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Abstract

In this paper, based on a variable-coefficient balancing-act method, by means of an appropriate
transformation and with the help of Mathematica, we obtain some new types of solitary-wave solutions to
the generalized Benjamin—-Bona-Mahony (BBM) equation and the generalized Burgers—Fisher (BF)
equation with nonlinear terms of any order. These solutions fully cover the various solitary waves of BBM
equation and BF equation previously reported.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, the homogeneous balance method has been widely applied to derive the
nonlinear transformation and exact solutions (especially the solitary-wave solutions) [1-8]. Direct
searching for exact solutions of nonlinear partial differential equations (NPDEs) has become more
and more attractive partly due to the availability of symbolic computing system such as Maple or
Mathematica. Tian et al. [8-12], based on the idea of homogeneous balance, proposed a variable-
coeflicient balancing-act method, in which the beginning point is a generic transformation for a
given PDE
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ux, 1) = Q8 0){fTwlx, )]}, (1)
where Q and w(x, ) are an operator and a function to be determined respectively. Substituting
ansitz (1) into the original PDE, we hope to establish an ordinary differential equation (ODE) for
f(w). Thus, imposing conditions upon w and @, Q might be determined first and foremost, which
would largely reduce the amount of computations. Notice that sometimes the effects of different
mechanisms that change wave forms may exactly be cancelled out, resulting in solitary waves.
thus (see Ref. [12] for detail), ansatz (1) should have the following special form:

ulx, 1) = o7OH{f w(x, )1}, (2)
where m and n are integers which can be determined by balancing the linear term of highest order
with nonlinear term in PDE. We find that m and » may not be a positive integer. It is necessary to
seek for an appropriate transformation to utilize the above method.

Consider the generalized Benjamin—-Bona-Mahony (BBM) equation with nonlinear terms of
any order

u, + au, + buu, — duyy =0, (3)
and the generalized Burgers—Fisher (BF) equation with nonlinear terms of any order [18]
u, + pu'u, — uy, — qu(l —u") = 0. 4)
In the study of many mechanical and physical problems, various of BBM equations (or reg-
ularized long-wave equations) have been proposed [13-17]. In [12], Zhang et al. presented Eq. (3)
with p = 1:
u, + au, + buu, — du, = 0, (5)

and obtained its solitary-wave solutions. By means of an extended tanh-function method, Fan [18]
obtained a travelling solution to the generalized BF equation. In this paper, we obtain the
travelling solutions to Egs. (3) and (4) by the method mentioned above.

2. The generalized BBM equation

According to the variable-coefficient balancing-act method [8-12], by balancing the highest

order partial derivative term u,, and the nonlinear term «’u, in Eq. (3), we obtain balance con-

stants m =, n = . Make the following transformation:

u(x,t) = v'7(x, ). (6)
Substituting transformation (6) into Eq. (3) yields
bp*v*v, + (=1 + 3p — 2p7)S0,0* + (=1 + p)pdv(2vvy + vvy) + P*0*(v; + av, — Svy) = 0.
(7)

Balancing v*v, and v’v,, in Eq. (7), we get the value of the balance constant m =1, n = 1.
Therefore we seek for the solution of Eq. (7) in the form

v=f"wew, + f'wy, (8>

where f = f(w) and w = w(x, ¢) are functions to be determined.
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With the help of Mathematica, substituting (8) into (7) yields (because the formula is so long,
just part of it is shown here)

BRSO+ (=14 3p = 20M8(7 ) 4 3(= 1+ p)of " f Y = pro(f") S Owini + -+ = 0.
9)

To simplify Eq. (9), setting the coefficient of wow? to zero yields an ordinary differential equation
for f

b (") + (=14 3p = 2p7)3(fC) + 3(= 1+ p)of"fOr® — po(") 1 = 0. (10)
Solving (10) we obtain a solution
_25(1 +p)2+p)

f= o2 logw. (11)
Substituting (11) into (9), we can simplify formula (9) to a linear polynomial of % Thus, setting the
coefficients of 1 (i =0,...,8) to zero yields a set of partial differential equations for w(x, 7)

(_1 +3p— sz)éthtwixt + (_1 +p)p5Wxt(2Wxxthxtt + Wxtthxxt) +p2W§t(Wxtt +aWwyy — 5Wxxxtt) =0,
(12)

W (SWet (= 3pWeWir + 2(2 + pYWeWas) + we(2ap™w?, — (4 — 5p + p*)ow Wi

+ (_4 +p)p5thwxxtt)) + th(—Péth(—z(—l +p)wxxwxxt +prthxx) + Wy 2W2

xt
+(=1+3p— sz)éw;zcxz + (=1 + p)powaW)) + wt(2pzwit +pw§[(apwxx — 20Wn)
- (_1 +p)5(_2pwxwxxlwxxlt + Wxtl(z(_l + ZP)Wmext - prmez))

+ Wxt((_l +P)5(2W)2m + 2prxWxxtt +pththxx) + 2P2Wx(Wxn + awxxt - 5Wxxxtt))) = 07 (13)

