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Abstract

In this study, we extend the generalized multilinear variable separation approach to a fifth-order
nonlinear evolution equation. By performing asymptotic analysis on the variable separation solution,
which is composed of three lower-dimensional functions, we identify a resonant regime governing
dromion-dromion/solitoff interactions. In the case of two-dromion interactions, elastic, inelastic,
and completely inelastic collisions are possible, while for the dromion-solitoff interaction only
inelastic and completely inelastic collisions are permitted. Furthermore, we derive two types of semi-
rational solutions from the quadratic function ansatz. In particular, in the scenario of a completely
resonant collision between a lump and a line-soliton pair, the lump separates from one line soliton
and exists briefly before merging with the other soliton, forming a localized lump in both time and
space dimensions. The fusion or fission phenomena between the dromion-dromion/solitoff
interaction and the lump-line soliton interaction are shown graphically.

1. Introduction

Solitons, characterized as coherent and robust solitary wave solutions of nonlinear partial differential equations
(NPDEs), have attracted considerable interest in various branches of physics due to their particle-like properties
[1]. The exploration of multi-soliton solutions for a specific class of NPDEs, referred to as integrable systems or
soliton equations, has been the focus of extensive research. Various effective methods have been developed for
this purpose, including the inverse scattering method [2], Bicklund and Darboux transformations [3, 4], the
Hirota bilinear method [5], Riemann-Hilbert method [6—8], and the similarity transformation [9].

The separation of variables, one of the oldest methods in mathematical physics, has been effectively extended
to its nonlinear counterpart from various perspectives. Examples of these extensions include the
nonlinearization of the Lax pair [10], the symmetry constraint method [11], the multilinear variable separation
approach (MLVSA) and the generalized MLVSA [12—14]. Among these methods, the MLVSA and its
generalization are critical and powerful tools for obtaining localized excitations in numerous (2+1)-
dimensional integrable systems [15—19]. Mathematically, there exists a universal formula for all MLVSA solvable
systems, such as the Davey-Stewartson equation [15], the Broer-Kaup-Kupershmidt system [17], the (2+1)-
dimensional sine-Gordon system [ 18], and the non-integrable (2+1)-dimensional Korteweg—de Vries equation
[19]. Notably, new patterns of localized excitations, such as ring solitons, peakons, compactons, as well as
chaotic and fractal patterns, have been constructed based on the universal formula. Although the MLVSA is
initially proposed for (2+41)-dimensional systems, it can also be employed to solve (14-1)-dimensional [20] and
(3+1)-dimensional [21] nonlinear systems.

Unlike solitons, which are localized in a specific direction, lumps represent rational solutions localized in all
spatial directions [22]. Notably, lumps occur in various physical systems, including nonlinear fiber optics,
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plasmas, and Bose—Einstein condensates. Recent research demonstrates that the derivation of lump solutions is
achievable through the quadratic functions ansatz, as illustrated by the Kadomtsev-Petviashvili (KP) equation
[23-25]. Subsequently, these findings have prompted a comprehensive exploration of lump excitations and
interaction solutions between lumps and other types of nonlinear waves [26—30]. For example, Hossen obtained
three types of interaction solutions to a (3+1)-dimensional model, including the lump-kink wave solution,
breathers, and a new interaction solution among the lumps, kink waves and periodic waves [29]. Li constructed
degenerate lump solutions for the Yu-Toda-Sasa-Fukuyama equation using Hirota’s bilinear method and a
novel limit approach [30]. Further study suggests that interactions between a lump and a line-soliton pair could
lead to the creation of rogue waves [31, 32].

In this work, we deal with the following (2+1)-dimensional Sawada-Kotera (2DSK) type system [33]

Up + Uspoer + 5(UVy + 2Uxev + 3uv?), = 0,
Uy — v, = 0. @))]

Itis obvious that setting u = v = w(x, y, t) and rescaling y — x would degenerate the 2DSK type system (1) into
the SK equation [34, 35]. The 2DSK system (1), as a (2+1)-dimensional extension of the SK equation, serves as a
model for surface water waves and may have applications in conformal field theory, quantum gravity, and
nematic liquid crystals [36, 37].

