|2)q2+(ρ1|q1|2 + ρ2|q2|2)2q2
−2i[(ρ1|q1|2+ρ2|q2|2)q2]x+2i(ρ1q

∗
1q1x+ρ2q

∗
2q2x)q2=0 .(1)

Here, q1 and q2 are the components of the electromag-

netic fields along the coordinate x and t is the time. The

parameters ρ1 and ρ2 are all real constants and the aster-

isk denotes complex conjugation. In the regime of ultra-

short pulses, the standard NLS equation is less accurate.

To meet this condition, the cubic and quintic nonlinear

terms were added on the standard coupled NLS equations

and formed the CCQNLS system (1).[34] Additionally, it is

very necessary to construct some new RW pattern struc-

tures of the coupled system (1).

When q1 = u, q2 = 0, and ρ1 = 2β, the CC-

QNLS system (1) can be reduced to the Kundu-Eckhaus

equation.[13−14,41] In Refs. [35] and [42], the multi-soliton

and bounded states of the CCQNLS equations (1) were ob-

tained. Bright-bright, bright-dark and dark-dark solitons

for the coupled system (1) were generated through Hirota

bilinear method.[38−40] Besides, the multi-component gen-
eralization of the CCQNLS system (1) were investigated

by DT.[43] Recently, the higher-order RWs of Eq. (1) were
constructed through the generalized DT[37] and the au-

thors considered the case that there is a double root in
the characteristic equation. Motivated by the work in

Refs. [19,32–33], we consider that the characteristic equa-
tion possesses a triple root, then some novel and interest-

ing RW patterns of the CCQNLS system (1) can be gen-
erated through the generalize DT. Here, some dynamics

of the RW pairs in the CCQNLS system (1) are exhibited.
Besides, it is shown that some skews of RWs can be caused

by two higher-order nonlinear coefficients ρ1 and ρ2.
This article is organized as follows. In Sec. 2, the

generalized DT of the coupled cubic-quintic nonlinear

Schrödinger equations is constructed. In Sec. 3, higher-
order RW pairs are obtained and some dynamics struc-

tures are discussed in detail. The last section contains
several conclusions and discussions.

2 Generalized Darboux Transformation for
the CCQNLS System

The Lax pair of the CCQNLS system (1) can be ex-
pressed as[35,37,43]

Ψx = UΨ , Ψt = VΨ , (2)

where Ψ = (ψ(x, t), ϕ(x, t), χ(x, t))T, T denotes the
transpose of the vector, while U and V are all 3 × 3 ma-

trices and they can be given as

U =


−iλ+

i

2
(ρ1|q1|2+ρ2|q2|2) q1 q2

−q∗1 iλ− i

2
(ρ1|q1|2+ρ2|q2|2) 0

−q∗2 0 iλ− i

2
(ρ1|q1|2+ρ2|q2|2)

 ,

V =

 ω+i(|q1|2+|q2|2) s1 s2

iq∗1x−2λq∗1−q∗1(ρ1|q1|2+ρ2|q2|2) −ω−i|q1|2 −iq2q
∗
1

iq∗2x−2λq∗2−q∗2(ρ1|q1|2+ρ2|q2|2) −iq1q
∗
2 −ω−i|q2|2

 ,

where

ω = −2iλ2+i(ρ1|q1|2+ρ2|q2|2)2+
1

2
ρ1(q1q

∗
1x − q1xq

∗
1) +

1

2
ρ2(q2q

∗
2x − q2xq

∗
2) ,

s1=2λq1+(ρ1|q1|2+ρ2|q2|2)q1+iq1x, s2=2λq2+(ρ1|q1|2+ρ2|q2|2)q2+iq2x ,

here, λ is the spectral parameter. Additionally, the CCQNLS system (1) can be directly derived from the compatibility

condition Ut − Vx + [U, V ] = 0.

