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Abstract This paper investigates N-soliton and data-
driven solutions of a novel nonlocal Sasa-Satsuma (SS)
equation by applying theRiemann-Hilbert problemand
the physics-informed neural networks (PINN) method.
Based on the zero curvature formulation with arbi-
trary order spatial and temporal spectral matrixes, the
novel nonlocal SS equation is constructed from the
nonlocal integrable SS hierarchies possessing the bi-
Hamiltonian structures and the Liouville integrability.
Analyzing properties of the Jost matrix, the Riemann-
Hilbert problem and some novel symmetry constraints
are derived for obtaining the N-soliton solutions of the
nonlocal SS equation. Moreover, the dynamic charac-
teristics of these one- and two-soliton solutions are
visually displayed in some figures. Finally, the data-
driven solutions of the nonlocal SS equation are avail-
ably learned via the PINN approach combining with
the spatial and temporal nonlocal terms. And the results
show the error range between the predicted data-driven
solutions and the exact solutions, which indicate the
effectiveness of the method.
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1 Introduction

As well as we know, many nonlinear partial differen-
tial equations (PDEs) have quite rich physical signif-
icance. As a kind of important nonlinear PDE, non-
linear Schrödinger (NLS) equation [1] was extensively
investigated in the realm of mathematical physics, such
as hydrodynamics [2], nonlinear optical fibers [3],
Bose-Einstein condensates [4] and ion acoustic waves
[5] with nonlinear instability. The Sasa-Satsuma (SS)
equation is one of the higher-order NLS equations,
which can be applied to monomode optical fibers [6].
It is worth mentioning that the SS equation has diver-
siform dynamic features of solutions, such as semira-
tional rogue-wave solutions [7], general breather solu-
tions [8], single- and double-hump solitons [9,10],
and so on. Additionally, the Riemann-Hilbert prob-
lem [11,12] is an effective method to obtain vari-
ous dynamic behaviors of solutions for the SS equa-
tion. According to a spectral analysis of its Lax pair,
Geng and Wu established the corresponding Riemann-
Hilbert method of the generalized SS equation [13].
Based on a standard dressing procedure of the SS equa-
tion, Yang and Chen constructed simple and high-order
zeros in theRiemann-Hilbert problem [14]. On account

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-024-10605-y&domain=pdf


W.X. Zhang, Y. Chen

of a multi-component SS hierarchies, Liu et al. studied
the generalized coupled Sasa-Satsuma equation by the
Riemann-Hilbert method and analyzed the asymptotic
behaviors of two-soliton solutions [15].

Since Ablowitz and Musslimani [16] investigated
the nonlocal NLS equation through the inverse scatter-
ing transform, some related research on nonlocal equa-
tions had gradually entered the view of scholars. It can
be noted that numerous approaches (Darboux transfor-
mations [17,18], Riemann-Hilbert approach [19,20],
for instance) applied to local equations as well as non-
local equations. As one kind of nonlocal equation,
the nonlocal SS equation was studied to get novel
dynamic behaviors of soliton solutions via the binary
Darboux transformation method [21] and inverse scat-
tering transformation [22–24]. Moreover, the infinite
conservation law and the bi-Hamiltonian structure of a
nonlocal SS equation were deduced, and the relation-
ship between a nonlocal SS equation and a Heisenberg-
like equationwas constructed [25]. In this paper, a novel
nonlocal SS equationwith the space-timenonlocal term
is obtained by the nonlocal integrable SS hierarchies
rigorously derived in Sect. 2. This novel nonlocal SS
equation has some novel symmetric constraints of dis-
crete scattering data and scattering matrix, which is
considered as the following form

qt + qxxx + 6(q(−x,−t)q∗ + qq∗(−x,−t))qx

+3q(qq∗(−x,−t) + q∗q(−x,−t))x = 0, (1)

where q = q(x, t) represents a complex-valued poten-
tial function, and q∗ = q∗(x, t) shows as the complex
conjugate function of q. The nonlocality of equation
(1) manifests itself in the fact that the solutions make
sense at two different space and time locations (x, t)
and (−x,−t) simultaneously [26]. This means that the
novel nonlocal SS equation has the new spatial and
temporal coupling different from the local SS equation,
which can give some novel symmetry analysis for dis-
crete scattering data as well as exquisite and additional
solution characteristics. To indicate the integrability of
the nonlocal SS equation (1), its Lax pair is presented
as follows

− iYx = UY, −iYt = VY, (2)

whereY = Y (x, t, z) is a eigenfunctionwith a complex
spectral parameter z, and

U = z� + Q, V = 4z3� + P, (3)

where

� = diag(1, 1, 1, 1,−1), (4)