The paper is organized as follows. Section 2 introduces an extended variable separation solution and
examines its intricate relationship with the universal formula obtained by the MLVSA. Sections 3 and 4 analyze
the dromion-dromion/solitoff interaction, establishing parameter conditions for elastic, inelastic, and
completely inelastic scenarios via asymptotic analysis. In section 5, specific solutions are derived through a
combined application of the quadratic function ansatz and the Hirota bilinear method, with a particular
emphasis on completely resonant collisions. The concluding section presents several key findings.

2. Variable seperation solution

To apply the generalized MLVSA [38], we take the truncated Laurent series
u=2(Inf)y +up, v=20Inf)x + vo 2)

where 1y and v, are arbitrary seed solutions to the 2DSK system. By substituting the transformation (2) with a
specific choice of seed solution 1, = 0 and vy = vo(x, ) into (1), after integrating with respect to x, we obtain the
following bilinear equation

[D, D] + 10vyDyD; + 5(voxx + 3v9)D, Dy + D,D, + C(y, H)If - f= 0, 3)
where fis an analytic function of (x, y, t) and the Hirota bilinear derivative operator is defined by [39]
Dgch;/ﬂDzna b= (ax - 8}(’)[(8)/ - 8}/’)m(8t - 8t’)na(x) Vs t) b(xly )//’ t/) |x:x’,y:y’,t:t’-
To completely separate the spatial variables {x, y}, we assume the expansion of the function fin the form

f=p +p49 4

where p; and p; are functions of {x, t}, and q is a function of { y, t}, respectively. Substituting (4) into (3) leads to

_ pa S 2CGnf7

[D; + D7 + 10vD; + 5(vowx + 3v5)Dilp; - p, = p - D4 (5)
y
By introducing the restriction
C(y, 1) = 2a4,, G)
equation (5) can be separated into the following two equations
[D: + D] + 10%D; + 5(vow + 3v9) Dilp, - p, = (ap] + ap; + cpipy)s )
9, = —aq’* + aq — o, ©)

where ¢;, ¢; and ¢; are arbitrary functions of t. Now, the problem of finding the solution of fis transformed into a
task of determining solutions for the reduced differential equations (7) and (8). Interestingly, the first-order
differential equation (8) is known as the nonlinear Riccati equation, whose solution can be given explicitly

5

- s 9
q L LT 2 €)]

where T; = Ty(¥), (i = 1, 2, 3) and F = F(y) are arbitrary functions of the indicated variables while ¢, ¢;, and ¢, are
related to Ty, T, and T3 by
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Figure 1. Plots of dromion structure and the corresponding v field with parametersare k; = 1.5,/ = 2,a = &p = 0and K = 20. (a) a
standard dromion structure with Y = e”; (b) the corresponding v field; (c) a dipole dromion structure with Y = sech(ly); (d) the
corresponding v field.

T T T? T, LT T
a) =2, o)=L+ 22 T, @) =222+ L (10)
Ti T 1 1 T

Finally, substituting (4) into (2) yields the variable separation solutions of the 2DSK system
_z(pleZ - p1p2x)qy v = 2(P1xx + pzqu) - 2(p12x + Zplequ - p22xq2)
(P +p* (P + p) (P + pp)?

Given p; = a; + asp and p, = a + a,p, we find that the field u takes the form of the universal formula for all
MLVSA solvable systems

u= + vo. (11)

2(agas — may)p, q,

(ap + ap + arq + aspq)*’

u =

where p is a function of {x, ¢}, and ay, a;, a,, a5 are constants.

3. Elastic, inelastic and completely inelastic interaction between two dromions

3.1. Dynamic characteristics of a single dromion structure
The exponentially localized dromion structure is an important nonlinear excitation in high dimensions [40—45].
It appears in various physical systems, such as the magnetosphere of Saturn [44] and the disk-shaped dipolar
Bose—Einstein condensate [45].

