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Utilizing the Hirota bilinear method, the lump solutions, the interaction solutions with

the lump and the stripe solitons, the breathers and the rogue waves for a (3 + 1)-
dimensional Kudryashov–Sinelshchikov equation are constructed. Two types of interac-

tion solutions between the lumps and the stripe solitons are exhibited. Some different

breathers are given by choosing special parameters in the expressions of the solitons.
Through a long wave limit of breathers, the lumps and rogue waves are derived.

Keywords: Hirota bilinear method; interaction solution; breather; rogue wave; (3 + 1)-

dimensional Kudryashov–Sinelshchikov equation.

1. Introduction

The nonlinear evolution equations have been used to describe the propagation of

the waves in bubbly liquids, such as the Korteweg–de Vries (KdV) equation,1 the

Burgers equation,2 the Burgers–Korteweg–de Vries equation1 and so on. A mix-

ture of liquid and gas bubbles can be considered as a classical example of a classic

nonlinear medium. The propagation of the waves in bubbly liquids is one of the im-

portant problems worthy of investigation. Recently, Kudryashov and Sinelshchikov

developed a nonlinear partial differential equation for describing the propagation of

∗Corresponding author.
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waves in a mixture of the liquid and gas bubbles in the 3D case.3 Tu et al. obtained

its exact solutions through Bäcklund transformation (BT).4 As the exact solutions

of the nonlinear evolution equations can provide much physical information and

more insight into the physical aspects of the problems, it is important to obtain the

exact solutions to nonlinear evolution equations.

To find exact solutions to nonlinear evolution equations, a series of methods

have been proposed and developed, such as the Inverse Scattering transformation

(IST),5–7 BT,8,9 symmetry approach,10–13 Darboux transformation (DT),14–17 Hi-

rota bilinear method18–23 and so on.

Among these methods, the Hirota bilinear method is a popular way to con-

struct the exact solutions to nonlinear evolution equations. The Hirota bilinear

method can be applied to construct various types of exact solutions, such as the

lump solutions, interaction solutions, breathers and rogue waves. Lumps are ratio-

nal function solutions and localized in all directions in the space. Rogue waves are

another kind of rational function solutions, which have an amplitude more than

twice the background waves and appear from nowhere and disappear without a

trace. Rogue waves were observed in deep water,24 oceans,25 fiber optics26 and so

on. Breathers are localized in one certain direction with a periodic structure. In

addition, breathers serving as the potential prototype for the rogue waves in a lot

of physics fields are worthy of investigation.27 In recent years, the Hirota bilinear

method is applied to construct the lump and the interaction solutions between the

lump and the stripe solitons.28–36 In addition, the lump solutions and rogue waves

can be obtained through a long wave limit of breathers.37,38

In this paper, we consider a (3 + 1)-dimensional Kudryashov–Sinelshchikov

equation39

(ut + αuux + γuxxx)x + duyy + euzz = 0 , (1)

where u = u(x, y, z, t) is a differentiable function and α, γ, d, e are arbitrary con-

stants. Equation (1) can describe the liquid containing gas bubbles neglecting the

viscosity of the liquid. Equation (1) is a deformed equation of the equation proposed

by Kudryashov and Sinelshchikov.3 Equation (1) is a much common nonlinear evo-

lution equation for describing the waves in bubbly liquids and many well-known

nonlinear evolution equations can be derived from Eq. (1). When d = 0, e = 0,

α = 6, γ = 1, Eq. (1) is reduced to the KDV equation.40 When e = d, Eq. (1) is

reduced to a generalized (3 + 1)-dimensional KP equation.41

For Eq. (1), Chukkol constructed the traveling wave solutions by using a modi-

fied tanh–coth method39 and Zhou obtained the multi-solitons, breathers and elastic

interaction solutions.42 In order to study the wave propagation in bubbly fluid flow

in more depth and consider complex situation, in this paper, we construct different

types of breathers, as well as the inelastic interaction solutions of Eq. (1).

