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A general form of N-dark soliton solutions of the multi-component Mel’nikov system are presented. Taking the
coupled Mel’nikov system comprised of two-component short waves and one-component long wave as an example, its
general N-dark–dark soliton solutions in Gram determinant form are constructed through the KP hierarchy reduction
method. The dynamics of single dark–dark soliton and two dark–dark solitons are discussed in detail. It can be shown
that the collisions of dark–dark solitons are elastic and energies of the solitons in different components completely
transmit through. In addition, the dark–dark soliton bound states including both stationary and moving cases are also
investigated. An interesting feature for the coupled Mel’nikov system is that the stationary dark–dark soliton bound
states can exist for all possible combinations of nonlinearity coefficients including positive, negative and mixed types,
while the moving case are possible when nonlinearity coefficients take opposite signs or they are both negative.

1. Introduction

During the past decades, many studies have been done on
coupled systems describing the interaction of short wave
packets with long waves in nonlinear dispersive media as
they are frequently used in the fields of nonlinear optics,
plasma physics, fluid dynamics and solid state physics.1–3)

What’s more, the nonlinear interaction of multiple waves
results in several interesting new physical processes.4,5) On
the other hand, the studies of multi-component nonlinear
systems have received much attention in recent years.6)

Of particular interest is the multi-component general-
ization of the nonlinear Schrödinger (NLS) equation.7–10)

Another interesting example is the multi-component long-
wave-short-wave resonance interaction (LSRI) system,11,12)

or the so called multi-component Yajima–Oikawa (YO)
system.13–16)

In the current paper, we concentrate on the Mel’nikov
system17–20)

i�y ¼ �xx þ u�; ð1Þ
uxt þ uxxxx þ 3ðu2Þxx � 3uyy þ �ð���Þxx ¼ 0; ð2Þ

where � ¼ �1, � � �ðx; y; tÞ is the complex short wave
amplitude and u � uðx; y; tÞ is the real long wave amplitude,
the subscripts denote partial differentiation and the asterisk
means complex conjugate hereafter. This system is used to
describe the interaction of long waves with short wave
packets propagating on the x–y plane at an angle to each
other. It may be considered either as a generalization of the
Kadomtsev–Petviashvili (KP) equation with the addition of
a complex scalar field or as a generalization of the NLS
equation with a real scalar field. Its two-component general-
ization consisting of two short wave components and one
long wave component is given by

i�ð1Þ
y ¼ �ð1Þ

xx þ u�ð1Þ; ð3Þ
i�ð2Þ

y ¼ �ð2Þ
xx þ u�ð2Þ; ð4Þ

uxt þ uxxxx þ 3ðu2Þxx � 3uyy

þ ð�1�ð1Þ�ð1Þ� þ �2�
ð2Þ�ð2Þ�Þxx ¼ 0; ð5Þ

where �1; �2 ¼ �1. The above coupled system can be
generalized to a multi-component system consisting of M
short wave components and one long wave component,
which is written in the following form

i�ðkÞ
y ¼ �ðkÞ

xx þ u�ðkÞ; k ¼ 1; 2; . . . ;M; ð6Þ
uxt þ uxxxx þ 3ðu2Þxx � 3uyy

þ
XM
k¼1

�k�
ðkÞ�ðkÞ�

 !
xx

¼ 0; ð7Þ

where �k ¼ �1 for k ¼ 1; 2; . . . ;M.
The Mel’nikov system (1)–(2) admits boomeron type

solutions which can be realized from an asymptotic analysis
of the two soliton solutions.19) Its multi-soliton solutions
are derived in Ref. 20 via the theory of matrices. Soliton
solutions of bright- and dark-types have been obtained from
the Wronskian solutions of the KP hierarchy equations.21)

Its Painlevé property and some exponentially localized
dromion type solutions are studied in Ref. 22. More recently,
its rogue wave solutions are also derived by virtue of the
Hirota’s bilinear method.23) However, as far as we know, the
general multi-dark soliton solutions of the multi-component
Mel’nikov system have not been reported so far. Actually,
general multi-dark soliton solutions of two-dimensional (2D)
multi-component integrable systems are rather rare excepted
that the multi-dark soliton solutions of the 2D multi-
component YO systems are reported in Ref. 14.

The KP hierarchy reduction method for deriving soliton
solutions of integrable systems is firstly developed by the
Kyoto school,24,25) and later used to get solutions of the NLS
equation, the modified KdV equation and the Davey–
Stewartson (DS) equation. Indeed, the pseudo-reduction of
the two-dimensional Toda lattice hierarchy to constrained KP
systems with dark soliton solutions is established in Ref. 26,
while the reduction to constrained KP systems with bright
soliton solutions from the multi-component KP hierarchy
is developed in Ref. 27. Using this reduction method, the
general N-dark–dark solitons of a two-coupled focusing-
defocusing NLS equations are obtained by Ohta et al.28) Also
by virtue of this method, the general bright-dark N-soliton
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solutions of the vector NLS equations with all possible
combinations of nonlinearities containing all focusing, all
defocusing and mixed types are constructed by Feng.29) More
recently, this method has been applied to derive the multi-
dark soliton14) and mixed multi-soliton15) solutions of multi-
component YO system. In addition, the KP hierarchy
reduction method has also been developed to construct
rational solutions (lump and rogue wave solutions) of soliton
equations,30–32) see also Refs. 16 and 23.