To construct the dromion structure for the u field, we set T} = 1, T, = T5 = 0, indicating g = Y = Y(y), and
vy = avas a constant. Subsequently, equations (7)—(8) can be satisfied by taking

p=14ce% p,=1+Keh &=hkx+wt+&p wi=—k — 10ak] — 15ak. (12)
With the additional restriction Y = e”, where 1 = ly, the substitution of (12) into equation (11) yields

2k 1(K — 1)esitn _2kfeS(1 + eN(1 4 Ke")

- , v= . (13)
(1 4 & 4 e + Ke&itm)? (1 4 & 4 e + Kesitm)?

Here, the u field illustrates a single dromion structure, as depicted in figures 1(a), while the v field represents a
line soliton with a sudden shift, as shown in figures 1(b). Setting Y = sech(2y), a dipole dromion, whichisa
bounded state of a bright and a dark dromion, is observed in figures 1(c). For the corresponding v field, aline
soliton with abump is evident in figures 1(d).

To characterize the single dromion structure, its amplitude and mass can be defined [43]. By setting the
partial derivatives u, and u,, to zero, it is found that the tip of the dromion is located at the critical point where
eh =eh = %, resulting in the amplitude
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Figure 2. Inelastic interaction between bright-dark dromions with parameters k; = 0.8, k, = 1.25,1 = 5,K; = 0.9,K, = 0.5,K3 = 1.6
andép=&p=a=0.(a)t=—6;(b)t=0;(c)t = 6.

1]kI(K—1)
Unpax = ——————. 14
2 (WK + 1)? (4
The mass of the single dromion is defined as
+o0 +o0
M= f f udxdy = 2In(K). (15)

3.2. Elastic, inelastic and completely inelastic interaction
In addition to equation (12), one may take

p=14e+es 4 Kehts,  p, =1+ Ked + Keb + Kebts,  =kix+wit+ &, @(=1,2)
(16)

to produce a two-dromion solution. Substituting (16) into (7), the coefficient K and the dispersion relation can
be determined as

(k — k) (kP — kiky + k3 + 6a)

K=K+ 2 2
(kl + kz)(kl + k]kz —+ k2 —+ 60[)

(K, — K3), wi= —k? — 10ak] — 15ak;, (i=1,2). (17)

To carry out the asymptotic analysis of the interaction between two dromions, without loss of generality, we
assume k; > 0, k; > 0, w,/k; > w>/k; and e" is finite. In the frame comoving with £, the exponent £, is finite,
and the limits t — & oo leads to

B 2k 1(K — K K3)ebitn oo = 21K, — 1)ebsitn
(1 + Kie& + Kse + Ke&tn)? T (S e+ Kpeb)

Uy t — +o0,

(18)

where 1, and uy,, stand for the expression of dromion 1 before and after the interaction, respectively.
Analogously, the expressions for dromion 2 before and after the interaction are

2 1(Kz — 1)eStn 2k 1(K — K Ky)estn
- > t — —00; Upg = 5
(1 + eﬁz + e + K3€£2+T])2 (1 + I<1e§1 —+ K3e77 + Ke£1+77)2

Uy t — +00.

(19)

In general, the interaction between two dromions is remarkably inelastic. Nonetheless, if the additional
conditions u;5(&§1 + 016 1 + 61,) = t14(&1, ) and (&5 + G2 N+ 02y) = U4(§, 1) are imposed, namely,
(k — k) (ki — kiky + k) (K — K3)
(ki + k) (K + ki + k) (KoK — 1)

K =KKK; K= (K, = K3), (20)

then the interaction between two dromions becomes elastic and the phase shifts can be determined as

o = —In(Kp), 6y = —In(K3), by = In(K)), 0y = In(Ky). (21)

Figure 2 illustrates the inelastic interaction between bright-dark dromions, showing obvious shape changes
and phase shifts in the transverse direction. An elastic interaction is presented in figure 3, plotting the quantity
‘—u’, where the two dark dromions maintain their identity after the interaction, except for phase shifts.
Interestingly, a completely inelastic interaction between two dromions, namely, fusion or fission phenomena,
can be observed by imposing the additional condition K = K;K; or K = K;K;. A schematic diagram depicting
the fission process of bright dromions with K; = K/K, ~ 26.27 is shown in figure 4.