In what follows, based on the DT of the CCQNLS system (1) constructed in Refs. [35,37,43], the generalized DT

of Eqs. (1) can be constructed.[9] Let Ψ1 = (ψ1, ϕ1, χ1)
T = Ψ1(λ1 + δ) be a special vector solution of the Lax pair (2)

with q1 = q1[0], q2 = q2[0], λ = λ1 + δ and δ being a small parameter. It shows that Ψ1 can be expanded as the Taylor

series at δ = 0

Ψ1 = Ψ
[0]
1 +Ψ

[1]
1 δ +Ψ

[2]
1 δ2 + · · ·+Ψ

[N ]
1 δN + · · · , (3)

where

Ψ
[l]
1 =(ψ

[l]
1 , ϕ

[l]
1 , χ

[l]
1 )T , Ψ

[l]
1 =

1

l!

∂lΨ1

∂δl

∣∣∣
δ=0

(l=0, 1, 2, . . .) .

The N -step generalized DT of the CCQNLS system (1) can be written as follows

Ψ[N ]=D[N ]D[N − 1] · · ·D[1]Ψ = Γ
[N ]
1 T [N ]Γ

[N−1]
1 T [N − 1] · · ·Γ[1]

1 T [1]Ψ,
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T [j]=λI−H[j]Λ1H[j]−1=(λ− λ∗1)I + (λ∗1 − λ1)
Ψ1[j]Ψ1[j]

†

Ψ1[j]†Ψ1[j]
, (j = 1, 2, 3, . . . , N) ,

q1[N ]= e2η
[N]
1

(
q1[N − 1]+

2i(λ∗1−λ1)ψ1[N − 1]ϕ1[N − 1]∗

ΩN

)
, (4)

q2[N ]= e2η
[N]
1

(
q2[N − 1]+

2i(λ∗1−λ1)ψ1[N − 1]χ1[N − 1]∗

ΩN

)
, (5)

where I is 3× 3 identity matrix and j = 1, 2, 3, . . . , N .

Ψ1[j − 1] = (ψ1[j − 1], ϕ1[j − 1], χ1[j − 1])T, D[j] = Γ
[j]
1 T [j], lim

δ→0

D[j]D[j − 1] · · ·D[1]|λ=λ1+δΨ1

δj
≡ Ψ1[j − 1],

Ψ1[0] = Ψ
[0]
1 , Γ

[j]
1 =

 eη
[j]
1

e−η
[j]
1

e−η
[j]
1

 , H[j − 1] =

ψ1[j − 1] ϕ1[j − 1]∗ χ1[j − 1]∗

ϕ1[j − 1] −ψ1[j − 1]∗ 0

χ1[j − 1] 0 −ψ1[j − 1]∗

 ,

Ωj = |ψ1[j − 1]|2+|ϕ1[j − 1]|2+|χ1[j − 1]|2,
∆j = ρ1[(q1[j − 1]ϕ1[j − 1]ψ1[j − 1]∗+q1[j − 1]∗ϕ1[j − 1]∗ψ1[j − 1])Ωj+2i(λ∗1−λ1)|ψ1[j − 1]|2|ϕ1[j − 1]|2]

+ ρ2[(q2[j − 1]χ1[j − 1]ψ1[j − 1]∗+q2[j − 1]∗χ1[j − 1]∗ψ1[j − 1])Ωj+2i(λ∗1−λ1)|ψ1[j − 1]|2|χ1[j − 1]|2] ,

η
[j]
1 =

∫
(λ1 − λ∗1) Ω

−2
j ∆j dx .