The paper is organized as follows. In Sec. 2, two types of interaction solutions

between the lump and the stripe solitons are derived and their dynamics behaviors

are analyzed. In Sec. 3, three kinds of breathers are derived and their dynamics
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behaviors are shown graphically. In Sec. 4, through a long wave limit of breathers,

the lump and the rogue wave solution are derived and the dynamics behaviors of

the rogue wave are shown graphically. Section 5 is the conclusion.

2. Interaction Solutions

According to the transformation

u =
12γ

α
(lnf)xx . (2)

Equation (1) is converted into the bilinear form

(DxDt + γD4
x + dD2

y + eD2
z)f · f = 0 , (3)

where the Hirota bilinear differential operator Dm
n is defined by

Dm
x D

n
y (f(x, y) · g(x′, y′))

=

(
∂

∂x
− ∂

∂x′

)m(
∂

∂y
− ∂

∂y′

)n
f(x, y)g(x′, y′)|x=x′,y=y′ . (4)

Case 1. Interaction solution between lump soliton and one stripe soliton

In order to obtain the interaction solution between the lump and one stripe

soliton, we assume the function f in the bilinear form Eq. (3) is the following form:

f = g2 + h2 + kl + a11, g = a1x+ a2y + a3z + a4t+ a5,

h = a6x+ a7y + a8z + a9t+ a10, l = ek1x+k2y+k3z+k4t ,
(5)

where ai(1 ≤ i ≤ 11), kj(1 ≤ i ≤ 4) and k are arbitrary parameters. By substituting

Eq. (5) into Eq. (3) and through a direct computation, the parameters are given by

a1 = 0, a3 = 0, a10 = 0, a4 =
6a7γa6k1

2

a2
, a8 =

a6k3
k1

,

a9 = −3a6a2
2γk1

4 − 3a7
2γk1

4 + a2
2ek3

2

a22k1
2 , a11 =

a6
2

k1
2 , d =

−3γa6
2k1

2

a22
,

k2 =
a7k1
a6

, k4 = −a2
2γk1

4 − 3a7
2γk1

4 + a2
2ek3

2

a22k1
.

(6)

By substitution of Eq. (6) into Eq. (5), a class of functions consisting of two

quadratic functions and an exponential function are obtained as follows:

f =

(
a2y + a3z +

6a8a6γk
2
1t

a3
+ a5

)2

+

(
a6x+ a7y + a8z −

3γa6k
2
1(a23 − a28)t

a23
+ a10

)2

+
a26
k21

+ ke
k1x+k2y+

k1a8z
a6
− γk

3
1(a23−3a28)t

a23 . (7)
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By substitution of Eq. (7) into Eq. (2), and choosing a2 = 2, a3 = 1, a5 = 0,

a6 = 1, a7 = 1, a8 = 1, a10 = 0, k = 2, k1 = −2, k2 = 0, e = 1, γ = −1 and

α = −12, the solution of Eq. (1) is changed into

u =
2 + 8e16t−2x−2z

(−24t+ 2y + z)2 + (x+ y + z)2 + 1
4 + 2e16t−2x−2z

− (2x+ 2y + 2z − 4e16t−2x−2z)2

((−24t+ 2y + z)2 + (x+ y + z)2 + 1
4 + 2e16t−2x−2z)2

. (8)

The dynamic behaviors and corresponding density plots are shown in Fig. 1.