In the present paper, the general N-dark–dark soliton
solutions of Eqs. (3)–(5) are obtained through the KP
hierarchy reduction method and their dynamics are also
studied in detail. Following the KP theory, we derive the
general N-dark–dark soliton solutions in terms of Gram
determinants from the τ-function solutions of the KP hierarchy.
For single dark–dark solitons, we show that the degrees of
“darkness” in the two components are different in general. For
the collisions of two dark–dark solitons, it can be shown that
there is no energy transfer in two components of each soliton,
hence they are elastic collisions. As a matter of fact, the soliton
bound state is a fascinating subject in the soliton theory. The
dark–dark soliton bound states in the 2D coupled YO system
and the coupled NLS equations have been reported in Refs. 14
and 28 respectively. For those two models, it has been shown
that the bound states exist only when the coefficients of
nonlinear terms take opposite signs. Different from Refs. 14
and 28, it can be shown that for the coupled Mel’nikov system
(3)–(5), the stationary dark–dark soliton bound states can exist
for all possible combinations of nonlinearity coefficients
including positive, negative and mixed types, while the
moving case are possible when nonlinearity coefficients take
opposite signs or they are both negative.

The rest of this paper is organized as follows. In Sect. 2, the
generalN-dark–dark soliton solutions in the Gram determinant
form of the two-component Mel’nikov system are obtained
via the KP hierarchy reduction method. Section 3 devotes to
analysis the dynamics of single and two dark–dark solitons. In
Sect. 4, the dark–dark soliton bound states including both the
stationary and the moving cases are investigated in detail. In
Sect. 5, the general N-dark soliton solutions of the multi-
component Mel’nikov system are presented without a detail
derivation. We summarize the paper in Sect. 6.

2. Dark–Dark Soliton Solutions of the Coupled
Mel’nikov System

By virtue of the dependent variable transformation

�ð1Þ ¼ �1e
i�1
g

f
; �ð2Þ ¼ �2e

i�2
h

f
; u ¼ 2ðlog f Þxx; ð8Þ

where f � fðx; y; tÞ is a real function, g � gðx; y; tÞ and
h � hðx; y; tÞ are two complex functions, �1 and �2 are
constants. Meanwhile, �i ¼ �ix þ �2i y þ �iðtÞ for i ¼ 1; 2,
where �i are real constants and �iðtÞ are arbitrary real
functions. Then, Eqs. (3)–(5) can be converted into the
following bilinear forms

ðD2
x þ 2i�1Dx � iDyÞg � f ¼ 0; ð9Þ

ðD2
x þ 2i�2Dx � iDyÞh � f ¼ 0; ð10Þ

ðD4
x þDxDt � 3D2

yÞf � f
¼ �1�

2
1ð f 2 � gg�Þ þ �2�

2
2ð f 2 � hh�Þ; ð11Þ

where D is Hirota’s bilinear differential operator defined
as

Dl
xD

m
y D

n
t fðx; y; tÞ � gðx; y; tÞ

¼ @

@x
� @

@x0

� �l @

@y
� @

@y0

� �m @

@t
� @

@t0

� �n
fðx; y; tÞ

� gðx0; y0; t0Þjx¼x0;y¼y0;t¼t0 : ð12Þ
If a new independent variable s is introduced, Eq. (11) can

be decoupled into

ðD4
x þ DxDs � 3D2

yÞf � f ¼ 0; ð13Þ
ðDxDt � DxDsÞf � f

¼ �1�
2
1ð f 2 � gg�Þ þ �2�

2
2ð f 2 � hh�Þ: ð14Þ

Following the KP theory, the equations under study are
considered as a reduction of the KP hierarchy, then their
soliton solutions in the Gram type or Wronski type
determinants can be derived directly from the τ function of
the KP hierarchy under this reduction. To this end, the Gram
determinant solutions of the KP hierarchy are presented here.

Lemma 1. The following bilinear equations in the KP
hierarchy14,21,28)

ðD2
x1
þ 2aDx1 �Dx2Þ�ðk þ 1; lÞ � �ðk; lÞ ¼ 0; ð15Þ

1

2
Dx1Dx�1 � 1

� �
�ðk; lÞ � �ðk; lÞ

¼ ��ðk þ 1; lÞ�ðk � 1; lÞ; ð16Þ
ðD2

x1
þ 2bDx1 �Dx2Þ�ðk; l þ 1Þ � �ðk; lÞ ¼ 0; ð17Þ

1

2
Dx1Dy�1 � 1

� �
�ðk; lÞ � �ðk; lÞ

¼ ��ðk; l þ 1Þ�ðk; l � 1Þ; ð18Þ
ðD4

x1
� 4Dx1Dx3 þ 3D2

x2
Þ�ðk; lÞ � �ðk; lÞ ¼ 0; ð19Þ

where a and b are are complex constants, k and l are
integers, have the Gram determinant solutions

�ðk; lÞ ¼ jmijðk; lÞj1�i; j�N; ð20Þ
where the entries of the determinant are given by

mijðk; lÞ ¼ cij þ
Z
’iðk; lÞ jðk; lÞ dx1;

’iðk; lÞ ¼ ðpi � aÞkðpi � bÞl expð�iÞ;

 jðk; lÞ ¼ � 1

qj þ a

� �k
� 1

qj þ b

� �l
expð ~�jÞ;

with

�i ¼ 1

pi � a
x�1 þ 1

pi � b
y�1 þ pix1 þ p2i x2 þ p3i x3 þ �i0;

~�j ¼ 1

qj þ a
x�1 þ 1

qj þ b
y�1 þ qjx1 � q2j x2 þ q3j x3 þ ~�j0;

where cij; pi; qj; �i0, and ~�j0; ði; j ¼ 1; 2; . . . ; NÞ are arbitrary
complex constants.