3 Higher-Order Rogue Wave Pairs
In the following, we choose a nontrivial seed solution

of Eq. (1)

q1[0] = d1 e
iθ1 , q2[0] = d2 e

iθ2 , (6)

where

θ1 = l1x+m1t , θ2 = l2x+m2t ,

m1 = (d21ρ1+d
2
2ρ2)

2+2d22ρ2(l1−l2)+2(d21+d
2
2)−l21 ,

m2 = (d21ρ1+d
2
2ρ2)

2−2d22ρ2(l1 − l2)+2(d21+d
2
2)−l22 ,

with di, mi, and li (i = 1, 2) being arbitrary constants.
Besides, we need to convert the variable coefficient differ-
ential equations of Eq. (2) into constant coefficient ones
by a gauge transformation. Setting ϕ = Mψ, the trans-
formed Lax pair can be written as[26]

ϕx = U0ϕ = (MxM
−1 +MUM−1)ϕ ,

ϕt = V0ϕ = (MtM
−1 +MVM−1)ϕ , (7)

where

M = diag( e(−i/3)(θ1+θ2), e(i/3)(2θ1−θ2), e(i/3)(2θ2−θ1)) ,

In Ref. [37], the authors constructed the RW solutions
of Eq. (1) in the case that the characteristic equation of U0

has a double root. Here, we hope to look for the higher-
order RW pairs of Eq. (1) with the assumption that the
characteristic equation of U0 owns a triple root. In or-
der to obtain the triple root, we choose the relevant free
parameters in the seed solution Eq. (12) and the spectral
parameter λ to admit the following conditions

d2 = −d1 , l1 =
d1
2
, l2 = −d2

2
,

λ =
1

2
d21(ρ1+ρ2)+

3
√
3

4
d1 i .

Without loss of generality, the parameter d1 can be chosen
as d1=1, then the above conditions can be rewritten as

θ1 =
1

2
x+

[
(ρ1 + ρ2)

2+2ρ2 +
15

4

]
t ≡ γ1 ,

θ2 = −1

2
x+

[
(ρ1+ρ2)

2−2ρ2+
15

4

]
t ≡ γ2 ,

λ =
1

2
(ρ1+ρ2)+

3
√
3

4
i .

In order to utilize the limiting process, we set the spectral

parameter

λ = λ1 =
1

2
(ρ1+ρ2)+

3
√
3

4
i(1+ϵ3)

and ϵ be a small parameter, besides, the seed solution of

Eq. (1) can be chosen as q1[0] = e iγ1 , q2[0] = − e iγ2 . At

this point, the fundamental solution of the Lax pair (2)

can be expressed as

Ξj(λ1)

= D

 [i(1+ρ1+ρ2

2 −λ1)+ξj ][i(1−ρ1−ρ2

2 +λ1)−ξj ] eAj

[i(1+ρ1+ρ2

2 −λ1)+ξj ] eAj

[i(1−ρ1−ρ2

2 +λ1)−ξj ] eAj


(j = 1, 2, 3) ,

where

D=diag( e(i/3)(γ1+γ2), e(−i/3)(2γ1−γ2), e(−i/3)(2γ2−γ1)) ,

Aj = ξjx+
[
iξ2j+(2λ1+ρ1+ρ2)ξj+iλ21−i(ρ1+ρ2)λ1

+
i

12
(ρ1+ρ2)

2+
i

6
(ρ1−ρ2+9)

]
t ,

and ξj admits the following cubic algebraic equation

ξ3 +
3
√
3

4
(1 + ϵ3)ξ2 − 9

16
(−1 + 6ϵ3 + 3ϵ6)ξ

−3
√
3

64
(−1 + 53ϵ3 + 81ϵ6 + 27ϵ9) = 0 . (9)

Setting ϵ→ 0, the above cubic algebraic equation (9) pos-

sesses a triple root ξ1 = ξ2 = ξ3 = −
√
3/4.

