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Abstract

In this paper, we investigate the generalized Q-S synchronization between the generalized Lorenz canonical form and
the Rossler system. Firstly, we transform an arbitrary generalized Lorenz system to the generalized Lorenz canonical
form, and the relation between the parameter of the generalized Lorenz system and the parameter of the generalized
Lorenz canonical form are shown. Secondly, we extend the scheme present by [Yan ZY. Chaos 2005;15:023902] to
study the generalized Q-S synchronization between the generalized Lorenz canonical form and the Rossler system,
the more general controller is obtained. By choosing different parameter in the generalized controller obtained here,
without much extra effort, we can get the controller of synchronization between the Chen system and the Rossler sys-
tem, the Lii system and the Rossler system, the classic Lorenz system and the Rossler system, the Hyperbolic Lorenz
system and the Rdssler system, respectively. Finally, numerical simulations are used to perform such synchronization
and verify the effectiveness of the controller.
© 2009 Published by Elsevier Ltd.

1. Introduction

Chaos is an interesting complex dynamical phenomenon which plays important role in the field of non-linear science.
Recently, the traditional trend of analyzing and understanding chaos has evolved to a new phase. Research in this field
moved to chaos control, synchronization and modeling including not only suppressing chaos when it is harmful, but also
chaotification, i.e. generating chaos intentionally when it is useful. Controlling and utilizing chaos has been extensively
studied within the scientific, engineering and mathematical communities for more than three decades [1-11,13-25]. In
Particular, chaos synchronization has received a significant attention in the last few years [1-11,21-25], since Pecora
and Carroll [2] presented the chaos synchronization method to synchronize two identical chaotic systems with different
initial values in 1990. More recently, based on a backstepping design with one controller, Yan [9] presented a systematic
and constructive scheme to investigate the Q-S lag or anticipated synchronization between the continuous-time drive
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system and the response system with a strict-feedback form. With the aid of symbolic computation, the scheme can be
performed automatically in the computer.

In this paper, we extend the scheme [9] to study the generalized Q-S synchronization between the canonical form and
the Rossler system, the more generalized controller is obtained. As is known, Lorenz system in a simple three-dimen-
sional autonomous system is the earliest system to be found [12]. Recently, Celikovsky and Chen [16] present a new
generalized Lorenz canonical form, such a canonical representation enables subtle of the Lorenz system and chaos tun-
ing, which is a useful tool for chaos analysis. In fact, the classical Lorenz system, the Chen system and the Lii system all
belong to generalized Lorenz canonical family, therefore, they can be transformed into the canonical form. In addition,
the Hyperbolic generalized Lorenz can also be transformed the same form [18]. We will list the response relations
between the parameters of the generalized Lorenz system and the parameters of the canonical form. Based on the sym-
bolic computation system Maple, the synchronization of canonical form and R&ssler system is studied, and the common
controller are obtained, from which we can obtain the controllers of synchronization between the classical Lorenz sys-
tem (the Chen system, the Lii system, the Hyperbolic generalized Lorenz system and so on) and the Rd&ssler system by
choosing the some corresponding parameters without much extra effort. Moreover, the above scheme is effective for the
Hyperbolic generalized Lorenz system. Numerical simulations are used to perform such synchronization and verify the
effectiveness of the controller.

The paper is organized as follows: in Section 2, we introduce the generalized Lorenz canonical form, and give the
relations of the parameters. In Section 3, we investigate the generalized Q-S synchronization of the canonical form
and Rossler system. Finally, conclusions are presented.

2. The introduction of the generalized Lorenz canonical form

The non-linear system of ordinary differential equations in the three-dimension real space in the following form are
called the generalized Lorenz system.

0 0 O
A 0
x= x+x |0 0 —1|x (2.1
0 73
01 O

in which x = (x1, x5, x3)7, A3 € R, 4 is a (2 x 2) real matrix.
ay a
4= ( 11 12) (2.2)
ax  ax
with eigenvalues 4;, 1, € R, such that

b > >-A>0 (2.3)

Theory 1. For the non-singular generalized Lorenz system (2.1)—(2.3), there is a non-singular linear coordinate trans-
formation z = Tx via which (2.1) can be transformed the following generalized Lorenz canonical form:

0 0 00 -1
=0 4 0 |z+(1,-1,0z] 0 0 —1 |z (2.4)
0 0 1 ¢ 0

In fact, for an arbitrary three-dimension system, if 4 has two linear independent real eigenvalue, it must exist a non-
singular linear coordinate transformation z = T, via which the system (2.1) can be transformed into the other five stan-
dard forms. Because the solutions of the other five stand forms approach zero or infinity or limit circle, it is to say, only
the system (2.4) is the one we are interested in. For the other five forms have no role in this paper, we omit them.