Proof. Firstly, it is easy to verify that the ’i and  j given in
Lemma 1 satisfy the following differential and difference
relations

@x2’iðk; lÞ ¼ @2x1’iðk; lÞ; ð21Þ
@x3’iðk; lÞ ¼ @3x1’iðk; lÞ; ð22Þ
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’iðk þ 1; lÞ ¼ ð@x1 � aÞ’iðk; lÞ; ð23Þ
@x2 iðk; lÞ ¼ �@2x1 iðk; lÞ; ð24Þ
@x3 iðk; lÞ ¼ @3x1 iðk; lÞ; ð25Þ
 iðk � 1; lÞ ¼ �ð@x1 þ aÞ iðk; lÞ: ð26Þ

Next, take the determinant

�ðk; lÞ ¼ det
1�i; j�N

ðmijðk; lÞÞ ¼ jmijðk; lÞj1�i; j�N;
with the matrix elements mijðk; lÞ defined as

mijðk; lÞ ¼ cij þ
Z
’iðk; lÞ jðk; lÞ dx1:

Then it is easy to verify that mijðk; lÞ satisfy
@x�1mijðk; lÞ ¼ �’iðk � 1; lÞ jðk þ 1; lÞ; ð27Þ
@x1mijðk; lÞ ¼ ’iðk; lÞ jðk; lÞ; ð28Þ

@x2mijðk; lÞ ¼ ð@x1’iðk; lÞÞ jðk; lÞ � ’iðk; lÞ@x1 jðk; lÞ; ð29Þ
@x3mi;jðk; lÞ ¼ ð@2x1’iðk; lÞÞ jðk; lÞ

� ð@x1’iðk; lÞÞ@x1 jðk; lÞ þ ’iðk; lÞ@2x1 jðk; lÞ; ð30Þ
mijðk þ 1; lÞ ¼ mijðk; lÞ þ ’iðk; lÞ jðk þ 1; lÞ: ð31Þ
Note that Eqs. (15) and (16) are independent of the

variable x3, the differential and difference relations with
respect to the variables x�1, x1, and x2 are the same with the
Lemma 2.1 in Ref. 14 and the Lemma 1 in Ref. 28, hence
they hold true automatically. Here, we only need to prove
that the determinant (20) satisfies the bilinear KP equation
(19).

By virtue of the differential of determinant and the
expansion formula of bordered determinant,33) the derivatives
of the τ function can be expressed by the following bordered
determinants

@x1�ðk; lÞ ¼ �
mijðk; lÞ ’iðk; lÞ
 jðk; lÞ 0

�����
�����; ð32Þ

@x2�ðk; lÞ ¼ �
mijðk; lÞ @x1’iðk; lÞ
 jðk; lÞ 0

�����
����� þ mijðk; lÞ ’iðk; lÞ

@x1 jðk; lÞ 0

�����
�����; ð33Þ

@x3�ðk; lÞ ¼ � mijðk; lÞ @2x1’iðk; lÞ
 jðk; lÞ 0

�����
����� þ mijðk; lÞ @x1’iðk; lÞ

@x1 jðk; lÞ 0

�����
����� �

mijðk; lÞ ’iðk; lÞ
@2x1 jðk; lÞ 0

�����
�����; ð34Þ

@2x1�ðk; lÞ ¼ �
mijðk; lÞ ’iðk; lÞ
@x1 jðk; lÞ 0

�����
����� � mijðk; lÞ @x1’iðk; lÞ

 jðk; lÞ 0

�����
�����; ð35Þ

@3x1�ðk; lÞ ¼ �
mijðk; lÞ ’iðk; lÞ
@2x1 jðk; lÞ 0

�����
����� � 2

mijðk; lÞ @x1’iðk; lÞ
@x1 jðk; lÞ 0

�����
����� � mijðk; lÞ @2x1’iðk; lÞ

 jðk; lÞ 0

�����
�����; ð36Þ

@x1@x3�ðk; lÞ ¼
mijðk; lÞ @3x1’iðk; lÞ
 jðk; lÞ 0

�����
����� �

mijðk; lÞ ’iðk; lÞ
@3x1 jðk; lÞ 0

�����
����� �

mijðk; lÞ ’iðk; lÞ @x1’iðk; lÞ
 jðk; lÞ 0 0

@x1 jðk; lÞ 0 0

�������
�������; ð37Þ

@2x2�ðk; lÞ ¼
mijðk; lÞ @x1’iðk; lÞ
@2x1 jðk; lÞ 0

�����
����� �

mijðk; lÞ ’iðk; lÞ
@3x1 jðk; lÞ 0

�����
����� þ mijðk; lÞ @2x1’iðk; lÞ

@x1 jðk; lÞ 0

�����
�����

� mijðk; lÞ @3x1’iðk; lÞ
 jðk; lÞ 0

�����
����� þ 2

mijðk; lÞ ’iðk; lÞ @x1’iðk; lÞ
 jðk; lÞ 0 0

@x1 jðk; lÞ 0 0

�������
�������; ð38Þ

@4x1�ðk; lÞ ¼ �
mijðk; lÞ ’iðk; lÞ
@3x1 jðk; lÞ 0

�����
����� � mijðk; lÞ @3x1’iðk; lÞ

 jðk; lÞ 0

�����
����� � 3

mijðk; lÞ @x1’iðk; lÞ
@2x1 jðk; lÞ 0

�����
�����

� 3
mijðk; lÞ @2x1’iðk; lÞ
@x1 jðk; lÞ 0

�����
����� þ 2

mijðk; lÞ ’iðk; lÞ @x1’iðk; lÞ
 jðk; lÞ 0 0

@x1 jðk; lÞ 0 0

�������
�������; ð39Þ

where the bordered determinants are defined as

mij ’i

 j 0

�����
����� ¼

m11 m12 � � � m1N ’1

m21 m22 � � � m2N ’2

..