According to the definition (15), the total mass of two dromions before and after the interaction can be
calculated as follows
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Figure 3. Elastic interaction between two dark dromions with parameters are k; = 0.9, k, = 0.65,/ = — 5, K, = 1.6,K; = 1.35and
Clo=&p=a=0.(a)t=—30; (b)t=— 0; (c)t = 30.

015 c(b)
1

Figure 4. Completely inelastic interaction between two bright dromions: the fission process, characterized by the parameters are
ki =—09,k;=06,l=—1,K,=12,K3=0.3,&0=E,=0anda = — 0.5.(a)t = 0;(b) t = 3; (c) t = 10.

oo ptoo o0 oo
LOO j:oo (tp + u2b)dxdy:£oo j:oo (tha + tp)dxdy = zln(%)_ 22)

This proves that the total mass of two dromions is a conserved quantity, regardless of whether the interaction is
elastic or not.

4.Inelastic and completely inelastic interaction between a solitoff and a dromion

For further simplicity, weset T} = 1, T, = T5 = 0, and v, = 0. Then, equations (7)—(8) can be satisfied by taking
=14 Aed + Aje® + Azett%,  p, = By + BieS + Bye% + Bsebth, g = e,
S=hx+wt+&, SL=hxt+wt+&, 1=k, w= —k15, Wy = —kf, (23)

with coefficients A;and B; satisfy

(k — k) (k¥ — Kk + k(A By — AyB) + (ki + k) (k% + Kk + k3)(B; — A3By) = 0. (24)

To interpret the interaction behavior clearly, we carry out the asymptotic analysis as in section 3. Without
loss of generality, we assume k, > k; > 0 and e"is finite. In the frame comoving with ¢}, the limits t — + oo leads
to

Zkll(AzB3 — A3B2)e51‘“7 2kll(Bl — A1B0)6£1+77
up = — —00; Uy = t — 400,
(A2 =+ A3651 =+ Bze” =+ B3€§1+n)2 (1 + Alefl + Boe" + Blegﬁ'")z
(25)
Analogously, in the frame comoving with &, the limits  — % oo leads to
2kzl3(B2 — A2B0)852+77 2kzl(AlB3 — A3B1)€£2+"
Uy = P — —00; Uy = t — +00.
(1 + A2€§2 + Boe” + B2e§z+77)2 (A] + A3€§2 + Ble’7 + B36£2+7])2
(26)

From equations (25)—(26), it is clear that setting A5 to zero, while keeping the other coefficients nonzero, can lead
to an inelastic interaction between a soliton and a dromion. Furthermore, it can be inferred that the two waves
exchange both energy and velocity during the interaction process. The amplitude changes can be summarized as
follows:
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Figure 5. Inelastic interaction process between a solitoff and a dromion in the u field. (a) t = — 10; (b) t = — 0.5; (c) t = 1;(d) t = 10.

Figure 6. Completely inelastic collision between a solitoff and a dromion: fusion. A dromion is absorbed by a solitoff with parameters
arek; = 0.6,k; =1.2,1=1,A, =2,A3=0,By=1,B, =12,B3=1,{;0=&p=1p =0and A, = B, = 0.7.(a) t = — 10; (b) t = 0;
(©t=15;.

kil k1
Asolitoﬂ'ltﬂfoo = Aulb = %) Asolitoﬂ‘lt~>+oo = Au2u = m)

k1(By — AyBy) |M_ A
Adrumianltﬂ—oo = Aqu = | 2 ( 2 2 O)l 5 M_ = 2
4A, + 2(B, + AyBo)M_ \ ByB,

kl(B; — A1By)|M. A
Adromionlt—>+oo = Aula = I Ll : O)l R > M, = : . (27)
4A; + 2(By + A Bo) M. \ BoB,

