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Abstract This study addresses the adaptive control and function projective synchronization problems between 2D
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discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.
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1 Introduction
Chaos has aroused considerable interests in many ar-

eas of science and technology due to its potential appli-
cation to secure communications. Recently, chaos con-
trol and synchronization attract more and more attention
from various fields. Over the last decades, many methods
and techniques for chaos control and synchronization have
been produced,[1−7] such as feedback approach,[1] adaptive
method,[1] time-delay feedback approach,[2] backstepping
design technique,[3] OGY method,[6] PC method,[7] etc.

Since the pioneering works of Fujisaka and Yamada,[8]

Pecora and Carroll,[9] Ott and Pyragas,[10] Grebogi and
Yorke,[11] up to now, there exist many types of chaos
synchronization in dynamical systems such as complete
synchronization, partial synchronization, phase synchro-
nization, lag synchronization, anticipated synchroniza-
tion, generalized slag, anticipated, and completed syn-
chronization, synchronization, antiphase synchronization,
etc.[12−18]

In particular, amongst all kinds of chaos synchroniza-
tion, projective synchronization in partially linear sys-
tems reported by Mainieri and Rehacek[19] is one of the
most noticeable ones that the drive and response vec-
tors evolve in a proportional scale — the vectors become
proportional. Recently, some researchers[20−25] extended
the projective synchronization to non-partially-linear sys-
tems, and based on their work, we have proposed function
projective synchronization in the continuous-time systems
which the drive and response vectors evolve in a propor-
tional scaling function matrix.[23] Many powerful methods
have been reported to investigate some types of chaos (hy-

perchaotic) synchronization in continuous-time systems.
In fact, many mathematical models of neural networks,

biological process, physical process, and chemical process
were defined using discrete-time dynamical systems.[24−27]

Recently, more and more attentions were paid to the chaos
(hyperchaos) control and synchronization in discrete-time

dynamical systems.[28,35−38]

Backstepping design[28−32] has become a systematic
and powerful method for the construction of both feed-
back controllers and associated Lyapunov functions. The
design method has been applied to investigate control

and synchronization of many continuous-time dynam-
ical systems.[31−34] Up until now, some articles have
been reported to extend the backstepping design to de-
duce some proper controllers to investigate chaos con-

trol and synchronization in some discrete-time dynamical
systems.[28,35−38]

In this paper, based on the function synchronization
method,[23,24] we would like to define a type of adaptive
control and function projective synchronization (AFPS)

in discrete-time dynamical systems. Based on the back-
stepping design method, we present a systematic and au-
tomatic algorithm to investigate simultaneously AFPS,
via controllers between discrete-time drive system and

response system, whether with strict-feedback form or
not. With the aid of symbolic-numeric computation, the
proposed scheme is used to illustrate AFPS between 2D
discrete-time Rulkov system and Network system. More-
over numerical simulations are used to verify the effective-

ness of the proposed scheme.
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The paper is organized as follows. In Sec. 2, the so-
called AFPS in discrete-time systems, and consequently
only one controller is obtained via backstepping design
procedure. In Sec. 3, we simulate adaptive function pro-
jective synchronization in 2D Rulkov discrete-time system
and Network discrete-time system. In Sec. 4, we simulate
AFPS between the Rulkov discrete-time system and Net-
work system by different function control. Finally, con-
clusions are drawn.

2 Adaptive Function Projective
Synchronization of Discrete-Time Chaotic
Systems
In the following, similar to the definitions of function

projective synchronization[23] in continuous-time dynami-
cal systems, we define a AFPS in discrete-time dynamical
systems, and then give a Lyapunov stability theory for
discrete-time dynamical systems.