. ..
. ..

. ..
. ..

.

mN1 mN2 � � � mNN ’N

 1  2 � � �  N 0

��������������

��������������
: ð40Þ

By virtue of the above expresses and the Jacobi formula of
determinants, it is easy to verify that the τ function satisfies
the bilinear KP equation (19)

ðD4
x1
� 4Dx1Dx3 þ 3D2

x2
Þ�ðk; lÞ � �ðk; lÞ

¼ 2½ð@4x1�ðk; lÞ � 4@x1@x3�ðk; lÞ þ 3@2x2�ðk; lÞÞ�ðk; lÞ
� 4ð@3x1�ðk; lÞ � @x3�ðk; lÞÞ@x1�ðk; lÞ
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þ 3ð@2x1�ðk; lÞ � @x2�ðk; lÞÞð@2x1�ðk; lÞ þ @x2�ðk; lÞÞ	

¼ 24

0
B@jmijðk; lÞj �

mijðk; lÞ ’iðk; lÞ @x1’iðk; lÞ
 jðk; lÞ 0 0

@x1 jðk; lÞ 0 0

�������
�������

þ mijðk; lÞ ’iðk; lÞ
@x1 jðk; lÞ 0

����
���� � mijðk; lÞ @x1’iðk; lÞ

 jðk; lÞ 0

����
����

� mijðk; lÞ ’iðk; lÞ
 jðk; lÞ 0

����
���� � mijðk; lÞ @x1’iðk; lÞ

@x1 jðk; lÞ 0

����
����
1
CA

¼ 0: ð41Þ
This completes the proof of Lemma 1. □

Now we perform a reduction of the above bilinear
equations to derive the general formulae for N-dark–dark
soliton solutions of Eqs. (3)–(5). Assuming x�1; y�1; x1; x3
are real, x2; að¼ i�1Þ; bð¼ i�2Þ are pure imaginary and qi ¼
p�i , ~�j0 ¼ ��j0, cji ¼ c�ij ¼ �ij, then we can get

~�j ¼ ��j ;

mjiðk; lÞ ¼ m�
ijð�k;�lÞ;

�ðk; lÞ ¼ ��ð�k;�lÞ: ð42Þ
Moreover, by defining

f ¼ �ð0; 0Þ; g ¼ �ð1; 0Þ; h ¼ �ð0; 1Þ;
g� ¼ �ð�1; 0Þ; h� ¼ �ð0;�1Þ; ð43Þ

the bilinear equations (15)–(19) can be recast into

ðD2
x1
þ 2i�1Dx1 � Dx2Þg � f ¼ 0; ð44Þ

1

2
Dx1Dx�1 � 1

� �
f � f ¼ �gg�; ð45Þ

ðD2
x1
þ 2i�2Dx1 � Dx2Þh � f ¼ 0; ð46Þ

1

2
Dx1Dy�1 � 1

� �
f � f ¼ �hh�; ð47Þ

ðD4
x1
� 4Dx1Dx3 þ 3D2

x2
Þf � f ¼ 0: ð48Þ

By virtue of the following independent variable trans-
formation

x1 ¼ x; x2 ¼ �iy; x3 ¼ �4ðt þ sÞ;

x�1 ¼ 1

2
�1�

2
1t; y�1 ¼ 1

2
�2�

2
2t; ð49Þ

the bilinear equations (44)–(48) are recast into the bilinear
form (9)–(10) and (13)–(14). Thus, applying the independent
variable transformation (49) to the f; g; h in (43) and
neglecting the s dependence, the following theorem for the
general N-dark–dark soliton solutions of Eqs. (3)–(5) is
immediately obtained.

Theorem 1. The N-dark–dark soliton solutions of the
coupled Mel’nikov system (3)–(5) are

�ð1Þ ¼ �1e
i½�1xþ�21yþ�1ðtÞ	 g

f
; ð50Þ

�ð2Þ ¼ �2e
i½�2xþ�22yþ�2ðtÞ	 h

f
; ð51Þ

u ¼ 2ðlog f Þxx; ð52Þ
where f, g, and h are Gram determinants given by

f ¼ �ij þ 1

pi þ p�j
e	iþ	

�
j

�����
�����
N�N

;

g ¼ �ij þ � pi � i�1
p�j þ i�1

 !
1

pi þ p�j
e	iþ	

�
j

�����
�����
N�N

;

h ¼ �ij þ � pi � i�2
p�j þ i�2

 !
1

pi þ p�j
e	iþ	

�
j

�����
�����
N�N

;

with

	j ¼ pjx � ip2j y þ
1

2

�1�
2
1

pj � i�1
þ �2�

2
2

pj � i�2
� 8p3j

� �
t þ 	j0;

where pj and 	j0 are complex constants, �ij is the Kronecker
symbol (�ij is 1 when i ¼ j and 0 otherwise).