Figure 5 illustrates an inelastic interaction process between a solitoff and a dromion. The parameters for this
processinclude k; = 0.6,k, =1.2,1=0.5,A, =2,A3=0,By=1,B, =6,B,=18,B3=4,£10 =& =10 =0,
and A; = 20/9. Figures 5 (a) shows that the two waves share the same initial amplitude A,,, = A,,, = 0.15. As
the dromion’s speed exceeds that of the solitoff, it will catch up with the solitoff and be slowed down due to its
energy loss. As the dromion’s bottom approaches the front of the solitoff, energy is transferred between them,
causing the dromion’s height to decrease. Comparing with figures 5(a), amplitude of the dromion structure
decreases slightly, while no visible change of solitoff amplitude can be observed in figures 5(b). The
accumulation of energy in the front part of the solitoff results in the formation of a hump on the peak, which is
shown in figures 5(c). After the interaction process, significant changes in amplitude can be observed in both
waves, as shown in figures 5(d).

Remarkably, completely inelastic interaction between a solitoff and a dromion become observable with the
appropriate choice of wave parameters. By setting B; — A, B, = 0, signifying the disappearance of the dromion,
one can observe the absorption of a dromion structure by a solitoff, as depicted in figure 6. Similarly, one can
observe the generation of a dromion from a solitoff, as shown in figure 7, by introducing the additional condtion
B, — A,B, = 0.
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Figure 7. Completely inelastic collision between a solitoff and a dromion: fission. The emergence of a dromion from a solitoff with
parametersarek; = 0.6,k, = 1,1 =1,A, = 803/76,A, = 0.5,A3 = 0, By = 2,B, = 0.5, B, = B; = 1,and {;p = & = 19 = 0. (a)
t=—20;(b)t=—5;(c)t = 0;(d) t = 20.

5. Interaction solutions between lump and line soliton

5.1. Lump solution
Take C(y, t) = 0 and v, as constant, the bilinear equation (3) reduce to

[D,D] + 10vyD,D; + 15vqDy Dy + D,D;]f - f = 0. (28)

To construct lump solution of the 2DSK system (1), we assume the function ftakes the following quadratic
form

f: g2 + h2 + ag,
g=ax + ay + ast + ay,
h = asx + agy + ast + as, (29)

with a; (i = 1, 2,...,9) are the wave parameters to be determined. By substituting (29) into the bilinear
equation (28) and setting the coefficients of the space-time variables x, y and f to zero, we obtain
as aed; . az

h=——>, h=——"; a5=——7.
15v, as 15v,

(30)

Obviously, the parameters {as, ay, ¢, a7, ag, ao } are left as arbitrary and {a,, as} are relevant to the seed solution
vo. Together with the transformation (2), the explicit solution in rational form reads

v 8ag(ash — a;g)(asg + azh)
15a3v¢ (a9 + g2 + h?)?
. (ai — ad) (W — ¢¥) — dasa;gh + as(ai + a?)
225vy (a9 + g + h?)?

+ V0, (31)

where gand hare
a aga
= — 32x_6_7}/+a3t+a4’
15v; as
az
h=-— >X + agy + azt + as.
15vy

To ensure that the solution (31) is rationally localized in all spatial directions, we impose the constraint condition
Voasae = 0. At any fixed time t, the rational solutions approach zero as x* + y* tends to infinity. Thus, the solution
(31) represents typical lump structures. In order to analyze the characteristics of lump motion, we consider the
example of the u field. Setting u, = u,, = 0 reveals that the extreme values are located at the four critical points

7
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Figure 8. Plots of the lump structures of solution (31) with parametersare a; = — 0.12,a, = ag = 0, a4 = 0.9, a; = 0.5and ay = 50,
and vy = 0.1. (a) lump structure of u field; (b) lump structure of v field; (c) the contour plot of u in x — y plane at different times.