Definition For two discrete-time dynamical systems
(i) x(k + 1) = F (x(k)) and (ii) y(k + 1) = G(y(k)) +
u(x(k), y(k)), where (x(k), y(k)) ∈ Rm+m, k ∈ Z/Z−, and
u(x(k), y(k)) ∈ Rm, let (iii)

E(k) = (E1(k), E2(k), . . . , Em(k))

= (x1(k) − f1(x(k))y1(k), x2(k) − f2(x(k))y2(k),

. . . , xm(k) − fm(x(k))ym(k))

or (x1(k) − y1(k), x2(k) − y2(k), . . . , xm(k)

− fm(x(k))ym(k))

or (x1(k) − f1(x(k))y1(k), x2(k) − y2(k), . . . , xm(k)

− ym(k))

be boundary vector functions, if there exists proper con-
trollers u(x(k), y(k)) = (u1(x(k), y(k)), u2(x(k), y(k)), . . .,
um(x(k), y(k)))T such that limk→∞(E(k)) = 0, we say
that there exists adaptive function projective syn-
chronizaton (AFPS) between the systems (i) and (ii).

Based on the Lyapunov stability theory, for the error
discrete-time (iii) generated by drive system (i) and re-
sponse system (ii), let

L(E1(k), E2(k), . . . , Em(k))|Ei(k)≡0 (i=1,2,...,m) = 0 ,

if 4L(k) = L(k + 1) − L(k) ≤ 0, with the equality hold-
ing if and only if Ei(k) ≡ 0 (i = 1, 2, . . . , m), it is said
that systems (i) and (ii) are adaptive function projective
synchronized.

Then based on the backstepping design method, we
would like to present a systematic, generalized and con-
structive scheme to seek the controllers such that 2D
Rulkov discrete-time system and 2D Network discrete-
time system with strict-feed form are adaptive function
projective synchronized.

3 AFPS of 2D Rulkov Discrete-Time
System and Network Discrete-Time
System
Consider Rulkov[39] discrete-time system,

x1(k + 1) =
4.3

1 + x1(k)2
+ x2(k) ,

x2(k + 1) = x2(k) − 0.01(x1(k) + 1) . (1)

and Network[40] system with controllers u(x, y)

y1(k + 1) = y2(k) + u1(x, y) ,

y2(k + 1) = −y1(k) − k sin(y2(k)) + u2(x, y) . (2)

as the drive system and response system, respectively.
Firstly we plot Figs. 1(a) and 1(b) to show the two

systems with initial valuables [x1(0) = 0.1, x2(0) = 0.2]
and [y1(0) = −0.5, y2(0) = −0.3], respectively.

Fig. 1 (a) Rulkov discrete-time attractor; (b) Network
discrete-time attractor.

In the following, we would like to realize the AFPS of
Rulkov discrete-time system and Network discrete-time
system by backstepping design method.

(i) Let the error states be E1(k) = x1(k) − y1(k),
E2(k) = x2(k)−exp(x2(k))y2(k). Then from Eqs. (1) and
(2), we have the discrete-time error dynamical system,

E1(k + 1) =
4.3

1 + x1(k)2
+ x2(k) − y2(k) − u1(x, y) ,

E2(k + 1) = x2(k) − 0.01x1(k) − 0.01

− exp(x2(k) − 0.01x1(k) − 0.01)

× (−y1(k) + u2(x, y) − k sin(y2(k)) . (3)

In the following based on the backstepping design and the
improved ideas of Refs. [35] and [37], we give a system-
atic and constructive algorithm to derive the controllers
u(x, y) step by step such that systems (1) and (2) are syn-
chronized together.

Step 1 Let the first partial Lyapunov function be
L1(k) = |E1(k)| and the second error variable be

E2(k + 1) = E1(k + 1) − c11E1(k) , (4)

where c11 ∈ R. Then we have the derivative of L1(k)

∆L1(k) = |E1(k + 1)| − |E1(k)|
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≤ (|c11| − 1)|E1(k)| + |E2(k)| . (5)

Step 2 Let

E2(k + 1) − c21E1(k) − c22E2(k) = 0 . (6)

Then with the aid of symbolic computation, from the
above equations (4) and (6) we obtain the controllers

u1(x, y) = − 0.1(−43 + 10y2(k) + 10x1(k)2y2(k)

− 2x1(k) − 2x1(k)3 + 2y1(k)

+ 2y1(k)x1(k)2 − 10 exp(x2(k))y2(k)

−
10 exp(x1(k))2y2(k))

1 + x1(k)2
,

u2(x, y) = 0.01(60x2(k) + 24x1(k) − 1 + 100 exp(x2(k)