In order to construct the higher-order RW pairs of

the CCQNLS Eq. (1) with q1[0]= e iγ1 , q2[0]=− e iγ2 and

λ = λ1 = (1/2)(ρ1+ρ2)+(3
√
3/4)i(1+ϵ3) for the above
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triple root case, the following special solution of the Lax

pair (2)[19,33] can be given

Ψ1(ϵ) = fΘ1 + gΘ2 + hΘ3 , (10)

where

f = f1 + f2ϵ
3 + f3ϵ

6 + · · ·+ fN ϵ
3(N−1) ,

g = g1 + g2ϵ
3 + g3ϵ

6 + · · ·+ gN ϵ
3(N−1) ,

h = h1 + h2ϵ
3 + h3ϵ

6 + · · ·+ hN ϵ
3(N−1) ,

and

Θ1 =
1

3
(Ξ1 + Ξ2 + Ξ3) ,

Θ2 =
3
√
2

3ϵ
(Ξ1 + w∗Ξ2 + wΞ3) ,

Θ3 =
3
√
4

3ϵ2
(Ξ1 + wΞ2 + w∗Ξ3) .

Here w = e2π i/3, and fj , gj , hj (j = 1, 2, 3, . . . , N) are

all real constants. Besides, the vector function Ψ1(ϵ) in

Eq. (11) can be expanded as the following Taylor series

around ϵ = 0

Ψ1(ϵ) = Ψ
[0]
1 +Ψ

[1]
1 ϵ3 +Ψ

[2]
1 ϵ6 + · · ·+Ψ

[N−1]
1 ϵ3(N−1) + · · ·

where

Ψ
[j]
1 = (ψ

[j]
1 , ϕ

[j]
1 , χ

[j]
1 )T =

∂3jΨ1

(3j)∂ϵ3j

∣∣∣
ϵ=0

(j = 0, 1, 2, . . .) .

The expressions of Ψ
[j]
1 (j = 0, 1, 2, . . . , N) are tedious and

complicated, and we only give the simplest expression of

Ψ
[0]
1 as follows

ψ
[0]
1 = −1

2
[3h1x

2 + 6 txh1(i
√
3 + 2 ρ1 + 2 ρ2) + 3h1t

2(i
√
3 + 2 ρ1 + 2 ρ2)

2 + 2
√
3x(g1 + 4h1) + 2

√
3t(i

√
3g1

+ 5 ih1
√
3 + 2 g1ρ1 + 2 g1ρ2 + 8h1ρ1 + 8h1ρ2) + 2 f1 + 6 g1 + 12h1] e

ζ1 ,

ϕ
[0]
1 =

1

4
[3h1x

2(
√
3+i)+6 (

√
3+i)h1xt(i

√
3+2 ρ1+2 ρ2)+3 (

√
3+i)h1t

2(i
√
3+2 ρ1+2 ρ2)

2−(i
√
3+3)x(ih1

√
3−2 g1−5h1)

+ (i
√
3 + 3)t(−2 i

√
3h1ρ1 − 2 i

√
3h1ρ2 + 2 i

√
3g1 + 7 ih1

√
3 + 4 g1ρ1 + 4 g1ρ2 + 10h1ρ1 + 10h1ρ2 + 3h1)

+ 4 g1
√
3 + 2 if1 + 4h1

√
3 + 2 f1

√
3] eζ2 ,

χ
[0]
1 =

1

4
[−3h1x

2(
√
3−i)−6 (

√
3−i)h1xt(i

√
3+2 ρ1+2 ρ2)−3 (

√
3−i)h1t

2(i
√
3+2 ρ1+2 ρ2)

2+(i
√
3−3)x(ih1

√
3+2 g1+5h1)

+ (i
√
3−3)t(2 i

√
3h1ρ1+2 i

√
3h1ρ2+2 i

√
3g1+7 ih1

√
3+4 g1ρ1+4 g1ρ2+10h1ρ1+10h1ρ2−3h1)−4 g1

√
3+2 if1

− 4h1
√
3− 2 f1

√
3] eζ3 ,

and

ζ1 =
1

8
it(4 i

√
3ρ1 + 4 i

√
3ρ2 + 4 ρ21 + 8 ρ1ρ2 + 4 ρ22 − 4 ρ1 + 4 ρ2 + 11)− 1

4

√
3 ,

ζ2 =
1

8
it(4 i

√
3ρ1 + 4 i

√
3ρ2 − 4 ρ21 − 8 ρ1ρ2 − 4 ρ22 − 4 ρ1 − 12 ρ2 − 19)− 1

4
x(2 i +

√
3) ,

ζ3 =
1

8
it(4 i

√
3ρ1 + 4 i

√
3ρ2 − 4 ρ21 − 8 ρ1ρ2 − 4 ρ22 + 12 ρ1 + 4 ρ2 − 19)− 1

4
x(
√
3− 2 i) .