Q =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 −iq
0 0 0 0 −iq∗
0 0 0 0 −iq(−x,−t)
0 0 0 0 −iq∗(−x,−t)

iq∗(−x,−t) iq(−x, −t) iq∗ iq 0

⎞
⎟⎟⎟⎟⎠

, (5)

and

P = 4z2Q − 2i z(i Q2 + Qx )� + i Qx Q − i QQx

−Qxx − 2Q3. (6)

Basedon the spatial and temporal parts of the aboveLax
pair (2), the nonlocal SS equation (1) can be derived by
the zero curvature formula Ut − Vx + i[U, V ] = 0.

In addition, with the development of computational
speed and accuracy, deep neural network algorithms
were extended to the field of calculations for forward
and inverse problems of PDEs [27–29]. Combining
with the physical laws satisfied by nonlinear PDEs,
Raissi et al. proposed a physics-informed neural net-
works (PINN) algorithm, which provided a new inspi-
ration for people to explore data-driven solutions and
data-drivendiscovery of nonlinear PDEs [27].Basedon
the PINN method, plentiful dynamic features of solu-
tions of abundant equations can be reproduced success-
fully, such as data-driven breather solutions [30,31]
and the rogue wave solutions [32–34]. Furthermore, on
account of the main ideas of PINNs, a lot of improved
neural network frameworks were put forward, includ-
ing the two-stage PINN [35], the Lax pairs informed
neural networks (LPNNs) [36], the initial-value iter-
ative neural network (IINN) [37], etc. Similarly, the
PINN method can also be used to predict various
dynamic behaviors of solutions in nonlocal systems
[38–40]. Zhang et al. investigated the nonlocal Davey-
Stewartson (DS) I equation with an improved PINN
method, in which the PT symmetric constraint and the
model were led into the loss function [41]. Peng and
Chen studied the forward and inverse problems of the
nonlocal NLS equation, the nonlocal derivative NLS
equation and the nonlocal three-wave interaction sys-
tems by the PT-symmetric PINN [42]. In this paper, we
learn data-driven solutions of the nonlocal SS equation
(1) by applying the PINNapproach.And comparing the
predicted dynamic with the exact dynamic, the validity
of the PINN method is illustrated.

The outline of this paper is given as follows. In
Sect. 2, the nonlocal integrable SS hierarchies are con-
structed with the zero curvature equation, which can
derive a novel one-component nonlocal SS equation
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and a novel two-component nonlocal SS system. In
addition, theLiouville integrability of the nonlocal inte-
grable SS hierarchies is analyzed by introducing bi-
Hamiltonian structures. In Sect. 3, thematrix Riemann-
Hilbert problem is established by the analytic and
asymptotic properties of the Jost matrix. Thenwe study
a variety of significant symmetry properties of matrix
function, scattering matrix, and discrete scattering data
of the nonlocal SS equation (1). In Sect. 4, the expres-
sions of N-soliton solutions are given via the Riemann-
Hilbert method and symmetry conditions. Then, the
dynamic behaviors of one- and two-solion solutions are
described in the figures. In Sect. 5, the data-driven solu-
tions of the nonlocal SS equation are learned through
the PINNalgorithm,which are comparedwith the exact
solutions. Finally, the conclusions of the whole paper
are given in Sect. 6.

2 The nonlocal integrable Sasa-Satsuma
hierarchies

It can be noted that the multi-component nonlocal inte-
grable hierarchies are derived by the zero curvature
equation, thus firstly we show the Lax pair as the fol-
lowing form

Yx = iUY = MY, Yt = iV Y = NY. (7)

Then it is natural to give the zero curvature equation
based on the above Lax pair

Mt − Nx + [M, N ] = 0, (8)

which is equivalent toUt −Vx + i[U, V ] = 0. Further-
more, the spatial part of theLaxpair is introducedbelow
for obtaining multi-component nonlocal integrable SS
hierarchies,

Yx = MY = M(q, q∗(−x,−t), z)Y,

M =
(

i z I4n q
−q∗(−x,−t)� −i z

)
, (9)

where ∗ and � represent the conjugate and the trans-
pose respectively, M is a (4n + 1)-order matrix, and q
denotes a 4n-dimensional vector potential function

q = (q1, q
∗
1 , q1(−x,−t), q∗

1 (−x,−t), ..., qn,

q∗
n , qn(−x,−t), q∗

n (−x,−t))�. (10)