− 0.01x1(k) − 0.01) + 100 exp(x2(k)

− 0.01x1(k) − 0.01)k sin(y2(k)) − 25y1(k)

+
40 exp(x2(k))y2(k)

exp(x2(k) − 0.01x1(k) − 0.01)
. (7)

Let the second partial Lyapunov function be L2(k) =
L1(k) + d1|E2(k)|, where d1 > 1, then the derivative of
L(k) is

∆L(k) = L2(k + 1) − L2(k)

= ∆L1(k) + d1(|E2(k + 1)| − |E2(k)|)

≤ (|c11| − 1 + d1|c21|)|E1(k)|

+ (1 − d1 + d1|c22|)|E2(k)| . (8)

It follows that the right-hand side of Eq. (8) is negative
definite, if the following conditions hold,

|c11| + d1|c21| < 1 , d1 − d1|c22| > 1 . (9)

Obviously, there exist many sets of solutions [c11, c21, c22]
that satisfy Eq. (9). In the following we use numeri-
cal simulations to verify the effectiveness of the above-
mentioned controllers. The parameters are chosen as
d1 = 2, c11 = −0.2, c21 = −0.25, c22 = 0.4, and the
initial values of system (1) and (2) with u = 0 are taken
as those in Fig. 1. The graphs of AFPS error states and
the globally picture of the drive and response systems are
displayed in Figs. 2 and 3.

Fig. 2 The orbits of the error states.

Fig. 3 The two attractors after being synchronized with
(f1(x), f2(x)) = (4, 4): the dark one is the response sys-
tem with the controllers, and the other is the drive sys-
tem.

(ii) Let the error states be E1(k) = x1(k) − exp(x1(k))y1(k), E2(k) = x2(k) − y2(k). Similarly, from Eqs. (1) and
(2), we have the discrete-time error dynamical system

E1(k + 1) = [4.3/(1 + x1(k)2)] + x2(k) − exp[4.3/(1 + x1(k)2)](y2(k) + u1(x, y)) ,

E2(k + 1) = x2(k) − 0.01x1(k) − 0.01 + y1(k) − u2(x, y) + k sin(y2(k)) . (10)

Repeat the process in (i), we can get the attractors

u1(x, y) =
−0.1

(1 + x1(k)2) exp
( 0.1(4.3+10x2(k)+10x2(k)x1(k)2)

1+x1(k)2

)

[

− 43 + 10y2(k) exp
(0.1(4.3 + 10x2(k) + 10x2(k)x1(k)2)

1 + x1(k)2

)

+ 10 exp
(0.1(4.3 + 10x2(k) + 10x2(k)x1(k)2)

1 + x1(k)2

)

y2(k)x1(k)2 − 2x1(k) − 2x1(k)3 + 2 exp(x1(k))y1(k)

+ 2 exp(x1(k))y1(k)x1(k)2 − 10y2(k) − 10y2(k)x1(k)2
]

,

u2(x, y) = 0.6x2(k) + 0.24x1(k) − 0.01 + y1(k) + k sin(y2(k)) − 0.25 exp(x1(k))y1(k) + 0.4y2(k) . (11)

Take the same values of [c11, c21, c22, d1] and the same initial values, we also use numerical simulations to verify the
effectiveness of the above-mentioned controllers. The graphs of AFPS error states and the globally picture of the drive
and response systems are displayed in Figs. 4 and 5.
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Fig. 4 The orbits of the error states.

Fig. 5 The two attractors after being synchronized with (f1(x), f2(x)) = (exp(x2(k)), 1): the dark one is the response
system with the controllers, and the other is the drive system.