In order to avoid the complicated integral operation in the expressions of Γ
[0]
1 and Γ

[1]
1 , we give the following expressions

of modules of qj [1] and qj [2] (j=1, 2) through the first- and second-step generalized DT

|q1[1]|=
∣∣∣q1[0]+ 2i(λ∗1 − λ1)ψ1[0]ϕ1[0]

∗

|ψ1[0]|2+|ϕ1[0]|2+|χ1[0]|2
∣∣∣ , |q2[1]|=

∣∣∣q2[0]+ 2i(λ∗1 − λ1)ψ1[0]χ1[0]
∗

|ψ1[0]|2+|ϕ1[0]|2+|χ1[0]|2
∣∣∣ , (11)

|q1[2]|=
∣∣∣q1[0]+ 2i(λ∗1−λ1)ψ1[0]ϕ1[0]

∗

|ψ1[0]|2+|ϕ1[0]|2+|χ1[0]|2
+

2i(λ∗1−λ1)ϕ
(1)
1 [1]ϕ

(2)∗
1 [1]

|ϕ(1)1 [1]|2+|ϕ(2)1 [1]|2+|ϕ(3)1 [1]|2

∣∣∣ ,
|q2[2]|=

∣∣∣q2[0]+ 2i(λ∗1−λ1)ψ1[0]χ1[0]
∗

|ψ1[0]|2+|ϕ1[0]|2+|χ1[0]|2
+

2i(λ∗1−λ1)ϕ
(1)
1 [1]ϕ

(3)∗
1 [1]

|ϕ(1)1 [1]|2+|ϕ(2)1 [1]|2+|ϕ(3)1 [1]|2

∣∣∣ , (12)

where Φ1[1]=Ψ
[0]
1 +T1[1]Ψ

[1]
1 =(ϕ

(1)
1 [1], ϕ

(2)
1 [1], ϕ

(3)
1 [1])T.

Through the formula (11), we can get the first-order RW pair of the CCQNLS system (1), see Figs. 1–3. When

f1 = g1 = h1 = 0, the first-order fundamental RW can appear in both components q1 and q2. Besides, this kind

of fundamental RW including more than one peak above the background plane is greatly different from the classical

first-order fundamental one, see Fig. 1. When f1 = g1 = 0, h1 ̸= 0, the first-order fundamental RW splits into two

standard first-order fundamental RW, see Fig. 2. Interestingly, a high RW comes before a low one in Fig. 2(a); and

a low RW comes before a high one in Fig. 2(b). In conclusion, we find that the above kind of RW pair can not be

derived in single-component systems.[9−10,12−14] For two-component systems,[37,43] we can also conclude that the RW

pair cannot be obtained when there is a double root in the characteristic equation of the transformed matrix in the

x-part of the Lax pair.
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Fig. 1 Evolution plot of the first-order fundamental RW in the CCQNLS equations by choosing ρ1 = 1/3, ρ2 = 1/4, f1 =
g1 = 0, h1 = 1: (a) q1; (b) q2.
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x

t

q

Fig. 2 Evolution plot of the first-order RW pair in the CCQNLS equations by choosing ρ1 = 1/3, ρ2 = 1/4, f1 =
100, g1 = 0, h1 = 1: (a) q1; (b) q2.