The corresponding stationary zero curvature equa-
tion is introduced as

Nx = [M, N ], N = N (q, q∗(−x,−t), z),

M = M(q, q∗(−x,−t), z), (11)

which has a (4n + 1)-order matrix solution

N =
(
A B
C D

)
=

∞∑
i=0

Ni z
−i , Ni =

(
A[i] B[i]
C [i] D[i]

)
.(12)

It is worth mentioning that Ni is independent of z, in
which A[i] is a 4n × 4n matrix, D[i] is a 1 × 1 matrix,
and

B[i] = (B[i]
1 , B[i]

2 , ..., B[i]
4n )�,

C [i] = (C [i]
1 ,C [i]

2 , ...,C [i]
4n ), i ≥ 0. (13)

Substitute the expression (12) into the stationary zero
curvature formula (11), then a set of matrix equations
of A, B, C and D are

⎧⎪⎪⎨
⎪⎪⎩

Ax = qC + Bq∗(−x,−t)�,

Bx = 2i zB + qD − Aq,

Cx = −2i zC − q∗(−x, −t)�A + Dq∗(−x,−t)�,

Dx = −q∗(−x,−t)�B − Cq.

(14)

The recursion relations of A[i], B[i], C [i] and D[i] are
given as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A[0]
x = 0, A[i]

x = qC [i] + B[i]q∗(−x,−t)�, i ≥ 1,

B[0] = 0, B[i+1] = − i
2 B

[i]
x + i

2 qD
[i] − i

2 A
[i]q, i ≥ 0,

C [0] = 0, C [i+1] = i
2C

[i]
x + i

2 q
∗(−x, −t)�A[i]

− i
2 D

[i]q∗(−x, −t)�, i ≥ 0,

D[0]
x = 0, D[i]

x = −q∗(−x,−t)�B[i] − C [i]q, i ≥ 1.

(15)

In this case, the first terms of A[i] and B[i] in the recur-
sive expressions can be taken as

A[0] = α1 I4n, D[0] = α2, (16)

where α1 and α2 are arbitrary constants. After a series
of calculations, it is precise to derive that
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A[4] = 1

16
α(qq∗(−x, −t)�)xx − 3

16
αqx q

∗
x (−x,−t)�

+ i

8
β(qxq

∗(−x,−t)� − qq∗
x (−x, −t)�)

+ 3

16
α(qq∗(−x,−t)�qq∗(−x, −t)�)

− 1

4
γ qq∗(−x,−t)� + α9 I4n,

B[4] = 1

16
αqxxx + i

8
βqxx

+ 3

16
αqxq

∗(−x,−t)�q

+ 3

16
αqq∗(−x,−t)�qx

− 1

4
γ qx − i

2
ζq + i

4
βqq∗(−x,−t)�q,

C [4] = 3

16
αq∗(−x,−t)�qq∗

x (−x, −t)� − 1

4
γ q∗

x (−x,−t)�

− i

4
βq∗(−x,−t)�qq∗(−x,−t)�

+ 1

16
αq∗

xxx (−x, −t)� − i

8
βq∗

xx (−x, −t)�

+ 3

16
αq∗

x (−x,−t)�qq∗(−x,−t)�

+ i

2
ζq∗(−x, −t)�,

D[4] = − 1

16
α(q∗(−x,−t)�q)xx + 3

16
αq∗

x (−x,−t)�qx

+ i

8
β(q∗

x (−x, −t)�q − q∗(−x,−t)�

qx ) − 3

16
αq∗(−x, −t)�qq∗(−x,−t)�q

+ 1

4
γ q∗(−x,−t)�q + α10,

where α, β, γ , ζ , α9 and α10 are arbitrary con-
stants. According to recursive relations (15), the matrix
expression can be written as
(

B[i+1]
C [i+1]�

)
= �

(
B[i]
C [i]�

)
, i ≥ 0, (17)

where � is an (8n × 8n)-dimensional matrix integral-
differential operator

� = − i

2

⎛
⎜⎜⎜⎜⎝

∂x + q∂−1
x q∗(−x,−t)� +

n∑
j=1

h j q∂−1
x q� + (q∂−1

x q�)�

−k(−x,−t)� − k(−x,−t) −∂x −
n∑
j=1

h j − q∗(−x,−t)�∂−1
x q�

⎞
⎟⎟⎟⎟⎠

, (18)

in which

h j = q j∂
−1
x q∗

j (−x,−t)� + q∗
j (−x,−t)�∂−1

x q j ,

k(−x,−t) = q∗(−x,−t)�∂−1
x q∗(−x,−t).