30v§(a3a4 + ayag) £ 151/5\/2619(6132 + a72) 2as(aga; — asag) =+ a34/2a9(a32 + a72)]

15v2t +
0 a2 + a2 2a6(a3 + a7)

» (32

which result in amplitude of u

a6(a32 + a72)

15v02a3a9

umax -

(33)

Itis evident from equation (32) that the lump moves along the route line parallel to the x-axis with a velocity
of 15v¢. In order to provide a clearer visualization of the lump structure, let us examine some figures. Figures 8(a)
exhibits the three-dimensional lump structure of u at time t = 0. According to equation (33), the amplitude of u
can be approximately calculated as 0.26, consistent with the presented figure. Figures 8(b) displays the lump
structure of vat time t = 0 on a constant background v, = 0.1. The contour maps at different times are shown in
figures 8(c), where the trajectory of the lump’s peak or valley is along the line y = 4= 1.297.

5.2. Lumpoff solution

The lumpoff solution describes completely inelastic interaction between lump waves and stripe line solitons[46].
Itis characterized by the cutting of lump waves by soliton waves either before or after a specific time. To
construct the lumpoff solution, we incorporate the exponential function into the quadratic function ansatz

f= g2+ h* + apet + ao,
g=ax + ay + ast + ay,
h = asx + agy + a;t + as,
€ =kx+ ky + kst, (34)

with g;, k;and w are real parameters to be determined later. Substitution for (34) into the bilinear equation (28)
yields, after elimination of the coefficients of polynomials x, y, and #, a set of more algebraic equations. From
these equations, a nontrivial solution of five wave parameters {as, a;, a1, k3, v} can be determined as

Sark)! Sask 2 kP
as = _h) a; = _ﬂj Ay = M, k3 — _1’ Vo= ——. (35)
12 12 kik 4 6

For the sake of nonsingularity, the expression of a, leads to the constraint condition k; k,(a,a, + asas) > 0. Via
the transformation (2), the lumpoff solution of the 2DSK system (1) is obtained as follows

= H@a, — asaq) (W — g%) — 2@mae + aas)hg + (aa; + asaq)(ag + ape’)]
(g% + h* + aget + ag)?
L 2ot hk(g? + 12 + as) — 2Ki(arg + ash) — 2k(aig + ash)]
(g% + h* 4 apet + ag)? ’

(36)

L A@h —asg)’ — (g + ash)’ + (@ + ad)(as + aped)] + 2ay0e [kl (g* + W + as) — 4(arg + ash)] i
(g2 + hZ + 611065 + ag)z

0>

(37)
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Figure 9. Time evolution of the lumpoff wave of the v field (37) with parametersare a; = 1.05,a, = as = 0.5, a, = ag =& = v, =0,
as = 0.5,a6 = 1.5,a9 = 1,k; = — 1.8and k, = — 1.2.(a)t = — 3;(b)t = — 0.5; ()t = 0;(d) t = 1.5.

where g, h,and £ are

5611](14
g=ax + ay — t+ ay
4
h = asx + agy — Sasky t + asg,
kS
E=hx+ ky + Ilt. (38)

The lumpoff solution (37) describes the completely inelastic interaction between a lump and a stripe soliton.
Depending on the sign of ks, it exhibits two notable nonlinear phenomena: fusion and fission. For illustration,
we focus on the v component. Itis assumed that x, y, and k3 are constants, and k5 < 0, without loss of generality.
Ast — — oo, the exponential term e* primarily determines the solution, and v approaches vy as € — + 0o .
Therefore, there is no lump structure in this limit. In contrast, for t — + oo , the rational function g2 + K+ g
dominates, implying that the lump structure tends to emerge and flourish. Based on these asymptotic analysis, it
is obvious that the fission phenomenon may be observed by taking k3 < 0 as shown in figure 9. At time of
t = — 3, onlyaline soliton moving towards the —x direction is visible in figures 9 (a). In figures 9(b), the line
soliton exhibits a slight curve, resulting in a hump at its center. In figures 9(c), one can observe that the line
soliton has split into one lump structure and one line soliton at time ¢ = 0. Figures 9(d) shows that the lump
structure tends to depart from the soliton line as time goes on. Corresponding to this, figure 10 shows the
contour plot. Furthermore, by taking k; = 1.8, and k, = — 1.2 with other parameters unchanged one can
observe the fusion process.

