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a b s t r a c t

The paper aims to explore the existence of diverse lump and interaction solutions
to the (1+1)-dimensional Sharma–Tasso–Olver–Burgers equation. Through the
Cole–Hopf transformation with the nonzero seed solution, the remarkable richness
of exact solutions are exhibited, including lump, lump-periodic, lump-multiple
solitary wave and periodic-multiple solitary wave. Some specific interaction phe-
nomena are analyzed by the limit behavior. The generated rogue wave, half
periodic kink (HPK) and breather-like solutions are displayed by some visual
figures, respectively.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The study of nonlinear phenomena plays an important role in various fields of mathematical physics
and engineering [1–6]. Lump solutions, rationally localized in all directions in space, can be generated from
solitons by taking long wave limits. Many examples of lump solutions and their interaction with solitons are
found for many (2+1)-dimensional and (3+1)-dimensional integrable and nonintegrable systems [7–20], such
as the Kadomtsev–Petviashvili (KP) [9], Sawada–Kotera (SK) [13] and Ito type systems [16]. Recently, Lou
and Lin [21] find lump and lump-soliton solutions also exist in two (1+1)-dimensional nonintegrable KdV-
type equations. Further, the similar solutions are discovered for the (1+1)-dimensional Ito equation [22]
and Drinfel’d–Sokolov–Wilson equation [23]. To our knowledge, such kind of interaction solution among
algebraic localized solutions (lumps) and exponentially localized line solitons has not been reported for other
(1+1)-dimensional models.
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In this paper, we study the interaction solutions among the multiple solitary wave, lump and triangular
periodic wave for the (1+1)-dimensional Sharma–Tasso–Olver–Burgers (STOB) equation

ut + α
(
3u2

x + 3u2ux + 3uuxx + uxxx

)
+ β (2uux + uxx) = 0. (1)

The above equation will reduce to the Burgers equation for α = 0 and to the STO equation for β = 0,
respectively. For the sake of investigating the soliton molecules, the STOB equation is introduced in Ref. [24].
It has been verified the STOB equation is a new system possessing interesting and good structure and
properties [24].

Through the Cole–Hopf transformation
u = fx

f
+ u0, (2)

one can change Eq. (1) into a bilinear form

3αu2
0fxxf + 3αu0fxxxf − ftfx − 3αu2

0 (fx)2 + αfxxxxf + ftxf − 3αu0fxxfx − αfxxxfx

+ 2βu0fxxf − 2βu0f2
x + βfxxxf − βfxxfx = 0.

(3)

Here u0 is a constant seed solution of Eq. (1). That is to say, if f solves the bilinear equation (3), then u

given by the transformation (2) will solve the STOB equation (1). By means of the bilinear equation (3),
we will discuss some fission and fusion phenomena, rogue wave, half periodic kink (HPK) and breathers-like
solutions for the STOB equation.

2. Exact interaction solutions of Sharma-Tasso-Olver-Burgers equation

2.1. Interaction solution between lump and multiple solitary wave

Let us begin with

f = fL−SN
= f0 + X2 +

N∑
i=1

eηi (4)

and

X = a1x + a2t + a0, ηi = kix + ωit + ξi,0. (5)

Here f0, a1, a2, a0, ki, ωi, ξi,0, 1 ≤ i ≤ N are parameters to be determined.
Substituting (4) into (3) leads to

u0 = − β

3α
, a2 = β2a1

3α
, ωi = −

ki

(
3α2k2

i − β2)
3α

. (6)

The interaction solution between lump (the quadratic term in (4)) and N-solitary wave (the exponential
function terms in (4)) is generated through the transformation (2):

u = uL−SN
=

2a1(a1x + β2a1
3α t + a0) +

∑N
i=1 kie

kix−
ki(3α2k2

i
−β2)

3α t+ξi,0

f0 +
(

a1x + β2a1
3α t + a0

)2
+

∑N
i=1 ekix−

ki(3α2k2
i

−β2)
3α t+ξi,0

− β

3α
. (7)

Note that f = f0 + X2 yields a pure algebraic solitary wave (lump) structure. At any given time t, we
ave the lump solution u = 2X

f0+X2 − β
3α → − β

3α if and only if |x| → ∞. On the one hand, it is readily
observed that the STO equation (Eq. (1) with β = 0) only has the static lump solution (a = 0). On the
2
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Fig. 1. Profiles of uL−S1 and its field z = ux expressed by (8) with (9): (a) 3d plot of u; (b) density plot of z.

ther hand, the STOB equation (αβ ̸= 0) does not have such algebraic localized lump solution on the zero
ackground (for u0 = 0).