Then, the j th evolution equation of temporal spec-
tral matrix in the hierarchy is introduced as follows

N [ j] = N [ j](q, q∗(−x,−t), z) = (z j N )+

=
j∑

i=0

Ni z
j−i , j ≥ 1. (19)

Combining with the zero curvature formula Mtj −
N [ j]
x + [M, N [ j]] = 0, j ≥ 1, the nonlocal integrable

SS hierarchies are obtained as(
qt j

q∗
t j (−x,−t)

)
= 2i

(
B[ j+1]
C [ j+1]�

)
, j ≥ 1. (20)

When j = 3, we suppose these functions subject
to q2 = q3 = 0 and take the constants α = 8i ,
β = γ = ζ = 0. The one-component nonlocal SS
equation is given according to the above nonlocal inte-
grable hierarchies (20),

q1,t3 + q1,xxx + 6(q1q
∗
1 (−x, −t) + q1(−x,−t)q∗

1 )q1x
+3q1(q1q

∗
1 (−x,−t) + q∗

1q1(−x,−t))x = 0. (21)

Similarly, supposing the function q3 = 0, the two-
component nonlocal SS system is obtained

q1,t3 + q1,xxx + 6(q1q
∗
1 (−x,−t) + q1(−x,−t)q∗

1 )q1x
+ 3q1(q1q

∗
1 (−x, −t) + q∗

1q1(−x,−t))x = 0,

q2,t3 + q2,xxx + 6(q2q
∗
2 (−x,−t) + q2(−x,−t)q∗

2 )q2x
+ 3q2(q2q

∗
2 (−x,−t) + q∗

2q2(−x, −t))x = 0.

(22)

In order to investigate the Liouville integrability
[43] for nonlocal integrable SS hierarchies (20), the
bi-Hamiltonian structures [44,45] are introduced from
the trace identity. Firstly, the conditions satisfied by the
traces are given

tr

(
N

∂M

∂z

)
= i[tr(A) − D]
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= i

⎡
⎣

∞∑
i=0

⎛
⎝

4n∑
j=1

A[i]
j j − D[i]

⎞
⎠ z−i

⎤
⎦ , (23)

tr

(
N

∂M

∂q

)
(24)

=
(
C�
−B

)
=

∞∑
i=0

(
C [i]�
−B[i]

)
z−i =

∞∑
i=0

Gi−1z
−i .

Then, learning from the trace identity and the varia-
tional identity, we know

δ H̃i

δq
= iGi−1, H̃i = i

∫ ⎛
⎝

4n∑
j=1

A[i+1]
j j − D[i+1]

⎞
⎠ dx/ i. (25)

It can thus be seen that bi-Hamiltonian structures for the
nonlocal integrable SS hierarchies (20) are introduced
as(

q ti
q∗
ti (−x,−t)

)
= J1

δ H̃i+1

δq
= J2

δ H̃i

δq
, i ≥ 1, (26)

where

J1 =
(

0 −2I4n
2I4n 0

)
,

J2 = i

⎛
⎜⎜⎜⎜⎝

−q∂−1
x q� − (q∂−1

x q�)� ∂x + q∂−1
x q∗(−x,−t)� +

n∑
j=1

h j

∂x +
n∑
j=1

h j + q∗(−x,−t)�∂−1
x q� −k(−x,−t)� − k(−x,−t)

⎞
⎟⎟⎟⎟⎠

.

Thus, the nonlocal integrable SS hierarchies (20) are
decomposed into two commuting finite-dimensional
Hamiltonian systems being Liouville integrable.More-
over, the integrable property of one-component or
multi-component nonlocal SS systems is illustrated.

3 Riemann-Hilbert problem for the nonlocal
Sasa-Satsuma equation

In this section, the Riemann-Hilbert problem for the
nonlocal SS equation (1) is accurately constructed,
which can help us to analyze the general soliton solu-
tions. Based on Lax pair (2) and concrete expressions
of U and V , we take

Q1 = i Q, P1 = i P, (27)

thus,

Yx = i z�Y + Q1Y, Yt = 4i z3�Y + P1Y. (28)

When x → ±∞ or t → ±∞, the potential function q
is assumed to decay sufficiently rapidly to zero. From
the above differential equation (28), the Y could be
expressed as

Y = Jeiz�x+4i z3�t , (29)

where the matrix function J satisfies these differential
equations

Jx = i z[�, J ] + Q1 J, Jt = 4i z3[�, J ] + P1 J. (30)