Fig. 3 Evolution density plot of the first-order RW pair of the q1 component in the CCQNLS equations by choosing
f1 = 100, g1 = h1 = 0: (a) ρ1 = ρ2 = 0; (b) ρ1 = 1/3, ρ2 = 1/4; (c) ρ1 = 1/2, ρ2 = 1; (d) ρ1 = −1/3, ρ2 = −1/4; (e)
ρ1 = −1/2, ρ2 = −1.

In order to investigate the effects of higher-order nonlinear terms in constructing the dynamics of RW in the
CCQNLS equations, the density plots of q1 component are given in Fig. 3 after choosing different values of higher-
order nonlinear coefficients ρ1 and ρ2. From Figs. 3(a)–3(e), it can be found that the higher-order nonlinear terms
make an important skew angle relative to the ridge of the RW in counter-clockwise if ρ1 > 0, ρ2 > 0 and in clockwise if
ρ1 < 0, ρ2 < 0 by increasing the absolute values of ρ1 and ρ2.

[13] The same dynamic structure can be also demonstrated
in q2 component and we omit these figures here.
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In a similar way, the second-order RW pairs of the CCQNLS equations (12) can be derived through the related
formula (1). Compared to the first-order case, the distributions of second-order one have more different patterns.
There are six free parameters in the expressions of the second-order RW solution including fj , gj , and hj (j = 1, 2),
which can be assigned to different values to obtain various patterns. Similarly to the first-order case, the higher-order
nonlinear coefficients ρ1 and ρ2 can also make an important skew angle relative to the ridge of the RWs. Through
either choosing g1 ̸= 0 or g1 = 0,[19] we can respectively construct two types of second-order RW pairs including four
or six fundamental RWs.

Fig. 4 Evolution plot of the second-order RW pairs of triangular pattern in the CCQNLS equations by choosing
f1 = 0, g1 = 1, h1 = 0, f2 = g2 = 0, h2 = 100, ρ1 = 1/3, ρ2 = 1/4: (a) q1; (b) q2.

Fig. 5 Evolution plot of the second-order RW pairs of line pattern in the CCQNLS equations by choosing f1 = 0, g1 =
1, h1 = 0, f2 = g2 = 0, h2 = 100, ρ1 = 1/2, ρ2 = 1: (a) q1; (b) q2.

Fig. 6 Evolution plot of the second-order RW pais of quadrilateral pattern 1 in the CCQNLS equations by choosing
f1 = 0, g1 = 1, h1 = 0, f2 = 10000, g2 = 0, h2 = 0, ρ1 = 1/3, ρ2 = 1/4: (a) q1; (b) q2.

When g1 ̸= 0, the second-order RW pairs including four fundamental RWs are constructed, see Figs. 4–7. In Fig. 4,
the classical fundamental RWs distribute on two sides and one standard fundamental second-order one stands on the
middle position, which forms an obtuse triangle pattern. Increasing the absolute values of higher-order nonlinear
coefficients ρ1 and ρ2, this kind of second-order RW pairs of obtuse triangle pattern change to a line pattern in Fig. 5.
Comparing Fig. 4 and Fig. 5, as ρ1 and ρ2 (ρ1 > 0, ρ2 > 0) getting larger, a larger movement for the humps in counter-
clockwise on the x-t plane is produced by the higher-order nonlinear terms, and the hump at right end in Fig. 4
skews in counter-clockwise constructing the line pattern in Fig. 5. Additionally, it demonstrates that four fundamental
classical RWs constitute the quadrilateral pattern in Figs. 6 and 7. In a similar way, the quadrilateral pattern 1 in
Fig. 6 turns to pattern 2 in Fig. 7 by increasing the higher-order nonlinear coefficients ρ1 and ρ2.
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Fig. 7 Evolution plot of the second-order RW pais of quadrilateral pattern 2 in the CCQNLS equations by choosing
f1 = 0, g1 = 1, h1 = 0, f2 = 10000, g2 = 0, h2 = 0, ρ1 = 1/2, ρ2 = 1: (a) q1; (b) q2.
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Fig. 8 Evolution plot of the second-order RW pairs of ring pattern 1 in the CCQNLS equations by choosing f1 = g1 =
0, h1 = 1/100, f2 = 0, g2 = 1000, h2 = 0, ρ1 = 1/3, ρ2 = 1/4: (a) q1; (b) q2.
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Fig. 9 Evolution plot of the second-order RW pairs of ring pattern 1 in the CCQNLS equations by choosing f1 = g1 =
0, h1 = 1/100, f2 = 10000, g2 = h2 = 0, ρ1 = 1/3, ρ2 = 1/4: (a) q1; (b) q2.