From Fig. 1, the inelastic interaction between the lump soliton and one stripe wave

can be noted. When t = − 1
3 , before the fusion, the lump and the stripe wave have

not yet begun to interact, the speed of the stripe wave is vs = 8 and the speed of

the lump soliton is vl =
√

2. The direction of vs is along the x-axis and the direction

of vl is along the vector (−1, 1). The amplitude of the stripe wave is u = 1.012 at

x = −5.670 and the amplitude of the lump soliton is u = 8 at (−4, 4). It is obvious

that the amplitude of the lump soliton is much larger than the amplitude of the

stripe wave before the fusion occurs. When t = 0, the inelastic interaction between

two waves begins to occur and the energy of the lump soliton begins to transfer

into the stripe wave. In this time, the amplitude of the lump is u = 3.855 and

the amplitude of the stripe wave is u = 1.063. As the energy of the lump begins

(a) (b) (c)

(d) (e) (f)

Fig. 1. (Color online) The time evolution of the interaction solution and corresponding density

plots by choosing (a) t = − 1
3

, (b) t = 0 and (c) t = 1
3

in the (x, y) plane.
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to transfer into the stripe wave, the amplitude of the lump decreases rapidly after

the collision. The shapes of the two waves have changed since the beginning of the

fusion. When t = 1
3 , the stripe wave has completely swallowed the lump soliton.

After the interaction, the two waves fuse with each other and the common speed is

the speed of the stripe soliton vc = 8.

Case 2. Interaction solution between lump soliton and two stripe solitons

In order to obtain the interaction solution between the lump and two resonance

stripe solitons, we assume the function f in the bilinear form Eq. (3) is the following

form:

f = g2 + h2 + k cosh(l) + a11, l = k1x+ k2y + k3z + k4t,

g = a1x+ a2y + a3z + a4t+ a5, h = a6x+ a7y + a8z + a9t+ a10,
(9)

where ai(1 ≤ i ≤ 11), kj(1 ≤ i ≤ 4) and k are arbitrary parameters. By substituting

Eq. (9) into Eq. (3) and through a direct computation, the parameters are given by

a11 =
k2k1

4 + 4a1
4

4a12k1
2 , a4 =

3a1γk1
2a2

2 − a72

a72
, a6 = 0, a9 =

6a1a2γk1
2

a7
,

d =
−3a1

2γk1
2

a72
, e = 0, k2 =

a2k1
a1

, k4 =
3γk1

3a2
2 − a72

a72
.

(10)

By substitution of Eq. (10) into Eq. (9), a class of functions consisting of two

quadratic functions and a hyperbolic function are obtained as follows:

f =

(
a1x+ a2y + a3z +

3a1γk
2
1(a22 − a27)t

a27
+ a5

)2

+

(
a7y + a8z +

6a1a2γk
2
1t

a7
+ a10

)2

+ k cosh

(
k1x+

a2k1y

a1
+ k3z +

γk31(3a22 − a27)t

a27

)
+
k2k41 + 4a41

4a21k
2
1

. (11)

By substitution of Eq. (11) into Eq. (2), and choosing a1 = 1, a2 = − 1
5 , a3 = 1,

a5 = 0, a7 = 1, a8 = 1, a10 = 0, k = 2, k1 = 1, k3 = 1, γ = 4 and α = 48, the

solution of Eq. (1) is changed into

u =
2 + 2 cosh

(
x− 1

5y + z − 88
25 t

)(
x− 1

5y + z − 288
25 t

)2
+
(
y + z − 24

5 t
)2

+ 2 cosh
(
x− 1

5y + z − 88
25 t

)
+ 2

−
(
2x− 2

5y + 2z − 576
25 t+ 2 sinh

(
x− 1

5y + z − 88
25 t

))2((
x− 1

5y + z − 288
25 t

)2
+

(
y + z − 24

5 t
)2

+ 2 cosh
(
x− 1

5y + z − 88
25 t

)
+ 2

)2 .

(12)

The interaction solution between the lump and two resonance stripe solitons is

obtained. For the solution in Eq. (12), the asymptotic property of the lump soliton
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and the two resonance stripe solitons are analyzed. By taking x and y as constants,

it can be found that

lim
t→±∞

g2

h2
= lim
t→±∞

(
x− 1

5y + z − 288
25 t

)2(
y + z − 24

5 t
)2 =

144

25
,

lim
t→±∞

g2

cosh(l)
= lim
t→±∞

(
x− 1

5y + z − 288
25 t

)2
cosh

(
x− 1

5y + z − 88
25 t

) = 0 ,

(13)

which implies that when t → ±∞, there are only two resonance stripe solitons,

and when t is little, the lump soliton is more clear. The dynamic behaviors and

corresponding density plots are shown in Fig. 2.