Then matrix eigenfunctions J+(x, t) and J−(x, t) are
introduced with asymptotic properties

J±(x, t) → I5, x → ±∞, (31)

where the subscript ± indicates that the asymptotic
boundary is at the positive or negative end of the x-axis,
and determinants of J+ and J− are both one. So as to
facilitate the analysis for properties of eigenfunctions,
we suppose a notation E = eiz�x and


− = J−E, 
+ = J+E . (32)

Notice that 
+ and 
− are the eigenfunctions of the
spatial spectrum problem in (28), thus there is a linear
correlation between 
− and 
+

− = 
+S(z) ⇐⇒ J−E = J+ES(z), z ∈ R, (33)

where the scattering matrix S(z) = (s jl)5×5. Since the
determinants of J+ and J− are both one, the matrix
determinant of S(z) is also one. It is worth mentioning
that the eigenfunctions J±(x, z) satisfying the spatial
matrix spectrum problem in (30) are given as these
Volterra integral expressions

J−(x, z) = I5 +
∫ x

−∞
eiz�(x−y)Q1(y)J−(y, z)e−i z�(x−y)dy,

(34)

J+(x, z) = I5 +
∫ x

+∞
eiz�(x−y)Q1(y)J+(y, z)e−i z�(x−y)dy.

(35)

123



W.X. Zhang, Y. Chen

Just to make it easier to represent each column vector
of J±(x, z), the notation is introduced as

J±(x, z) = (J±,1, J±,2, J±,3, J±,4, J±,5). (36)

Through analyzing the convergenceof theVolterra inte-
grals in (34) and (35), J+,i (i = 1, 2, 3, 4) and J−,5 pos-
sess analyticity on region C+ and continuity on region
C̄+. In themeantime, J+,5 and J−,i (i = 1, 2, 3, 4) sat-
isfy analyticity on region C− and continuity on region
C̄−. Then, we construct the Jost solution �+ which
has analytic property inC+ and continuous property in
C̄+,
�+ = �+(x, z) = (J+,1, J+,2, J+,3, J+,4, J−,5)

= J−H1 + J+H2, (37)

where

H1 = diag(0, 0, 0, 0, 1)5×5, H2 = diag(1, 1, 1, 1, 0)5×5.

(38)

Similarly, the next is to obtain the matrix Jost solution
�− with the lower half plane analysis, which means
that �− possesses analytic property in C−. Unlike
above, we need to consider the adjoint matrix equa-
tions of (2) and (30), respectively,

i Ỹx = ỸU, i Ỹt = Ỹ V, (39)

i J̃x = z[ J̃ ,�] + J̃ Q, i J̃t = 4z3[ J̃ ,�] + J̃ P. (40)

The eigenfunctions of the above adjoint matrix equa-
tions are obtained as

Ỹ± = (Y±)−1, J̃± = (J±)−1, (41)

and the eigenfunctions J̃±(x, z) could be defined as

J̃±(x, z) = ( J̃±,1, J̃±,2, J̃±,3, J̃±,4, J̃±,5)
�, (42)

where J̃±,i represent the i th row vectors of the eigen-
functions J̃±. Then, the matrix Jost solution �− with
the lower half plane analysis is constructed as follows

�−(x, z) = ( J̃+,1, J̃+,2, J̃+,3, J̃+,4, J̃−,5)
�

= H1 J̃− + H2 J̃+ = H1(J−)−1 + H2(J+)−1. (43)

In view of linear relationship (33) between J− and
J+ and the expressions (37) and (43) of �±(x, z), the
determinants of �+ and �− are calculated as

det�+(x, z) = s55(z), det�−(x, z) = ŝ55(z), (44)

and the limits of �+ and �− as x approaches infinity
are obtained as

lim
x→∞ �+(x, z) =

(
I4 0
0 s55(z)

)
, z ∈ C̄+, (45)

lim
x→∞ �−(x, z) =

(
I4 0
0 ŝ55(z)

)
, z ∈ C̄−, (46)

where ŝ55(z) is the fifth row and fifth column ele-
ment of the inverse scattering matrix S−1(z), and
S−1(z) = (ŝi j )5×5. Thus, the Jost matrixes G+(x, z)
and G−(x, z) are constructed as follows

G+(x, z) = �+(x, z)

(
I4 0
0 s−1

55 (z)

)
, z ∈ C̄+, (47)

G−(x, z) =
(
I4 0
0 ŝ−1

55 (z)

)
�−(x, z), z ∈ C̄−, (48)

which both asymptotically approach the identitymatrix
as x → ∞.