3. Dynamics of Dark–Dark Solitons

3.1 Single dark–dark solitons
To get single dark–dark soliton solution of Eqs. (1)–(3),

we take N ¼ 1 in the formula (50)–(52). The Gram
determinants read

f ¼ 1 þ 1

p1 þ p�1
e	1þ	

�
1 ; ð53Þ

g ¼ 1 � 1

p1 þ p�1

p1 � i�1
p�1 þ i�1

e	1þ	
�
1 ; ð54Þ

h ¼ 1 � 1

p1 þ p�1

p1 � i�2
p�1 þ i�2

e	1þ	
�
1 ; ð55Þ

and the single dark–dark soliton solution can be written as

�ð1Þ ¼ �1
2
ei½�1xþ�

2
1
yþ�1ðtÞ	

� 1 þ Kð1Þ
1 þ ðKð1Þ

1 � 1Þ tanh 	1 þ 	�1 þ�1

2

� �� �
; ð56Þ

�ð2Þ ¼ �2
2
ei½�2xþ�

2
2
yþ�2ðtÞ	

� 1 þ Kð2Þ
1 þ ðKð2Þ

1 � 1Þ tanh 	1 þ 	�1 þ�1

2

� �� �
; ð57Þ

u ¼ 1

2
ðp1 þ p�1Þ2 sech2

	1 þ 	�1 þ �1

2

� �
; ð58Þ

with

e�1 ¼ 1

p1 þ p�1
¼ 1

2a1
;

Kð1Þ
1 ¼ � p1 � i�1

p�1 þ i�1
¼ � a1 þ iðb1 � �1Þ

a1 � iðb1 � �1Þ ;

Kð2Þ
1 ¼ � p1 � i�2

p�1 þ i�2
¼ � a1 þ iðb1 � �2Þ

a1 � iðb1 � �2Þ ;

	1 þ 	�1 ¼ 2a1x þ 4a1b1y

þ
�

�1a1�
2
1

a21 þ ðb1 � �1Þ2
þ �2a1�

2
2

a21 þ ðb1 � �2Þ2

� 8a1ða21 � 3b21Þ
�
t þ 2	10R;

where p1 ¼ a1 þ ib1, and a1; b1; 	10R are real constants, 	10R
is the real part of 	10.

From (56)–(58), it is easy to know that the intensity
functions j�ð1Þj; j�ð2Þj of the short wave components
and the long wave component u moving at velocity

J. Phys. Soc. Jpn. 86, 074005 (2017) Z. Han et al.

074005-4 ©2017 The Physical Society of Japan

J. Phys. Soc. Jpn.
Downloaded from journals.jps.jp by 59.78.194.140 on 06/25/17



� 1
2
ð �1�

2
1

a2
1
þðb1��1Þ2 þ

�2�
2
2

a2
1
þðb1��2Þ2 Þ þ 4ða21 � 3b21Þ along the x-direc-

tion. In addition, j�ð1Þj ! j�1j, j�ð2Þj ! j�2j, u ! 0 when
x; y ! �1.

Taking K ð1Þ
1 ¼ expð2i
ð1Þ

1 Þ and Kð2Þ
1 ¼ expð2i
ð2Þ

1 Þ, i.e.,
2
ð1Þ

1 and 2
ð2Þ
1 are the phases of the constants Kð1Þ

1 and Kð2Þ
1

respectively. As x and y vary from �1 to þ1, the phases of
the short wave components �ð1Þ and �ð2Þ acquire shifts in the
amount of 2
ð1Þ

1 and 2
ð2Þ
1 while the long wave component u

phase shifts is zero. Without loss of generality, we can restrict
�� < 2
ð1Þ

1 ; 2
ð2Þ
1 � �, i.e., � �

2
< 
ð1Þ

1 ; 
ð2Þ
1 � �

2
. Then at the

center of the solitons where 	1 þ 	�1 þ �1 ¼ 0, intensities of
the components are j�ð1Þjcenter ¼ j�1j cos
ð1Þ

1 , j�ð2Þjcenter ¼
j�2j cos
ð2Þ

1 , u ¼ 2a21. For the short wave components �ð1Þ

and �ð2Þ, the fact that the center intensities are lower than the
background intensities �1 and �2, thus these solitons are
dark–dark solitons. Further more, the intensity dips at the
centers of the �ð1Þ and �ð2Þ components are controlled by the
phase shifts 2
ð1Þ

1 and 2
ð2Þ
1 respectively, hence these phase

shifts dictate how “dark” the center is.
According to the values of �1 and �2, there exist the

following two different cases:
(1) �1 ¼ �2, then Kð1Þ

1 ¼ Kð2Þ
1 , therefor 
ð1Þ

1 ¼ 
ð2Þ
1 . For

this case, the short wave components �ð1Þ and �ð2Þ are
proportional to each other, and they have the same degrees of
darkness at the center. In this situation, the dark–dark solitons
of the coupled Mel’nikov system is equivalent to a scalar
dark soliton of the single-component Mel’nikov system, thus
it is viewed as a degenerate case similar to the coupled YO
system14) and the coupled NLS equations.28) These degener-
ate solitons are illustrated in Fig. 1, from which it can be seen
that both the �ð1Þ and �ð2Þ components are zero intensity at
the soliton center.

(2) �1 ≠ �2, then Kð1Þ
1 ≠ Kð2Þ

1 , thus 
ð1Þ
1 ≠ 
ð2Þ

1 . This
suggests that the �ð1Þ and �ð2Þ components in these solitons
are not proportional to each other, thus can not be reducible
to scalar single dark soliton. In this non-degenerate case, the
�ð1Þ and �ð2Þ components have different degrees of darkness
at the center. As is shown in Fig. 2, the intensity of the
component �ð1Þ is zero intensity, while the intensity of the
component �ð2Þ is nonzero intensity at its center.