From Fig. 2, the inelastic interaction between the lump and two resonance stripe

solitons can be noted. When t = 0, the lump is just in the middle of the two reso-

nance stripe waves, and because of the interaction, the shapes of the two resonance

stripe waves have changed. Furthermore, the amplitude of the lump is 1.0 at (0, 0),

and the amplitude of the resonance stripe solitons is 0.238 at x = 10 and x = −2.05.

It is obvious that the amplitude of the lump is significantly higher than the am-

plitude of the resonance stripe waves. When t = 1
2 , the lump interacts with one

of the resonance stripe waves. Because the energy of the lump begins to transfer

into the resonance stripe waves, the amplitude of the lump begins to decrease. At

(a) (b) (c)

(d) (e) (f)

Fig. 2. (Color online) The time evolution and corresponding density plots of the interaction

solution by choosing (a) t = 0, (b) t = 1
2

and (c) t = 3 in the (x, y) plane.
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this time, the amplitude of the lump is 0.485 at (6.24, 2.4) and the amplitude of

the resonance stripe waves is 0.249. When t = 3, one of the resonance stripe waves

has completely swallowed the lump soliton. Particularly, the two resonance stripe

waves always maintain the same speed.

3. Breather Solutions

In this section, we consider three types of breathers, which can be obtained by

choosing appropriate parameters on the soliton solutions. We assume the function

f in the bilinear form Eq. (3) has the following form:

f = 1 + eη1 + eη2 +A12eη1+η2 ,

ηi = ki(x+ piy + qiz + wit) + η0i (i = 1, 2) ,
(14)

where ki, pi, qi, wi, η0i and A12 are arbitrary parameters. By substituting Eq. (14)

into Eq. (3), the parameters are given by

A12 =
−3γ(k1 − k2)2 + d(p1 − p2)2 + e(q1 − q2)2

−3γ(k1 + k2)2 + d(p1 − p2)2 + e(q1 − q2)2
,

w1 = −dp21 − eq21 − γk21, w2 = −dp22 − eq22 − γk22 .
(15)

Substituting Eq. (15) into Eq. (14) with Eq. (2) and choosing specific values of

parameters, three types of breathers can be obtained.

If we set k1 = k2 = δ1, p1 = p∗2 = α1 + iβ1, η01 = η02 = 0 and q1 and q2 are real

numbers, one type of the breathers can be obtained. We choose δ1 = 1
3 , β1 = − 3

5 ,

c1 = 1, c2 = 2 and different α1, then the two (x, y)-periodic breathers and one

y-periodic breather are obtained and shown in Fig. 3. Through the observation of

Figs. 3(a)–3(c), we find the value of α1 can change the direction of the breathers

but the period of the breathers is not affected.

If we set k1 = k∗2 = iδ1, p1 = p∗2 = α1+iβ1, q1 = q∗2 = ρ1+iω1 and η01 = η02 = 0,

one of the breathers can be obtained. We choose δ1 = 1, α1 = 1, β1 = − 1
2 , ρ1 = 1

5 ,

(a) (b) (c)

Fig. 3. (Color online) The 3D plots and corresponding density plots of the breathers by choosing
e = 1, d = 2, γ = 2, α = 24, t = 0 and z = 0, (a) α1 = 1, (b) α1 = 0 and (c) α1 = −1 in the (x, y)

plane.
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(a) (b) (c)

Fig. 4. (Color online) The 3D plots and corresponding density plots of the breathers by choosing

d = − 1
2

, e = 2, γ = 1, α = 12 and t = 0, (a) in the (x, y) plane, (b) in the (x, z) plane and (c) in
the (y, z) plane.