(iii) Let the error states be E1(k) = x1(k) − exp(x1(k))y1(k), E2(k) = x2(k) − exp(x2(k))y2(k). Similarly, from

Eqs. (1) and (2), we have the discrete-time error dynamical system

E1(k + 1) =
4.3

1 + x1(k)2
+ x2(k) − exp

( 4.3

1 + x1(k)2
+ x2(k)

)

(y2(k) + u1(x, y)) ,

E2(k + 1) = x2(k) − 0.01x1(k) − 0.01 − exp(x2(k) − 0.01x1(k) − 0.01)(−y1(k) − k sin(y2(k)) + u2(x, y) . (12)

Repeat the process in (i), we can get the attractors

u1(x, y) = − 0.1
[

− 43 + 10 exp
(0.1(4.3 + 10x2(k) + 10x2(k)x1(k)2)

1 + x1(k)2

)

y2(k)

+ 10 exp
(0.1(4.3 + 10x2(k) + 10x2(k)x1(k)2)

1 + x1(k)2

)

y2(k)x1(k)2 − 2x1(k)

− 2x1(k)3 + 2 exp(x1(k))y1(k) + 2 exp(x1(k))y1(k)x1(k)2

− 10 exp(x2(k))y2(k) − 10 exp(x2(k))y2(k)x1(k)2
]

,

u2(x, y) =
1

100 exp(x2(k) − 0.1x1(k) − 0.01)

[

60x2(k) + 24x1(k) − 1 + 100 exp(x2(k) − 0.1x1(k) − 0.01)y1(k)

+ 100 exp(x2(k) − 0.1x1(k) − 0.01)k sin(y2(k)) − 25 exp(x1(k))y1(k) + 40 exp(x2(k))y2(k))
]

. (13)

Take the same values of [c11, c21, c22, d1] and the same initial values, we also use numerical simulations to verify the

effectiveness of the above-mentioned controllers. The graphs of AFPS error states and the globally picture of the drive

and response systems are displayed in Figs. 6 and 7.
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Fig. 6 The orbits of the error states.

Fig. 7 The two attractors after being synchronized with (f1(x), f2(x)) = (exp(x1(k)), exp(x2(k))): the dark one is the
response system with the controllers, and the other is the drive system.

(iv) Let the error states be E1(k) = x1(k) − 4y1(k), E2(k) = x2(k) − 4y2(k). Similarly, from Eqs. (1) and (2), we
have the discrete-time error dynamical system

E1(k + 1) =
4.3

1 + x1(k)2
+ x2(k) − 4y2(k) − 4u1(x, y) ,

E2(k + 1) = x2(k) − 0.01x1(k) − 0.01 + 4y1(k) − 4u2(x, y) + 4k sin(y2(k)) . (14)

Repeat the process in (i), we can get the attractors,

u1(x, y) = −0.025(−43 − 2x1(k) − 2x1(k)3 + 8y1(k) + 8y1(k)x1(k)2/(1 + x1(k)2) ,

u2(x, y) = 0.15x2(k) + 0.6x1(k) − 0.0025 + 0.75y1(k) + k sin(y2(k)) + 0.4y2(k) . (15)

Take the same values of [c11, c21, c22, d1] and the same initial values, we also use numerical simulations to verify the
effectiveness of the above-mentioned controllers. The graphs of AFPS error states and the globally picture of the drive
and response systems are displayed in Figs. 8 and 9.

Fig. 8 The orbits of the error states.
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Fig. 9 The two attractors after being synchronized with
(f1(x), f2(x)) = (1, exp(x2(k))): the dark one is the re-
sponse system with the controllers, and the other is the
drive system.

4 Different Function Control of 2D Rulkov
Discrete-Time System and Network
Discrete-Time System
Consider Rulkov discrete-time system

x1(k + 1) =
4.3

1 + x1(k)2
+ x2(k) ,

x2(k + 1) = x2(k) − 0.01(x1(k) + 1) . (16)

and Network system with controllers u(x, y)

y1(k + 1) = y2(k) + u1(x, y),

y2(k + 1) = −y1(k) − k sin(y2(k)) + u2(x, y) . (17)

as the drive system and response system, respectively.
In the following, we would like to realize the AFPS of

Rulkov discrete-time system and Network discrete-time
system by backstepping design method.

(i) Let the error states be E1(k) = x1(k) −
cot(x1(k))y1(k), E2(k) = x2(k) − y2(k). Then from
Eqs. (17) and (18), we have the discrete-time error dy-
namical system

E1(k + 1) =
4.3

1 + x1(k)2
+ x2(k) − coth

( 4.3

1 + x1(k)2

+ x2(k)
)

(y2(k) + u1(x, y)) ,

E2(k + 1) = x2(k) − 0.01x1(k) − 0.01 + y1(k)

+ k sin(y2(k)) − u2(x, y) . (18)

In the following based on the backstepping design and the
improved ideas of Refs. [28] and [30], we give a system-
atic and constructive algorithm to derive the controllers
u(x, y) step by step such that systems (17) and (18) are
synchronized together.