5.3. Instanton-like excitation
To explore a special instanton-like excitation generated by the resonant interaction between a lump a line-
soliton pair, we assume

f=g + 1+ apet + ane ™t + ay,

g=ax + ay + ast + ay,

h = asx + agy + a;t + as,

&= kx + kt, (39)

Substituting (39) into (28) and proceeding as previous section, we obtain a nontrivial solution of four determined
wave parameters {a;, ds, d1p, 11 }
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(a) (b)
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Figure 10. The corresponding contour plots of the lumpoff solution (37) at different times. (a) t = — 3; (b) t = — 0.5; (¢) t = 0; (d)
t=1.5.

as az 2(&32 + (172)
m = as = —— qo = adnn = — 7 3 NG
75k1 VO (6V() + kl)

e @ (40)
152 1518

The expression of {a;} (i = 1,5, 10) leads to the constraint conditions: vok; = 0, v, < 0and k? > 6|vy|. Through
the transformation (2), the rational-exponential solution of the 2DSK system (1) reads

"y 4[(ma, — asag)(h* — g2 — 2(mas + mas)hg + (amax + asag)(as + apet + ae )]
(gz + h? + 1711065 + a9)2

_ dayoki(arg + agh) (e — e~%)

> 41
(&> + I + ape’ + ay)? “n
) 2ai0[ki’ (g% + h* + ag)(e* + e%) — dki(ag + ash)(e® — e )]
(g% + h? + aet + ay)?
n 4{(mh — asg)? — (mg + ash)? + (af + ad)las + ajp(e® + e 9]} + v, “2)
(gz + h2 + 0106§ + a9)2
where g, h, and £ are
__ %
g=— 151/02x + ayy + ast + ay,
=Yyt agy+art+a
151 oy &
§=kx+ kt, (43)

The semi-rational solution (41)—(42) represents the completely inelastic interaction between a lump and a
line-soliton pair. Since the exponential term is dominant, the lump wave rapidly vanishes as t — 4 0o .
Therefore, the lump only becomes visible when it shifts to the line £ — 0. The asymptotic behavior of the
solution (41)—(42) coincides with the concept of instanton in theoretical physics. Figure 11 illustrates such a
phenomenon for the v component by means of three-dimensional plots and the corresponding contour plots
are shown in figure 12. Graphically, the solution portrays the lump initially detaching from the line soliton,
swiftly merging into the next adjacent soliton after a brief appearance on a constant background. This unique

10



10P Publishing

Phys. Scr. 99 (2024) 065263 JWanget al

Figure 11. The three-dimensional plots of the rational-exponential solution of equation (42) at different times. The parameters are
selectedasa, = 1.2,a3 = 1.6,a, = ag = & = 0,a5 = 1,a5 = 0.6,a; = — 1.5,a9 = 15,k; = 5,k, = 0.01,vy = — 0.12.(a)
t=—100; (b)t = — 5; (c)t =0.(d) t = 5; (e) t = 100.

(a)

‘ 40
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Figure 12. The corresponding contour plots of the rational-exponential solution of equation (42) at different times. (a) t = — 100; (b)

t=—>5;(c)t=0.(d)t = 5;(e)t = 100.

transient lump solution exhibits key characteristics of a two-dimensional rogue wave, displaying localization in
both spatial and temporal dimensions, thus referred to as a rogue lump wave.

6. Conclusions and discussions

In this study, we have successfully extended the generalized MLVSA to a challenging fifth-order nonlinear
evolution equation, specifically the 2DSK system. The solution of the variable separation is formulated in terms
of three lower dimensional functions, where p; and p, satisfy a bilinear equation and q is determined by a
nonlinear Riccati equation. With these stringent requirements, several specific solutions are presented to
construct localized excitations. Through asymptotic analysis, we identified a resonant regime governing
dromion-dromion/solitoff interactions, resulting in completely inelastic collisions. By employing a
combination of symbolic computation techniques and the Hirota bilinear method, we derived specific solutions
describing lump, lumpoff, and the resonant interaction between a lump and a line-soliton pair. Notably, the
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unique transient lump solution (42) possesses the essential features of a two-dimensional rogue wave mode,
exhibiting localization in both the two-dimensional spatial domain and in time.
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