3.2 Two dark–dark solitons
Two dark–dark solitons of Eqs. (1)–(3) correspond to

N ¼ 2 in the formula (50)–(52). In this case, we have

�ð1Þ ¼ �1e
i½�1xþ�21yþ�1ðtÞ	 g2

f2
; ð59Þ

�ð2Þ ¼ �2e
i½�2xþ�22yþ�2ðtÞ	 h2

f2
; ð60Þ

u ¼ 2ðlog f2Þxx; ð61Þ
with

f2 ¼ 1 þ e	1þ	
�
1
þ�1 þ e	2þ	

�
2
þ�2

þ�12e
	1þ	�1þ	2þ	�2þ�1þ�2 ; ð62Þ

g2 ¼ 1 þ Kð1Þ
1 e	1þ	

�
1
þ�1 þ Kð1Þ

2 e	2þ	
�
2
þ�2

þ�12K
ð1Þ
1 K ð1Þ

2 e	1þ	
�
1
þ	2þ	�2þ�1þ�2 ; ð63Þ

h2 ¼ 1 þ Kð2Þ
1 e	1þ	

�
1
þ�1 þ Kð2Þ

2 e	2þ	
�
2
þ�2

þ�12K
ð2Þ
1 K ð2Þ

2 e	1þ	
�
1
þ	2þ	�2þ�1þ�2 ; ð64Þ

and

e�j ¼ 1

pj þ p�j
¼ 1

2aj
;

Kð1Þ
j ¼ � pj � i�1

p�j þ i�1
¼ � aj þ iðbj � �1Þ

aj � iðbj � �1Þ ;

Kð2Þ
j ¼ � pj � i�2

p�j þ i�2
¼ � aj þ iðbj � �2Þ

aj � iðbj � �2Þ ;

�12 ¼ p1 � p2
p1 þ p�2

����
����2 ¼ ða1 � a2Þ2 þ ðb1 � b2Þ2

ða1 þ a2Þ2 þ ðb1 � b2Þ2
;

	j þ 	�j ¼ 2ajx þ 4ajbjy þ
�

�1�
2
1aj

a2j þ ðbj � �1Þ2

þ �2�
2
2aj

a2j þ ðbj � �2Þ2
� 8ajða2j � 3b2j Þ

�
t þ 2	j0R

¼ kx;jx þ ky;jy þ !jt þ 2	j0R

where pj ¼ aj þ ibj; aj; bj; 	j0R; ð j ¼ 1; 2Þ are real constants.
In the case of a2 ¼ �a1 and b2 ¼ b1, i.e., p2 ¼ �p�1, the

denominator of �12 is zero. The soliton interaction possess
Y-shape on this particular wave number. This Y-shape type
soliton solution is found in the KP equation and is also
known as the resonant soliton solution. Analogous to the
two-soliton solution of the KP equation, the above two
soliton interaction solutions are classified into two different
types:34–37)

(1) If a1a2 < 0, then �12 > 1. This case is called the O-
type soliton interaction. In this situation, the two asymptotic
soliton amplitudes 2a21 and 2a22 (in the long wave component
u) are equivalent when a1 ¼ �a2. The interaction peak (the
maximum of u) is always greater than the sum of the
asymptotic soliton amplitudes.

(2) If a1a2 > 0, then 0 < �12 < 1. This case is known as
the P-type soliton interaction. In this situation, the two

(a) (b)

Fig. 1. (Color online) Single dark–dark solitons (degenerate) at the fixed
time t ¼ 0 with the parameters �1 ¼ 1, �2 ¼ 2, �1 ¼ �2 ¼ 1, p1 ¼ 1 þ i,
	10R ¼ 0.

(a) (b)

Fig. 2. (Color online) Single dark–dark solitons (non-degenerate) at the
fixed time t ¼ 0 with the parameters �1 ¼ 1, �2 ¼ 2, �1 ¼ 1, �2 ¼ 2,
p1 ¼ 1 þ i, 	10R ¼ 0.
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asymptotic soliton amplitudes 2a21 and 2a22 (also in u) cannot
be equivalent. The interaction peak (the maximum of u)
is always less than the sum of the asymptotic soliton
amplitudes.

It is obvious that the types of soliton interaction do not
depend on the parameters b1 and b2 (the imaginary parts of
p1 and p2). The resonant Y-shape soliton solution can be
obtained via taking the limit b2 ! b1 in the equal-amplitude
O-type two-soliton solution (a1 ¼ �a2). In addition, the
interaction coefficient �12 in the two-soliton solution of the
coupled Mel’nikov system is always non-negative while it
can be negative in the two-soliton solution of the KP
equation.

The collision of two dark–dark solitons is illustrated in
Fig. 3. It can be seen that after collision, the two solitons pass
through each other without any change of shape, darkness or
velocity in both components. Therefor, there is no energy
exchange between the two solitons or between the �ð1Þ and
�ð2Þ components after collision. This complete transmission
of energy of dark–dark solitons in both components after
collision is a common phenomenon of the coupled Mel’nikov
system which occurs for all possible combinations of �1 and
�2 values (all-positive, all-negative and mixed types).

The reason of the complete energy transmission in dark–
dark soliton collisions is that the intensity profile of each
dark–dark soliton is completely determined by the back-
ground parameters �i; �i and the soliton parameters ai; bi. For
the colliding solitons, these parameters are the same, hence
do not change through collisions. Therefor, the intensity
profile of each dark–dark soliton does not change before and
after collision.