Proposition 3.1 Based on the definitions of G±(x, z),
the matrix Riemann-Hilbert problem satisfies

i) the relationship between G+(x, z) and G−(x, z)

G−(x, z)G+(x, z) = G0(x, z), z ∈ R, (49)

where

G0(x, z) = E

(
I4 0
0 ŝ−1

55

)

(H1S
−1 + H2)(SH1 + H2)

(
I4 0
0 s−1

55

)
E−1

= E

(
I4 0
0 ŝ−1

55

)
⎛
⎜⎜⎜⎜⎝

1 0 0 0 s15
0 1 0 0 s25
0 0 1 0 s35
0 0 0 1 s45
ŝ51 ŝ52 ŝ53 ŝ54 1

⎞
⎟⎟⎟⎟⎠

(
I4 0
0 s−1

55

)
E−1.

(50)

ii) G+(x, z) → I5, z ∈ C+ → ∞.

iii) G−(x, z) → I5, z ∈ C− → ∞.

It is vital to derive symmetric relations of matrix
functions, Jost matrices, scattering matrix and discrete
scattering data, which are preliminary preparations for
obtaining soliton solutions. Thus, we analyze these
symmetry constraints of the nonlocal SS equation (1).
Firstly, the symmetric properties of matrixes Q and P
need to take into account

Q†(−x,−t) = Q(x, t), P†(−x,−t) = P(x, t),

(51)

where the notation † denotes the Hermitian (i.e. con-
jugate transpose) of a matrix. In view of the adjoint
matrix equation (40) with the eigenfunction J−1, the
symmetric relation for the function J is shown as

J †(−x,−t,−z∗) = J−1(x, t, z). (52)
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This illustrates J †(−x,−t,−z∗) is also a solution of
the adjoint matrix spectrum problem (40), and both z
and−z∗ are the eigenvalues of spectrum problems (30)
and (40). According to the expression E = eiz�x and
the linear correlation (33) between J− and J+, there
are

E†(−x,−t,−z∗) = E−1(x, t, z), (53)

S†(−z∗) = S−1(z), (54)

thus, s∗
55(−z∗) = ŝ55(z). Then, combining with the

definitions (37) and (43) of�+ and�−, the symmetric
constraint between �+ and �− is

(�+)†(−x,−z∗) = �−(x, z). (55)

4 N-soliton solutions of the nonlocal equation and
their dynamics

On the basis of known Riemann-Hilbert problem and
symmetric conditions, the N-soliton solutions of the
nonlocal SS equation (1) and their dynamic features are
investigated in this section. Firstly, in order to analyze
the relation between the solution q and the Jost solution
G+, the asymptotic expansion of G+ is supposed as

G+(x, t, z) = I5 + z−1G+
1 (x, t)

+z−2G+
2 (x, t) + O(z−3), z → ∞, (56)

which satisfies

G+
x (x, t, z) = i z[�,G+(x, t, z)] + Q1G

+(x, t, z).(57)

Thus, Q1 = −i[�,G+
1 (x, t)] is equivalent to Q =

−[�,G+
1 (x, t)], and then the following equations are

true

q(x, t) = −2i(G+
1 )15 = −2i(G+

1 )54,

q(−x,−t) = −2i(G+
1 )35 = −2i(G+

1 )52, (58)

q∗(x, t) = −2i(G+
1 )25 = −2i(G+

1 )53,

q∗(−x,−t) = −2i(G+
1 )45 = −2i(G+

1 )51, (59)

where (G+
1 )i j is the element of the matrix G+

1 in row i
and column j .

Based on the above determinants of Jost matrices
�± and the symmetry property for scattering matrix S,
zk is the zero of det�+(x, z), then−z∗k is also the zero
of det�+(x, z) and ẑk = z∗k is the zero of det�−(x, z).
Accordingly, the expressions for the kernels of�+(zk)
and �−(ẑk) are shown as

�+(zk)vk = 0, v̂k�
−(ẑk) = 0, (60)

where the kernel vk is a nonzero column vector and the
kernel v̂k is a nonzero row vector. As well as we know,
�+(zk) is the solution of differential equations (30),
thus, vk satisfies

(vk)x = i zk�vk, (vk)t = 4i z3k�vk, ⇒
vk = vk(x, t, zk) = eizk�x+4i z3k�twk, (61)

where wk is an arbitrary column vector, and it may as
well be assumed to (ak, bk, ck, dk, 1)�. According to
the symmetric constraint (55) between�+ and�−, the
expression of v̂k is derived as

v̂k = v̂k(x, t, ẑk) = v
†
k (−x,−t,−zk)

= w
†
k e

−i z∗k�x−4i z∗3k �t . (62)

In viewofRiemann-Hilbert problem constructed above
and containing analytical solution as G0 = I , the solu-
tion G+(x, t, z) of this sort of Riemann-Hilbert prob-
lem is

G+(x, t, z) = I5 −
∑
k

∑
l

vk(M−1)kl v̂l

z − ẑk
, (63)

where M = (mkl)n×n , and mkl = v̂kvl
zl−ẑk

, (zl 
= ẑk).