In the canonical forms, the classical Lorenz system response to the t > 0, the Chen system response to —1 <7 <0, the
Li system response to T = 0, the Hyperbolic generalized Lorenz system response to t < —1. The graphs are shown in
Figs. 1-3.

The scheme that transform a generalized Lorenz system into a canonical form can be seen in Ref. [6]. We design a
Maple program, if inputting the a1, a»1, 412, @23, A1, T, the output is 4y, 4o, 43, 7. For the canonical forms are determined
by 41, 42, 43, 7, only need to compute the value of 1;, 15, 43, 7, the canonical form is solved.
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Fig. 1. The classical Lorenz system and the Lii system with conditions: 4, =8, 1, =—16, 13=—-1, 1=0.6 and 1, =8, 1, =—16,
Ms=-1,t=0.

z1

Fig. 2. The Chen system and the Hyperbolic generalized Lorenz system with conditions: 4, =38, 1, =—16, ;3 =—1, 1 =—0.9 and
i] = 8, }.2: 716, /Au3: 71, T=-5.

Fig. 3. The Chen system and the condition between the generalized Lorenz system and the Hyperbolic Lorenz system with conditions:
Mm=3=-53=-1,1=-08and 1, =8, lL,=—-16, s =—1,t=—1.

Through our calculation, the relations between a1, a»y, a2, a2, 41, T and Ay, Ao, 23, 7, are as following:

ay +an+ \/(au - 6122)2 +4dayan an +an — \/(011 - 022)2 +4dayay
1= 2 ) i2: 2 ) i3:)“37 T:V5
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in which
- b s b V2(sin(¢) /@ /an + cos(¢,))
- ; - ) 13 — )
bisvbi3 Vb3 2
by = V2(sin(¢y)+/a /> — cos(¢y)) by = V2(sin(¢y)+/a /a + cos(¢y))
a 2 ’ a 2 ’
b — V2(sin(¢, )/ Jar, —cos(¢y)) - . _antan
32 == 3 ) all—azz—Ty
. ap —ay £ \/(012 + a21)2 + (ay; — 022)2 - ax) —ap £ \/(012 + a21)2 + (ay; — 022)2
an = 5 , ap = 3
sin(2¢,) =+ fdn — du , cos(2¢,) == din —

\/\/(a12 +an)’ + (an — an)’ \/\/(a12 +an)’ + (an — an)’

in last two equations the sign of + relies on the condition that ¢, € [O,g].
Taking the new unified chaotic system for example, we use our Maple program to obtain the value of 1y, A, 43, ©
The unified chaotic system as follows:
).Cl = (250{ + 10)(}62 —xl)
).62 = (28 — 350{))& — X1X3 + (290( — ])Xz (25)
).63 = XXy — 8;—“}63

where o € [=0.016,1.15]. Let x = (x1, X2, x3)”, system (2.5) can be written in the forms of (2.1), in which

[ —(252+10) (250 + 10) , 84w
_((28735@ (29a71))’ T3

When —0.016 < « < 0.8, the system (2.5) belongs to the classical Lorenz system; when o = 0.8 the system (2.5)
belongs to the L system; when 0.8 <o < 1.15 the system (2.5) belongs to the Chen system. Now, we take o =0,
0.8, 1, respectively to compute the Ay, 7, 43, 7.

When o = 0, the input is a;; = —(25«¢ + 10) = —10, a1, = (25¢ + 10) = 10, a»; = (28 — 350) =28, a2, = (29 — 1) =
—1, 43 = —%2 = -8 through our Maple program the output is 4, = 11.8277, 1, = —22.8277, /3 = —3, 1 =0.5877, it
belongs to the classical Lorenz system. Similarly, when o = 1, the input is (ayy,ay2,d21,d2,43) = (—35,35,—-7,28,-3),
the output is (11, 4o, 43,7) = (23.8359, —30.8359, —3, —0.7078), it belongs to the Chen system. when o = 0.8, the input
is (a11,a12, aa1, ax, A3) = (—30,30,0,22.2, —8.8/3), the output is (A1, Ao, A3, 7) = (22.2, —30,—2.93333,—0.5757 x 10~'9),
it belongs to the Lii system. It can be seen that the result according with the analysis above.

3. The generalized Q-S synchronization in the generalized Lorenz canonical form and the Rossler system

Recently, a kind of generalized-type synchronization called Q-S synchronization between two dynamical systems
was defined by Yang [21]. More recently, Yan [9] investigated the Q-S synchronization between the Rdossler system
and the new unified chaotic system in [19].