(a) (b) (c)

Fig. 5. (Color online) The time evolution plots of the line breathers in the (x, y) plane by choosing
e = 1, d = −1, γ = 1, α = 12, z = 0 and (a) t = 0, (b) t = 1

5
and (c) t = 1 in the (x, y) plane.

ω1 = − 1
5 , η01 = 0, η02 = 0 and show the solution in Fig. 4 in the (x, y) plane, (x, z)

plane and (y, z) plane.

If we set k1 = k∗2 = iδ1, p1 = p2 = α1, q1 = q∗2 = ρ1 + iω1 and η01 = η02 = 0,

the line breathers can be obtained. We choose δ1 = 1, α1 = 1, ρ1 = 5, ω1 = 1
2 , and

show the solution and dynamic behaviors in Fig. 5. The line breathers are based

on a constant background. In addition, they keep parallel and have no interaction

with each other. The time evolution plots of the line breathers are shown in Fig. 5.

When t = 0, the line breathers reach the maximum amplitude. When t = 0.2, the

amplitude of line breathers has obviously decreased comparing to the amplitude

when t = 0. When t = 1, the breathers has almost retreated back to the constant

uniformly.

4. Lump and Rogue Wave Solution

In this section, we construct the lump solution and the rogue wave solution of

Eq. (1) through the long wave limit method. Setting the parameters

k1 = l1ε, k2 = l2ε, η01 = η∗02 = iπ (16)
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into Eq. (15) with Eq. (14), and taking the limit as ε → 0, the function f can be

written as

f = (θ1θ2 + θ0)l1l2ε
2 +O(ε3) , (17)

where

θ0 =
12γ

d(p1 − p2)2 + e(q1 − q2)2
,

θi = (dp21 + eq21)t− p1y − q1z − x (i = 1, 2) .

(18)

Substituting Eq. (18) into Eq. (17) with Eq. (2), the solution u can expressed

as

u =
−12γ(θ21 + θ22 − 2θ0)

α(θ1θ2 + θ0)2
. (19)

Case 1. Lump solution

If we set p1 = a1 + ib1, q1 = a2 + ib2, where a1, a2, b1, b2 are real constants and

a1 6= 0, the lump solution can be obtained. Substituting p1 and q1 into Eq. (18)

with Eq. (19), the solution u can be rewritten as

u = −24γ(g2 − h2 + 3γ)

α(g2 + h2 − 3γ)2
, (20)

with

g = (b21d+ b22e)(a
2
1dt+ a22et− b21dt− b22et− a1y − a2z − x) ,

h = (b21d+ b22e)(2a1b1dt+ 2a2b2et− b1y − b2z) ,

where a1, a2, b1, b2, d, e, α and γ are arbitrary real constants. At any fixed time t,

when the x2 +y2 → +∞, the lump solution u in Eq. (20) approaches zero, since the

solution u depicts a standard lump structure. Now, we consider the amplitudes and

the velocities of the lump solutions in the case that z equals zero. Let the partial

derivatives ux and uy be zero, the three critical points are obtained at(
(a21b1 + b31)dt+ (2a1a2b2 + b1b

2
2 − a22b1)et+ (a2b1 − a1b2)z

b1
,

2a1b1dt+ 2a2b2et− b2z

b1

)
,

(
±3
√

−γb21(b21d+ b22e)−(b31dt+(a21dt−a22et+b22et+a2z)b1+2b2(eta2− 1
2z)a1)(b21d+b22e)

(b21d+b22e)b1
,

2a1b1dt+ 2a2b2et− b2z

b1

)
,
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which result in the maximum amplitude is
−8b21d−8b