4. Dark–Dark Soliton Bound States

In the study of dark solitons, multi-dark-soliton bound
states is a fascinating subject. To get two dark–dark soliton
bound states of the coupled Mel’nikov system, the two
solitons should have the same velocity in both short and long
wave components, so that the two constituent dark solitons

can stay together for all times. This means that the parameters
need to satisfy !1

kx;1
¼ !2

kx;2
and !1

ky;1
¼ !2

ky;2
.

4.1 The stationary dark–dark soliton bound states
The stationary dark–dark soliton bound states suggest that

the common velocity is zero. This requires the coefficients of
t in the solution (59)–(61) to be zero, i.e.,

�1�
2
1

a2i þ ðbi � �1Þ2
þ �2�

2
2

a2i þ ðbi � �2Þ2
� 8ða2i � 3b2i Þ ¼ 0

for i ¼ 1; 2: ð65Þ
These constraints can be satisfied for all possible combina-
tions of �1 and �2 values. However, for the coupled YO
system14) and the coupled NLS system,28) the corresponding
constraints are possible only when nonlinearity coefficients
take opposite signs. Hence, for the coupled Mel’nikov
system, the stationary dark–dark soliton bound states are
expected to exist for all possible combinations of nonlinearity
coefficients including positive, negative and mixed types.

Two different types of bound states are illustrated in
Figs. 4 and 5 respectively. A nontrivial case of ky;1

kx;1
≠ ky;2

kx;2
is

displayed in Fig. 4, which corresponds to an oblique bound
state. Meanwhile, a trivial case of ky;1

kx;1
¼ ky;2

kx;2
is displayed in

Fig. 5, which corresponds to a quasi-one-dimensional one.

4.2 The moving dark–dark soliton bound states
If the common velocity being nonzero, i.e., !1 ≠ 0 and

!2 ≠ 0, we can get the moving dark–dark soliton bound
states. Thus the parameters need to satisfy the following
conditions:

b1 ¼ b2; ð66Þ
�1�

2
1

a21 þ ðb1 � �1Þ2
þ �2�

2
2

a21 þ ðb1 � �2Þ2
� 8a21

¼ �1�
2
1

a22 þ ðb2 � �1Þ2
þ �2�

2
2

a22 þ ðb2 � �2Þ2
� 8a22: ð67Þ

These constraints are not possible when �1 and �2 are both
positive. The reason is that when �1 ¼ �2 ¼ 1, the function

(a) (b)

(c)

Fig. 3. (Color online) Two dark–dark solitons at the fixed time t ¼ 0 with
the parameters �1 ¼ 1, �2 ¼ 2, �1 ¼ 1, �2 ¼ 2, p1 ¼ 1 þ 2i, p2 ¼ 2 þ 1

3
i,

	10R ¼ 	20R ¼ 0.

(a) (b)

(c)

Fig. 4. (Color online) The stationary dark–dark soliton bound states under
the condition ky;1

kx;1
≠ ky;2

kx;2
with the parameters �1 ¼ 1, �2 ¼ 2, �1 ¼ �2 ¼ �1,

�1 ¼ 1, �2 ¼ 1, p1 ¼ 1:6658 þ i, p2 ¼ 1:7057 � i, 	10R ¼ 	20R ¼ 0.
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on the left-hand (also right-hand) side of Eq. (67) is a
decreasing function of a2j , thus it can not be satisfied for two
different positive values a1 and a2 for the same values
b1 ¼ b2. However, when �1 and �2 take opposite signs or
they are both negative, the function on the left-hand (also
right-hand) side of Eq. (67) may become non-monotone in
a2j , hence it becomes possible for Eq. (67) to admit two
different positive values a1 and a2 for the same values
b1 ¼ b2. For the coupled NLS equations and the coupled YO
system, the corresponding constraints can be satisfied only
when the coefficients of nonlinear terms take opposite signs.
To demonstrate these moving dark–dark soliton bound states,
the following parameters are chosen

�1 ¼ �2 ¼ �1; �1 ¼ 1; �2 ¼ 2;

�1 ¼ 1; �2 ¼ 1

2
; p1 ¼ 1 þ i;

p2 ¼ 0:6012 þ i; 	10R ¼ 	20R ¼ 0 ð68Þ
and the corresponding profiles are illustrated in Figs. 6–8 at
different times.

An important feature of the bound states is that, for both
stationary and moving bound states, as x and y move from
�1 to þ1, the short wave components acquire non-zero
phase shifts while the long wave component admits no phase
shift. Actually, let 2
ð1Þ

j and 2
ð2Þ
j are the phases of constants

Kð1Þ
j and Kð2Þ

j respectively, then the phase shifts of the
components are �ð1Þ

phase shift ¼ 2
ð1Þ
1 þ 2
ð1Þ

2 , �ð2Þ
phase shift ¼

2
ð2Þ
1 þ 2
ð2Þ

2 and uphase shift ¼ 0. It can be seen that the total
phase shifts of each short wave component are equal to the
sum of the individual phase shifts of the two constituent dark

(a) (b)

(c)

Fig. 6. (Color online) The moving dark–dark soliton bound states with the
parameters (68) at time t ¼ � 3

2
, (c) is the profile of u component with y ¼ 0.

(a) (b)

(c)

Fig. 7. (Color online) The moving dark–dark soliton bound states with the
parameters (68) at time t ¼ 0, (c) is the profile of u component with y ¼ 0.