Let us see some special cases of the solution (7). For N = 1, the interaction solution uL−S1 between lump
and one solitary wave will produce a fission phenomena or a fusion phenomena. We have

u = uL−S1 = 2X + k1eη1

f0 + X2 + eη1
− β

3α
→

{
k1 − β

3α , η1 → +∞,
2X

f0+X2 − β
3α , η1 → −∞.

(8)

That is to say, the lump will be truncated off in the region of η1 > 0 or the lump only appears in the region
of η1 < 0. Fig. 1 displays a fission phenomena by selecting a special choice for the parameters:

{f0 = 10, a1 = 2, a0 = 1, k1 = 1, ξ1,0 = 0, α = 1, β = 1} . (9)

rom Fig. 1, we observe the lump appears only for t > 0 and escapes from the kink-type solitary wave at
≈ 0.

For N = 2, we have the following solution

u = uL−S2 = 2X + k1eη1 + k2eη2

f0 + X2 + eη1 + eη2
− β

3α
. (10)

n the complex domain, if the wave number k2 and the position parameter ξ2,0 of the solitary wave are taken
s the complex conjugate of k1 = k + iκ and ξ1,0 = p + iρ, then the solution (10) will become a singular
nteraction solution among one lump and a complexiton:

u =
2a2

1x + 2β2a2
1

3α t+2a1a0 + 2ekx+ϖt+p [k cos (κx + Ωt + ρ) − κ sin (κx + Ωt + ρ)]

β0+
(

a1x + β2a1
3α t + a0

)2
+ 2ekx+ϖt+p cos (κx + Ωt + ρ)

− β

3α
(11)

ith ϖ= k(9α2κ2−3α2k2+β2)
3α , Ω = κ(3α2κ2−9α2k2+β2)

3α . Next, we consider all the parameters are real. The
olution (10) with f0 > 0 is an analytical interaction solution between lump and two-solitary wave. Fig. 2(a)
nd (b) displays a fusion process between lump and an ordinary two-solitary wave with the following selection
f the parameters:

{f0 = 100, a1 = 7, a0 = 2, k1 = −1.5, k2 = −1, ξ1,0 = −50, ξ2,0 = 0, α = 1, β = 1} . (12)

n Fig. 2(a) and (b), the lump firstly aggregates with one solitary wave at t ≈ 0. Then they are fused to the
econd solitary wave at t ≈ 20.
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Fig. 2. (a) and (c): the 3d plot of uL−S2 expressed by (10) with (12) and (14); (b) and (d): the corresponding density plot of field
z = ux for (a) and (c).

Specifically, the solution (10) with η2 = −η1 (now called twin-solitary wave instead of two-solitary wave)
will lead to an instanton or a rogue wave for

u = 2X + k1eη1 − k1e−η1

f0 + X2 + eη1 + e−η1
− β

3α
→

{
k1 − β

3α , η1 → +∞,

−k1 − β
3α , η1 → −∞.

(13)

That is to say, the lump will be truncated off at both regions for η1 > 0 and η1 < 0. Thus the lump will
become an instanton or a rogue wave if the instanton possesses a giant amplitude compared with that of the
twin-solitary wave. Fig. 2(c) and (d) exhibits such kind of interaction behavior by selecting the parameters:

{f0 = 10, a1 = 7, a0 = 2, k1 = −k2 = −1, ξ1,0 = ξ2,0 = 0, α = 1, β = 1} . (14)

From Fig. 2(d), one can find that the lump has disappeared before and after the time t ≈ 0, while an
instanton or a rogue wave has survived at t ≈ 0.

2.2. Interaction solution between lump and triangular periodic wave

Consider
f = fL−P = f0 + X2+λ sin (Y ) (15)

with X = a1x + a2t + a0 and Y = b1x + b2t + b0. Substituting (15) into (3) leads to

u0 = − β

3α
, a2 = β2a1

3α
, b2 =

b1
(
3α2b2

1 + β2)
3α

. (16)

The interaction solution between lump and triangular periodic wave is shown by

u = uL−P =
2a2

1x + 2β2a2
1

3α t + 2a1a0 + λb1 cos
(

b1x + b1(3α2b2
1+β2)

3α t + b0

)
f0 +

(
a1x + β2a1

3α t + a0

)2
+λ sin

(
b1x + b1(3α2b2

1+β2)
3α t + b0

) − β

3α
. (17)

he solution (17) is analytic for f0 > |λ|. Because the triangle periodic part “sin(Y )” can be neglected at
X| → ∞, the periodic effect on the lump will concentrate on the local area |X| ≤ ϵ ≈ 0. Fig. 3(a) and (b)
hows a periodic phenomenon in the evolution direction of one lump for the following special parameters:

{f0 = 20, a1 = 2, a0 = 10, λ = 8, b1 = 1, b0 = −0.5, α = 0.4, β = 0.6} . (18)

As the parameter λ is closer to f0, the solution (17) may produce a breather-like solution shown in Fig. 3(c)
nd (d), where the parameters are selected as

{f = 20, a = 2, a = 10, λ = 19.9, b = 1, b = −1, α = 0.4, β = 0.6} . (19)
0 1 0 1 0
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Fig. 3. (a) and (c): the 3d plot of uL−P expressed by (17) with (18) and (19); (b) and (d): the corresponding density plot for (a)
nd (c).