Step 1 Let the first partial Lyapunov function be
L1(k) = |E1(k)| and the second error variable be

E2(k + 1) = E1(k + 1) − c11E1(k) , (19)

where c11 ∈ R. Then we have the derivative of L1(k)

∆L1(k) = |E1(k + 1)| − |E1(k)| ≤ (|c11| − 1)|E1(k)|

+ |E2(k)| . (20)

Step 2 Let

E2(k + 1) − c21E1(k) − c22E2(k) = 0 . (21)

Then with the aid of symbolic computation, from
Eqs. (19) and (21) we obtain the controllers

u1(x, y) =
−1

10(1+x1(k)2)) coth
( 0.1(4.3+10x2(k)+10x2(k)x1(k)2)

1+x1(k)2

)

[

−43+10 coth
(0.1(4.3+10x2(k)+10x2(k)x1(k)2)

1 + x1(k)2

)

y2(k)

+ 10 coth
(0.1(4.3 + 10x2(k) + 10x2(k)x1(k)2)

1 + x1(k)2

)

x1(k)2y2(k) − 2x1(k) − 2x1(k)3 + 2 coth(x1(k))y1(k)

+ 2y1(k)x1(k)2 coth(x1(k)) − 10y2(k) − 10x1(k)2y2(k)
]

,

u2(x, y) = 0.6x2(k) + 0.24x1(k) − 0.01 + y1(k) + k sin(y2(k)) − 0.25 coth(x1(k))y1(k) + 0.4y2(k) . (22)

Let the second partial Lyapunov function be L2(k) = L1(k) + d1|E2(k)|, where d1 > 1, then the derivative of L(k) is

∆L(k) = L2(k + 1) − L2(k) = ∆L1(k) + d1(|E2(k + 1)| − |E2(k)|)

≤ (|c11| − 1 + d1|c21|)|E1(k)| + (1 − d1 + d1|c22|)|E2(k)| . (23)

It follows that the right-hand side of Eq. (23) is negative definite, if the following conditions hold:

|c11| + d1|c21| < 1 , d1 − d1|c22| > 1 . (24)

Fig. 10 The orbits of the error states.
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Fig. 11 The two attractors after being synchronized
with (f1(x), f2(x)) = (cot(x1(k)), 1): the dark one is the
response system with the controllers, and the other is the
drive system.

Obviously, there exist many sets of solutions
[c11, c21, c22] that satisfy (24). In the following we use

numerical simulations to verify the effectiveness of the

above-mentioned controllers. The parameters are chosen

as d1 = 2, c11 = −0.2, c21 = −0.25, c22 = 0.4, and the

initial values of system (16) and (17) with u = 0 are taken

as those in Fig. 1. The graphs of AFPS error states and

the globally picture of the drive and response systems are

displayed in Figs. 10 and 11.

(ii) Let the error states be E1(k) = x1(k) − y1(k),

E2(k) = x2(k) − coth(x2(k))y2(k). Similarly, from

Eqs. (16) and (17), we have the discrete-time error dy-

namical system

E1(k + 1) =
4.3

1 + x1(k)2
+ x2(k) − y2(k) − u1(x, y) ,

E2(k + 1) = x2(k) − 0.01x1(k) − 0.01 + coth(x2(k)

− 0.01x1(k) − 0.01)(−y1(k) − k sin(y2(k))

+ u2(x, y)) . (25)

Repeat the process in (i), we can get the attractors

u1(x, y) = − 0.1(−43 + 10y2(k) + 10y2(k)x1(k)2 − 2x1(k) − 2x1(k)3 + 2y1(k) + 2y1(k)x1(k)2

− 10 coth(x2(k))y2(k) − 10 coth(x2(k))y2(k)x1(k)2)/(1 + x1(k)2)) ,

u2(x, y) = 0.01(60x2(k) + 24x1(k) − 1 + 100 coth(x2(k) − 0.01x1(k) − 0.01)y1(k) + 100 coth(x2(k) − 0.01x1(k) − 0.01)

× k sin(y2(k)) − 25y1(k) + 40 coth(x2(k))y2(k))/ coth(x2(k) − 0.01x1(k) − 0.01) . (26)

Take the same values of [c11, c21, c22, d1] and the same initial values, we also use numerical simulations to verify the
effectiveness of the above-mentioned controllers. The graphs of APS error states and the globally picture of the drive
and response systems are displayed in Figs. 12 and 13.