(a) (b)

(c)

Fig. 5. (Color online) The stationary dark–dark soliton bound states under
the condition ky;1

kx;1
¼ ky;2

kx;2
with the parameters �1 ¼ 1, �2 ¼ 2, �1 ¼ �2 ¼ �1,

�1 ¼ 1, �2 ¼ 1
2
, p1 ¼

ffiffi
7

p
4
þ 3

4
i, p2 ¼

ffiffiffiffi
19

p
4

þ 3
4
i, 	10R ¼ 	20R ¼ 0.

(a) (b)

(c)

Fig. 8. (Color online) The moving dark–dark soliton bound states with the
parameters (68) at time t ¼ 3

2
, (c) is the profile of u component with y ¼ 0.
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solitons, and are generally non-zero, while the phase shifts of
the long wave component are always zero. For instance, the
total phase shift of the �ð1Þ component is 2�, and the total
phase shift of the �ð2Þ component is −3.9684, as can be
calculated from the above formula.

5. General N Dark Soliton Solutions of the Multi-
component Mel’nikov System

In this section, the previous analysis is extended to the
Multi-component Mel’nikov system (6)–(7) to get its general
N dark soliton solutions. As is known that the multi-bright
soliton solutions can be obtained through the reduction of
multi-component KP hierarchy, and the multi-dark soliton
solutions can be derived from the reduction of single KP
hierarchy but with multiple copies of shifted singular points.
Consequently, the general N dark soliton solutions of the
multi-component Mel’nikov system can be obtained in the
same manner as the two-component Mel’nikov system. Here,
only the results are presented without a detail calculation.

The multi-component Mel’nikov system (6)–(7) consisting
of M short wave components and one long wave component
can be converted to the following bilinear form

ðD2
x þ 2i�kDx � iDyÞgk � f ¼ 0; k ¼ 1; 2; . . . ;M; ð69Þ

ðD4
x þ DxDt � 3D2

yÞf � f ¼
XM
k¼1

�k�
2
kð f 2k � hh�Þ; ð70Þ

by virtue of the dependent variable transformations

�ðkÞ ¼ �ke
i½�kxþ�2k yþ�kðtÞ	 gk

f
; k ¼ 1; 2; . . . ;M; ð71Þ

u ¼ 2ðlog f Þxx; ð72Þ
where f � fðx; y; tÞ is a real function, gk � gkðx; y; tÞ are
complex functions, �k are constants, �k are real constants and
�kðtÞ are arbitrary real functions for k ¼ 1; 2; . . . ;M.

Also consider the Gram determinant solutions of the KP
hierarchy, in the similar way, we can get the following N-
dark soliton solutions of Eqs. (6)–(7),

f ¼ �ij þ 1

pi þ p�j
e	iþ	

�
j

�����
�����
N�N

;

gk ¼ �ij þ � pi � i�k
p�j þ i�k

 !
1

pi þ p�j
e	iþ	

�
j

�����
�����
N�N

;

with

	j ¼ pjx � ip2j y þ
1

2

XM
k¼1

�k�
2
k

pj � i�k
� 8p3j

 !
t þ 	j0;

where pj and 	j0 are complex constants, �ij is the Kronecker
symbol.

6. Conclusions

In this paper, the N-dark–dark soliton solutions of the
coupled Mel’nikov system containing two short wave
components and one long wave component are constructed
in Gram determinant form by virtue of the KP hierarchy
reduction method. The derivation of N-dark–dark soliton
solutions relies on the connections of the Mel’nikov system
with other integrable equations in the KP hierarchy. In
addition, the similar expression of general N-dark soliton
solutions of multi-component Mel’nikov system comprised

of M short wave components and one long wave component
are also obtained by simply inserting more copies of the
shifts of singular points. As far as we know, general N-dark
soliton solutions of two-dimensional (2D) multi-component
soliton equations are rather rare except that the N-dark soliton
solutions of the 2D multi-component YO systems are studied
by Chen et al.14)

The dynamics of single and two dark–dark solitons of the
coupled Mel’nikov system with two short wave components
are studied in detail, and several interesting structures of the
solutions have been illustrated through some figures. For
single dark–dark solitons, we have shown that the degrees of
“darkness” in the two components are different in general.
For two dark–dark solitons, in contrast with bright–bright
solitons, it has been shown that the collisions of dark–dark
solitons are elastic and there is no energy transfer in two
components of each soliton. What’s more, the dark–dark
soliton bound states including both stationary and moving
cases are also discussed. For the stationary case, the
constraints can be satisfied for all possible combinations of
nonlinearity coefficients including positive, negative and
mixed types. For the moving case, the corresponding
constraints can be satisfied when nonlinearity coefficients
take opposite signs or they are both negative. Whereas, for
the 2D coupled YO system14) and the coupled NLS system,28)

the dark–dark soliton bound states are possible only under
the condition that the coefficients of nonlinear terms take
opposite signs.

Recently, the general mixed N-soliton solutions of the 1D
multi-component YO system and the vector NLS equations
are obtained in Refs. 15 and 29 respectively. Motivated by
the remarkable work in Refs. 15 and 29, the general N-bright
and N-bright-dark solitons of the multi-component Mel’nikov
system may also be obtained by the KP hierarchy reduction
method. However, the reductions for bright and bright-dark
solitons are different from the ones for dark solitons in the
current paper. On the other hand, as mentioned in Sect. 1, the
KP hierarchy reduction method can also be applied to derive
lump and rogue wave solutions of soliton equations.
Although the rogue waves of the Mel’nikov system (1)–(2)
have been investigated,23) the general rational solutions (lump
and rogue wave solutions) of the multi-component Mel’nikov
system (6)–(7) have not been reported so far (to our
knowledge). These questions are interesting and meaningful,
we will study them in our future papers.
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