Iwew (=42 4+ p)w?, + wy (2(2 + p)wewer — (=7 + p)pwawee) + (4 — 5p + PP ) Ww, Wi
+wi(4(=1 4 p)owy war + Owew (4 + P+ P WaaWar — 4(1 + 2D) WarWa)
+ w2 (=6ap™w?, + (4 — 5p + P*)SWuWes — 2(—4 + D) POW W)
+ Wi(=2(= 1+ p)powawy, + owe(2(=1 + ) wawe + (1 + p)Wirtns)
+ pwi(=2pwy = (=1 + p)owa))) + W (3((1 = 3p + 207 )waw?,
+ 2w (=2(=1 4 P) Wi + PWiaer)) + We(—6pw, — (=1 + p)3(2w7

xxt

+ 2pwxxwxxtt
+pththxx) - 2prz (apwxx - 25Wxxxt)) - PZW)ZC (Wxtt + AWyt — 5Wxxxtt)) = 07 (14)

2(2 4 p)owwiw?, 4+ Sww (—12(2 + p)w?, + wy (4(2 + p)wewe + (4 + 9p — p*)wywy,)
+ (4 = 5p + P YWaw W) + ww (2(—=2 + 5p)Swiwe + ow (4 — 2p + P )We W
+2(2 = 5p)WuWxw) —pw§(6apth + (=4 + p)owau) + th(—PZW)Zc - (-1 +P)5W;2cx
+ pow, W) + Wf(—2(—1 —}—p)éwx,wix + 4w (— (=1 4 p)WuWey + PWeWirr)
- pw§(6pth + apwe — 20W)) = 0, (15)



136 Y. Chen et al. | Communications in Nonlinear Science and Numerical Simulation 10 (2005) 133138

wow,(2(2 —i—p)éwﬂw wy + (2 +p)6wtw (— 6w A WeWar + WiWyy) + wtzwx(—apzwi
+2(1+ 2p)dwy W = 2(=1 + p)owawig) + w) (=pW; — (=1 + p)ows, + powwen)) = 0,

(16)

wfwi(w,,wi + wi(=2wawy + wwy,)) = 0. (17)
Setting
w(x,t) = 1 + exp(dx + Bt + Cy), (18)
where 4, B, Cy are constants, then substituting (18) into (12)—(17) yields

—A’B? exp(3(Ax + bt + Cp))(—adp* — BP* + A*Bd) = 0, (19)
54°B* exp(4(Ax + bt + Cp))(—adp® — BP* + 4*BS) = 0, (20)
94°B? exp(5(Ax + bt + Cp))(—adp* — BP* + A*BS) = 0, (21)
T4°B* exp(6(Ax + bt + Cy))(—adp® — BP* + A°BS) = 0, (22)
A*B? exp(7(Ax + bt + Cy))(—adp* — BP* + A*B5) = 0. (23)

Therefore,
1+ exp [ (x+ . %) n co} if a#0, —p*+ 425 £ 0,
wix, t) = (24)
1 +exp ( + \/%x + Bt + C0> otherwise.

From (6), (8), (11) and (24), the set of the exact solutions of the generalized BBM equation (1)
can be obtained as follows:

1/p
[t La(x+—#t) + G|} ifat0, 25— p2 40,

1/p
{ + %zlf”)asech2 [% ( + \/’%x +Bt+ C0>] } otherwise.

It is easy to see that the solutions obtained in [12] are special cases of our solutions with p = 1.

u(x,t) = (25)

3. The generalized BF equation

According to the above method, balancing the highest order partial derivative term u,, and the
nonlinear term u"u, in Eq. (4), we obtain balance constants m =1, n = 0. Make the following
transformation:

u(x,t) = v"/"(x,1). (26)
Substituting transformation (26) into Eq. (4) yields
(=1 +7)0? + r?[gr(—=1 +v) + pv,] + rv(v, — vy) = 0. (27)
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Balancing v’v, and wvv,, in Eq. (27), we get the value of the balance constant m =1, n = 0.
Therefore we seek for the solutions of Eq. (27) in the form

v=["wx, (28)
where /= f(w) and w = w(x, t) are functions to be determined.

With the help of Mathematica, substituting (28) into (27) yields (because the formula is so long,
just part of it is shown here)

Lorf2f" + (r = )(f") = rf i+ - =0 (29)
Setting the coefficient of w? to zero yields an ordinary differential equation for f

P+ = D) o0 =0, (30)
Solving (30) we obtain a solution

1
= ——logw. (31)
pr

Substituting (31) into (29), we can simplify formula (29) to a linear polynomial of . Thus, setting
the coefficients of - (i = 0,...,3) to zero yields a set of partial differential equations for w(x, t)

grw? — (=1 4+ + rw(—wy + wey) = 0, (32)

w2 [prw, + qr(1 + r)w, — pwy] = 0. (33)

Setting

w(x,t) = 1+ exp(dx + Bt + Cy), (34)
where 4, B, Cy are constants, then substituting (34) into (32) and (33) yields

A*+r(=B+qr) =0, (35)

A*p — Bpr — Aqr(1 +7) = 0. (36)
Therefore,

1+7) ?
w(x,t):l+exp<— Pr (1+7) qr—l—prt C0>.

x+
1 +r (1+7r)
From (26), (28), (31), (37), the solution of Eq. (4) is as follows:

1/r
IR 1 pr qr(1+r)° + p*r
u(x,t)—{2+2tanh[2< s 05 t . (38)

4. Summary

In summary, using the variable-coefficient balancing-act method, the appropriate transfor-
mation and Mathematica, we have derived some new types of exact travelling solutions of two
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nonlinear partial differential equation, the generalized BBM equation and BF equation with
nonlinear terms of any order. These solutions fully cover the solitary-wave solutions of various
forms of BBM equations and BF equations previously reported. We introduce two appropriate
transformations to these two equations because m and » in Eq. (2) may not be positive integers.
This method can also be applied to other PDEs.
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