Fig. 12 The orbits of the error states.

Fig. 13 The two attractors after being synchronized with (f1(x), f2(x)) = (1, coth(x2(k))): the dark one is the response
system with the controllers, and the other is the drive system.
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(iii) Let the error states be E1(k) = x1(k) − coth(x1(k))y1(k), E2(k) = x2(k) − coth(x2(k))y2(k). Similarly, from
Eqs. (16) and (17), we have the discrete-time error dynamical system

E1(k + 1) =
4.3

1 + x1(k)2
+ x2(k) − coth

( 4.3

1 + x1(k)2
+ x2(k)

)

(y2(k) + u1(x, y)) ,

E2(k + 1) = x2(k) − 0.01x1(k) − 0.01 − coth(x2(k) − 0.01x1(k) − 0.01)(−y1(k) − k sin(y2(k)) + u2(x, y) . (27)

Repeat the process in (i), we can get the attractors

u1(x, y) =
−1

10(1 + x1(k)2)) coth
( 0.1(4.3+10x2(k)+10x2(k)x1(k)2)

1+x1(k)2

)

[

−43+10 coth
(0.1(4.3+10x2(k)+10x2(k)x1(k)2)

1 + x1(k)2

)

y2(k)

+ 10 coth
(0.1(4.3 + 10x2(k) + 10x2(k)x1(k)2)

1 + x1(k)2

)

x1(k)2y2(k) − 2x1(k) − 2x1(k)3 + 2 coth(x1(k))y1(k)

+ 2y1(k)x1(k)2 coth(x1(k)) − 10 coth(x2(k))y2(k) − 10 coth(x2(k))x1(k)2y2(k))
]

,

u2(x, y) =
1

100(coth(x2(k) − 0.01x1(k) − 0.01))

[

60x2(k) + 24x1(k) − 1 + 100 coth(x2(k) − 0.01x1(k) − 0.01)y1(k)

+ 100 coth(x2(k) − 0.01x1(k) − 0.01)k sin(y2(k)) − 25 coth(x1(k))y1(k) + 40 coth(x2(k))y2(k)
]

. (28)

Take the same values of [c11, c21, c22, d1] and the same initial values, we also use numerical simulations to verify the
effectiveness of the above-mentioned controllers. The graphs of AFPS error states and the globally picture of the drive
and response systems are displayed in Figs. 14 and 15.

Fig. 14 The orbits of the error states.

Fig. 15 Two attractors after being synchronized with (f1(x), f2(x)) = (coth(x1(k)), coth(x2(k))): the dark one is the
response system with the controllers, and the other is the drive system.

5 Summary and Conclusions
In this paper,we have defined adaptive function projective synchronization in discrete-time dynamical systems. And

then backstepping control method is proposed for achieving adaptive function projective synchronization in a general
class of the so-called strict-feedback chaotic systems, such as discrete-time Rulkov and Network systems. Only one
controller is obtained via backstepping design technique that recursively interlaces the choice of a Lyapunov function



278 LI Yin, CHEN Yong, and LI Biao Vol. 51

with the design of feedback control. This control method allows us to arbitrarily amplify or reduce the scale of the
dynamics of the slave system through a control. Numerical simulations are used to verify the effectiveness of the
proposed scheme.

References

[1] Y. Wang, Z. Guan, and H.O. Wang, Phys. Lett. A 34

(2003) 312.

[2] G. Chen and X. Dong, From Chaos to Order: Perspec-

tives, Methodologies and Applications, World Scientific,
Singapore (1998).

[3] X. Wu and J. Lu, Chaos, Solitons and Fractals 18 (2003)
721.
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