2
2e

α , and the minimum amplitude

is
b21d+b

2
2e

α . Therefore, the lump possesses one peak and two valleys. Now, we consider

the velocities of the lump in the (x, y) plane. From the extreme points and setting

z = 0, we know that the lump moves along the route line

y = − 2(a1b1d+ a2b2e)x

b31d+ ((−a22 + b22)e+ a21d)b1 + 2b2a1a2e
, (21)

with the velocities

Vx = −a
2
1b1d+ 2a1a2b2e− a22b1e+ b31d+ b1b

2
2e

b1
, Vy = 2a1b1d+ 2a2b2e . (22)

By setting a1 = 1, b1 = 2, a2 = 2, b2 = 1, d = −1, e = 1, γ = 1, α = 12, z = 0

and t = 0 in Eq. (20), the lump solution can be obtained, as shown in Fig. 6(a).

When t = 0, the maximum amplitude is 4 at (0, 0) and the minimum amplitude

is −0.25 at (−
√

3, 0) and (
√

3, 0). The lump moves with the velocities (Vx = 6,

Vy = 0).

Case 2. Rogue wave solution

We set b2 = 0 in Eq. (20), the rational solution u in Eq. (20) can be rewritten

as

u = −24γ(g2 − h2 + 3γ)

α(g2 + h2 − 3γ)2
(23)

(a) (b) (c)

(d) (e) (f)

Fig. 6. (Color online) The time evolution and corresponding density plots of the lump and the
rogue wave solutions in the (x, z) plane by choosing d = −1, e = 0, γ = 1, α = 12 and (a) t = 0,

(b) t = −2, (c) t = − 1
2

, (d) t = 0, (e) t = 1
2

and (f) t = 2.
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with

g = b21d(a21dt+ a22et− b21dt− a1y − a2z − x) ,

h = b21d(2a1b1dt− b1y) ,

which is converted to the line rogue waves possessing a varying amplitude. By

setting a1 = 1, b1 = 2, a2 = 2, d = −1, e = 1, γ = 1, α = 12, the rogue wave

solutions are obtained and their dynamic behaviors are shown in Fig. 6. Now, we

consider the dynamics of the rogue wave solutions in the case that y equals to zero.

Let the partial derivatives ux and uz be zero, when x = (a21d−b21d+a22e)t−a2z, the

value of the rogue waves is maximum and the amplitude is 8
64t2+3 . It shows that

the amplitude of the rogue waves reaches the maximum when t = 0, and the rogue

waves approach the constant background as the |t| � 0. In Fig. 6, when t = 0, the

amplitude of the rogue waves reaches the maximum 8
3 . When t = 0.5, the amplitude

of the rogue waves is 8
19 . When t = 2, the amplitude of the rogue waves decreases

to 8
259 .

5. Conclusions

In summary, we study the lump solutions, two types of interaction solutions with

the lump and the stripe solitons, the breathers, the rogue waves and their dynam-

ics characters to a (3 + 1)-dimensional Kudryashov–Sinelshchikov equation. The

interaction solution between the lump and one stripe soliton (see Fig. 1) is ob-

tained by utilizing the Hirota bilinear method and combining positive quadratic

functions and an exponential function. The interaction solution between the lump

and two stripe solitons (see Fig. 2) is constructed by utilizing the Hirota bilinear

method and combining positive quadratic functions and a hyperbolic function. The

time evolution plots are presented and the inelastic interactions are analyzed, re-

spectively. At first, the lump and the stripe solitons are separated, and then the

stripe solitons start to swallow the lump soliton. Finally, the two waves combine

into one. Furthermore, three types of breathers (see Figs. 3–5) are constructed by

choosing specific parameters on the soliton solutions. The time evolution plots are

presented and their dynamic characteristics are analyzed, respectively. Finally, the

lump and rogue wave solutions (see Fig. 6) are obtained through a long wave limit

of the breathers. These solutions are shown graphically and their dynamic behav-

iors are analyzed. The line rogue wave arises from a constant background, and then

disappears back to the initial background again.
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