For two dynamical systems

¥=F(x,y), y=Gxy), (x,y)eR™

let Q1(x), Qx(x),...,0ux) and Si(x), Sa(x),...,S(x) be observable of the above two systems respectively. The above
two systems are said to be synchronizable with respect to (Qi(x), Qxx),...,0Ou(x)) and (Si(x), Sa(x),...,Su(x)), if
lim, . [0;(x(t)) — S:(»(1))] =0, i=1, 2,---,h. For convenience, we call this synchronization the Q-S synchronization.
In this paper, we will study the generalized Q-S synchronization between the more general chaotic system: the gen-
eralized Lorenz canonical form and the Rossler system.
Taking the canonical form as the driven system

X = Aix —Z1(x1 —y1)

Vi = Aoy —zi(x1 = yy) o
zy=Jazi + (x1 + ) (1 — )
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and the Rossler system is the response system
Xy ==y, — 2
=X+ oy, (3-2)
Zy=b+xz —czo+u

where u is the controller.

Let the lyapunov function be L(r) =1 (E] + E3 + E3), Qi(1) =y, Si(1) = y1, i?‘ = 15%0. With the help of symbolic
computation, by using the scheme [9], we can obtain E|, E,, E3 as following:

Ei(t) = Qi(t) =S$i() =y, —» (3-3)
Ex(t) = 05(1) = Sa(t) = e1Ea (1) + En (1) (3.4)
E5(t) = O5(t) — S5(t) = E1(1) + c2Ea (1) + Ex(0) (3.5)

where ¢; € RT(i=1,2,3). _
Finally, through solving the equation E(¢) + c3E5(t) + E5(f) = 0, we can get the controller u as following.

U= creima(t) — 2iay (1) + exeaxs (1) = b = w(x1 (1) 20 (1) — sy (1) + crans (1) + (1 (1) 21 (1) + (20(0)) 2y (1)
+ 1@y, (1) = 221 (1) = 02 (0)72(0) + €22(1) + 32 () — ey (1) + 221 (031 (1) = 221 () (1) + 3701 (1)
+ 030y, (1) + c3axa (1) + e (0 (3 (1)) + eaerxa(t) — 203(x1 ()0 (8) + eserz (63 (£) — 2e3haz1 (), (1)
— 30010, () + 3221 (1)x1(8) — 3627001 (8) + c3c2ay, (1) — 3221 (8)y; (1) + czcac1y, (1) + cazi (£) Aix ()
— e3c1iayy (£) = eseizi (), () + e3iazi (D31 (£) + e3tyy (6 (61 (6)° + exx1 () A7 (1) — 26331 (DT (1(8))?
— e (1)23271 (1) + ecscrany (1) — sy (1) + es(x1 (1)) = exza(r) = 30, (1) 21 (D)x1(2) + 3(x1 (1)) 21 (1), (1)
+ 21 () 2% (6) = (21(0)*ax1 (1) + 22 (21 (6) 1. () = 2a(21(0) 201 (1) = 51 (D)9, (A + (0, (1) 21 (1)
+ 400 (1) A = x (1) 21(0) + 30 (01 (0) 21 + 30 (01 (1) *20(1) = 320 (1)1 (D21 (1) + 221 (1) a3 (1)
+ o1z (61 (1) + Aoz ()01 () + 22321 (6) a1 (£) = 3t(ry () Aax1 (6) + (01 ()21 (1) = 39, (1) = 5(x1(£)) 20 (8)
— 3222, (), () + 4x1 (1) (1, (1)) g + 2220 (O)x1(2) + 51(0,(0))* 22 — 122, (1) — caei 2oy, (2) + cacrzi ()x1 (2)
— caerz1 (0, (1) = 2e121 () 223, (1) + 2271 ()31 (£) = 222071 (1) (£) = T (v (6)) 31 (2) 22 + 21(x1 (£)* 223, (0)
= 321 (1) 2y (1) + 1oz (D31 () + 21 (17521 (1) = 261 (11 ()21 (1) + €1 (01 (1) + e2(x1 (1) + Ao (31 (1))
+ (x1(6)) A5 = cayy (a2 (£) — 202 (0, () 101 (2) + coxr (04321 (2) + €1 (01 (0) 1 (1) — 21 (v, (1))
— 201 (6) 2501 (1) 4 €231 (1) 2321 (1) + €201 (1)) 2 () + Aox1 (0) 2321 (1) + (01 (0))* 2ty (1) — €131 (1) 2z (1)
1(0)7521(8) = 2e20, () (51 (1)) + 207 (1)1 (6) + €207 (1)) 7 = 20 ()Aa (01 (1)) + (011 (0)) 21 (1) + (1(1))
+ a0 (D)1 (0) + 1 (1 (1) 1 = ey (t) — ez (t) — e122(t) — aza(t) + eacrays (1) + e2d’y, (1) + craxs (¢)
+alx(t) + @'y, (1)
Taking the given value of 1, 15, 43, T from u can make synchronization between the different chaos systems belong-
ing to the generalized Lorenz canonical family and the Rossler system.
In the following, we would like to use numerical simulation to verify the effectiveness of the obtained controller u.