For the number of zeros of det�±(x, z), there are
two cases discussed in the following. In the first case,
the determinant of �+(x, z) obtains 2N zeros zk ∈
C+ (1 ≤ k ≤ 2N ), which satisfy zN+k = −z∗k (1 ≤
k ≤ N ). Correspondingly, the determinant of�−(x, z)
contains 2N zeros ẑk ∈ C− (1 ≤ k ≤ 2N ), which
satisfy ẑk = z∗k (1 ≤ k ≤ 2N ). Combining the asymp-
totic expansion (56) with the expression (63) of G+,
we know

G+
1 (x, t) = −

2N∑
k,l=1

vk(M
−1)kl v̂l . (64)

Through calculation, the one-soliton solution of the
nonlocal SS equation (1) can be obtained from (58)
as

q = 2i(eθ1−θ∗
1 a1(M

−1)11 + eθ1−θ∗
2 a1(M

−1)12

+eθ2−θ∗
1 a2(M

−1)21 + eθ2−θ∗
2 a2(M

−1)22), (65)

where q = q(x, t), θk = i zk x + 4i z3k t (k = 1, 2),
M = (mkl)2×2, and

m11 = (eθ1+θ∗
1 (|a1|2 + |b1|2 + |c1|2 + |d1|2)

+e−θ1−θ∗
1 )/(z1 − z∗1),

m12 = (eθ∗
1 +θ2(a∗

1a2 + b∗
1b2 + c∗

1c2 + d∗
1d2)

+e−θ∗
1 −θ2)/(z2 − z∗1),
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m21 = (eθ1+θ∗
2 (a∗

2a1 + b∗
2b1 + c∗

2c1 + d∗
2d1)

+e−θ1−θ2)/(z1 − z∗2),
m22 = (eθ2+θ∗

2 (|a2|2 + |b2|2 + |c2|2 + |d2|2)
+e−θ2−θ∗

2 )/(z2 − z∗2).
Since z2 = −z∗1 and v2 = v∗

1 , these are true with
θ2 = θ∗

1 and (a2, b2, c2, d2, 1) = (a∗
1 , b

∗
1, c

∗
1, d

∗
1 , 1).

When N = 2, the two-soliton solution of the nonlocal
SS equation (1) can be derived from (58) as follows

q =2i(eθ1−θ∗
1 a1(M

−1)11 + eθ1−θ∗
2 a1(M

−1)12

+ eθ1−θ∗
3 a1(M

−1)13 + eθ1−θ∗
4 a1(M

−1)14

+ eθ2−θ∗
1 a2(M

−1)21 + eθ2−θ∗
2 a2(M

−1)22

+ eθ2−θ∗
3 a2(M

−1)23 + eθ2−θ∗
4 a2(M

−1)24

+ eθ3−θ∗
1 a3(M

−1)31 + eθ3−θ∗
2 a3(M

−1)32

+ eθ3−θ∗
3 a3(M

−1)33 + eθ3−θ∗
4 a3(M

−1)34

+ eθ4−θ∗
1 a4(M

−1)41 + eθ4−θ∗
2 a4(M

−1)42

+ eθ4−θ∗
3 a4(M

−1)43 + eθ4−θ∗
4 a4(M

−1)44),

(66)

where M = (mkl)4×4, and mkl = (eθl+θ∗
k (ala∗

k +
blb∗

k + clc∗
k + dld∗

k ) + e−θl−θ∗
k )/(zl − z∗k ). Similarly,

there are θ3 = θ∗
1 , θ4 = θ∗

2 , (a3, b3, c3, d3, 1) =
(a∗

1 , b
∗
1, c

∗
1, d

∗
1 , 1) and (a4, b4, c4, d4, 1) = (a∗

2 , b
∗
2,

c∗
2, d

∗
2 , 1).