When g1 = 0, the second-order RW pairs including six
fundamental RWs are shown in Figs. 8 and 9. These kinds
of second-order RW structures are novel and interesting,
which are not possible to emerge from the second-order
ones in the single-component systems. In Fig. 8, four clas-
sical first-order fundamental RWs distribute around one
classical second-order fundamental RW, which constructs
the ring pattern 1. It shows that five standard first-order
RWs distribute around one classical first-order fundamen-
tal RW in Fig. 9. Here, the higher-order nonlinear terms
also make some skew angle relative to the ridge of the
RWs. Changing the values of higher-order nonlinear coef-
ficients ρ1 and ρ2, the different patterns corresponding to
ring pattern 1 and pattern 2 will be exhibited, respectively.
As some detailed discussion has been made before, we omit
these figures after changing ρ1 and ρ2. Ulteriorly, a lot of

other higher-order RW pairs can be constructed through
iterating the generalized DT of the CCQNLS equations.

4 Conclusion
In this paper, we devote to investigate some novel pat-

terns of RWs in the CCQNLS system (1). Based on the
condition that the characteristic equation of the constant
coefficient transformed matrix of U in the Lax pair (2) ow-
ing a double root, the authors[37] constructed the classical
higher-order RWs of the CCQNLS system (1). Through
considering that the characteristic equation of the trans-
formed matrix U0 of x-part of the Lax pair (2) owning
a triple root, the higher-order RW pairs of the CCQNLS
equations are constructed by the generalized DT. Besides,
these kinds of RW pairs are greatly different from clas-
sical RWs in the CCQNLS system (1), for example, the
first-order RW pair can include two classical first-order
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RWs, see Fig. 2. These kinds of RW pairs were also
constructed in some other systems, such as the coupled
NLS equations,[19] the Sasa-Satsuma equation[31] and the
three-wave resonant interaction equations.[32]

In Ref. [31], the RW pairs can be obtained in single-
component Sasa-Satsuma equation, because the Lax pair
of the Sasa-Satsuma equation owns 3 × 3 matrices and
the characteristic equation of the corresponding matrice
can own a triple root under some special conditions. We
can draw a conclusion that these kinds of RW pairs may
be obtained through the generalized DT in the nonlinear
systems whose Lax pair including the matrices larger than
2× 2.

Especially, the first- and second-order RW pairs are
discussed in detail. It demonstrates that two classical fun-
damental RWs can be emerged from the first-order RW.
Besides, four or six classical fundamental RWs can exist
in the second-order case, respectively. For the second-
order RW pairs, the distribution shape can be triangle,
quadrilateral and ring structures. Besides, the higher-

order nonlinear terms in the CCQNLS system (1) can

affect the dynamic of the RWs. Increasing the absolute

values of ρ1 and ρ2, an important skew angle relative to

the ridge of the RW can be shown in Figs. 3, 5, and 7. If

ρ1 > 0, ρ2 > 0, with these two parameters getting larger,

a larger movement for the humps in the counter-clockwise

direction on the x-t plane is produced by the higher-order

nonlinear terms; on the other hand if ρ1 > 0, ρ2 > 0, a

larger movement for the humps in clockwise on the x-t

plane is shown with the absolute values of the two param-

eters being larger. Our results further reveal the dynamic

structures of RWs in a coupled system, and we hope these

kinds of higher-order RW pairs presented in this paper

could be verified in physical experiments in the future.
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