We take the initial values of system (3.2) and (3.1) as a=0.2, b=0.2, c=57, hy =1, hh =2, h3 =3, [x2(0) =0.2,
12(0) = 0.3,25(0) = 0.5] and [x1(0) = 1,»1(0) = 2,z,(0) = 3].

Case 1. Synchronization of the classical Lorenz system and the Réssler system, taking 1, =38, 1, =—16, l3=—1,
T = 0.6 from the general controller u, the canonical form belongs to the classical Lorenz system, so we can obtain the
synchronization between the classical Lorenz system and the Rossler system, the initial values of the error dynamical
system (3.3)—(3.5) is E;(0) = —1.700, E,(0) =27.560, E3(0) = —256.868. Numerical simulations of the synchronization
of the driven system (3.1) and response system (3.2) are shown in the Fig. 4.
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Fig. 4. The classical Lorenz synchronization errors with conditions: 2; =8, 1, = —16, /3= —1, 1=10.6.
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Fig. 5. The Lii synchronization errors with conditions: 4, =8, ., = —16, ;3 =—1, 1 =0.
Case 2. Synchronization of the Lii synchronization and the Ré&ssler system, taking 4, =8, 1, =—16, .3=—-1,t=0

from the general controller u, the canonical form belongs to the Lii system, so we can obtain the synchronization
between Lii system and the Rdssler system, the initial values of the error dynamical system (3.3)—«(3.5) is
E(0) = —1.700, E5(0) = 27.560, E5(0) = —256.068. Numerical simulations of the synchronization of the driven system
(3.1) and response system (3.2) are shown in Fig. 5.

Case 3. Synchronization of the Chen synchronization and the Réssler system, taking 1; =8, 1, =—16, /3=—1,
7 = —0.2 from the general controller u, the canonical form belongs to the Chen system, so we can obtain the synchro-
nization between the Chen system and the Rossler system, the initial values of the error dynamical system (3.3)—(3.5) is
E1(0) = —1.700, E(0) =27.560, E5(0) =258.468. Numerical simulations of the synchronization of the driven system
(3.1) and response system (3.2) are shown in Fig. 6.

error states of E1 error states of E2 error states of E3
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Fig. 6. The Chen synchronization errors with conditions: 4; =8, 1, = —16, A3=—1, 1 =—-0.2.
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Fig. 7. The Hyperbolic generalized Lorenz synchronization errors with conditions: 11 =8, A, =—16, ;3= -1, 1= -2.

Case 4. Synchronization of the Hyperbolic generalized Lorenz system and the Rossler system. Taking 1y = 8§, 7, = —16,
A3 = —1, 1 = =2 from the general controller u, the canonical form belongs to the Hyperbolic generalized Lorenz system,
so we can obtain the synchronization between the Hyperbolic generalized Lorenz system and the Rdossler system, the
initial values of the error dynamical system (3.3)—(3.5) is E£1(0) = —1.700, E{(0) = 27.560, E5(0) = —262.068. Numerical
simulations of the synchronization of the driven system (3.1) and response system (3.2) are shown in Fig. 7.

In fact, take any arbitrary 4, 45, 43, T, we can obtain the synchronization between the other Lorenz chaotic system
that belongs to canonical form and the Rossler system.

4. Summary and conclusions

Based on a systematic and constructive scheme to investigate synchronization and by means of Maple, we have stud-
ied synchronization between the continuous-time drive system: the generalized Lorenz canonical form and the response
system with a strict-feedback form: the Rossler system. Due to the generalized Lorenz canonical form that covers a
broader class of chaotic systems, we only need to choose different parameter in the generalized controller found in this
paper, we can obtain some different controller for synchronization between the Chen system and the Rossler system, the
Lii system and the Rossler system, the classic Lorenz system and the Rossler system, the Hyperbolic Lorenz system and
the Rossler system, respectively. Numerical simulations are used to perform such synchronization and verify the effec-
tiveness of the controller.
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