.3. Interaction solution between triangular periodic wave and multiple solitary wave

Assume

f = fP −SN
= f0 + λ sin (Y ) +

N∑
i=1

eηi (20)

ith Y = b1x + b2t + b0 and ηi = kix + ωit + ξi,0. Substituting (20) into (3) yields

u0 = − β

3α
, b2 =

b1
(
3α2b2

1 + β2)
3α

, ωi = −
ki

(
3α2k2

i − β2)
3α

. (21)

Now the corresponding interaction solution between triangular periodic wave and multiple solitary wave is
written as

u = uP −SN
=

λb1 cos
[
b1x + b1(3α2b2

1+β2)
3α t + b0

]
+

∑N
i=1 kie

kix−
ki(3α2k2

i
−β2)

3α t+ξi,0

f0 + λ sin
[
b1x + b1(3α2b2

1+β2)
3α t + b0

]
+

∑N
i=1 ekix−

ki(3α2k2
i

−β2)
3α t+ξi,0

− β

3α
. (22)

The solution (22) is analytic for f0 > |λ|. For N = 1, we have

u = uP −S1 = λb1 cos (Y ) + k1eη1

f0 + λ sin (Y ) + eη1
− β

3α
→

{
k1 − β

3α , η1 → +∞,
λb1 cos(Y )

f0+λ sin(Y ) − β
3α , η1 → −∞.

(23)

he above solution uP −S1 can be called the half periodic kink (HPK) because the periodic wave only occurs
t the half plane η1 < 0. By taking b0 = δ + π

2 and k1 = β
3α , one can reduce uP −S1 to a special HPK

u = − 1
3α

βf0 + λβ cos (Y1) + 3λαb1 sin (Y1)

f0 + λ cos (Y1) + e
β

3α x+ 2β3
27α2 t+ξ1,0

(24)

ith Y1 = b1x + b1(3α2b2
1+β2)

3α t + δ. It is clear that the solution (24) is equivalent to the HPK solution which
as constructed by a series of resonances among three solitons in Ref. [24].
For N = 2, we discuss the solution uP −S2 with η2 = −η1. There is

u = uP −S2 = λb1 cos (Y ) + k1(eη1 − e−η1)
f0 + λ sin (Y ) + eη1 + e−η1

− β

3α
→

{
k1 − β

3α , η1 → +∞,

−k1 − β
3α , η1 → −∞.

(25)

ence the periodic wave arises along the area |η1| ≤ ε ≈ 0 of the twin-solitary wave. Fig. 4(a) shows an
PK solution uP −S1 (23) with the specific parameters:

{f = 10, λ = 6, b = 0.5, b = 1, k = 1, ξ = 0, α = 1, β = 0.4} . (26)
0 1 0 1 1,0
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Fig. 4. (a) and (b): the 3d plot of uP −S1 expressed by (23) with (26) and the corresponding density plot of field z = ux; (c) and(d):
the 3d plot of uP −S2 expressed by (25) with (27) and the corresponding density plot of field z = ux.

Fig. 4(b) tells us the periodic wave is truncated in the region of x > 71
75 t. Fig. 4(c) exhibits a periodic-twin

solitary wave solution (25) with the selected parameters:

{f0 = 12, λ = 11, b1 = 0.6, b0 = 1, k1 = −k2 = 0.5, ξ1,0 = ξ2,0 = 0, α = 1, β = 1} . (27)

ig. 4(d) displays the periodic wave focused on the region |12x + t| ≤ ε ≈ 0.

. Conclusions

For the (1+1)-dimensional STOB equation, rich interaction solutions including lump-multiple solitary
ave, lump-periodic and periodic-multiple solitary wave were obtained. By analyzing the limit behavior of

ump-one solitary wave uL−S1 and periodic-one solitary wave uP −S1 , one saw the lump and the periodic
ave just occurred on a half plane of (x, t), respectively. In addition, the lump-twin solitary wave type

olution would generate an instanton or a rogue which is a localized wave decayed in all space and time
irections. For the STOB equation, it is conclude that the nonzero seed solution u0 plays an vital role in
hese interactions. On the zero background (u0 = 0), one cannot obtain the lump solution discussed in this
aper for the STOB equation (with αβ ̸= 0). By selecting some special parameters, the periodic-one solitary
ave uP −S1 was reduced to the HPK solution which was constructed by a series of resonances among three

olitons in Ref. [24].
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