Some figures, such as Fig. 1 and Fig. 2, intuitively
show the dynamics of solutions (65) and (66) of the
nonlocal SS equation (1). In Fig. 1, there are two
images of one-soliton solutions due to the difference
in parameter z1, yet they have the same parameters
(a1, b1, c1, d1) = (1+ 0.5i,−1+ i, 0.5+ i,−2+ 2i).
The breather-type of one-soliton solutions in Fig. 1 are
periodic waves, i.e. the amplitude and waveshape are
unchanged with time. The difference between the two
graphical representations of the one-soliton solutions
(65) is the spacing of each breather. In the meantime,
there are three different images of two-soliton solutions
(66), which are shown in Fig. 2 with the same parame-
ters (a1, b1, c1, d1) = (1+ i,−1+ 2i, 1+ 0.5i, 2+ i)
and (a2, b2, c2, d2) = (1+ i, 2+ 2i,−1+ i,−1+ 2i).
In (a)-(d), the waveforms of the two-soliton solutions
can be seen as the oblique elastic collision between
two breather-type solitons. It is worth mentioning that
the difference between the first one and the second one
is the direction in which the two breather-type waves
collide. In (e)-(f), the waveform consists of the oblique
elastic interaction between a line soliton and a breather-
type soliton. The propagation velocity and amplitude

of these waves before and after the collision remain
unchanged.

In the second case, the determinant of �+(x, z)
obtains N pure imaginary zeros zk ∈ C+(1 ≤ k ≤ N ),
meanwhile, ẑk = z∗k ∈ C−(1 ≤ k ≤ N ) are the zeros
of the determinant of�−(x, z). In this time, the expres-
sion of G+

1 (x, t) is given as

G+
1 (x, t) = −

N∑
k,l=1

vk(M
−1)kl v̂l . (67)

Then, the N-soliton solutions of the nonlocal SS equa-
tion (1) can be calculated from (58) and (59) as

q(x, t) = 2i
N∑

k,l=1

eθk−θ∗
l ak(M

−1)kl

= 2i
N∑

k,l=1

e−θk+θ∗
l d∗

l (M−1)kl , (68)

q∗(x, t) = 2i
N∑

k,l=1

eθk−θ∗
l bk(M

−1)kl

= 2i
N∑

k,l=1

e−θk+θ∗
l c∗

l (M
−1)kl , (69)

q(−x,−t) = 2i
N∑

k,l=1

eθk−θ∗
l ck(M

−1)kl

= 2i
N∑

k,l=1

e−θk+θ∗
l b∗

l (M
−1)kl , (70)

q∗(−x,−t) = 2i
N∑

k,l=1

eθk−θ∗
l dk(M

−1)kl

= 2i
N∑

k,l=1

e−θk+θ∗
l a∗

l (M
−1)kl , (71)

where θk = i zk x + 4i z3k t (k = 1, 2, 3..., N ), M =
(mkl)N×N . When N = 1, the one-soliton solution in
this case is

q = 2ieθ1−θ∗
1 a1(M

−1)11, (72)

where M = (mkl)1×1, and

m11 = eθ1+θ∗
1 (|a1|2 + |b1|2 + |c1|2 + |d1|2) + e−θ1−θ∗

1

z1 − z∗1
,

(73)

(a1, b1, c1, d1) =
(
eiγ1

2
,
eiγ1

2
,
eiγ1

2
,
eiγ1

2
, 1

)
, (74)
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Fig. 1 One-soliton given in (65) of the nonlocal SS equation (1). (a) and (b) with parameter: z1 = 0.12+ i . (c) and (d) with parameter:
z1 = 0.5 + 0.5i

and γ1 is an arbitrary real parameter. So, in likemanner,
the two-soliton solution in this case is

q = 2i(eθ1−θ∗
1 a1(M

−1)11 + eθ1−θ∗
2 a1(M

−1)12

+eθ2−θ∗
1 a2(M

−1)21 + eθ2−θ∗
2 a2(M

−1)22),

(75)

where M = (mkl)2×2, and

m11 = eθ1+θ∗
1 (|a1|2 + |b1|2 + |c1|2 + |d1|2) + e−θ1−θ∗

1

z1 − z∗1
,

(76)

m12 = eθ2+θ∗
1 (a∗

1a2 + b∗
1b2 + c∗

1c2 + d∗
1 d2) + e−θ2−θ∗

1

z2 − z∗1
,

(77)

m21 = eθ1+θ∗
2 (a1a∗

2 + b1b∗
2 + c1c∗

2 + d1d∗
2 ) + e−θ1−θ∗

2

z1 − z∗2
,

(78)

m22 = eθ2+θ∗
2 (|a2|2 + |b2|2 + |c2|2 + |d2|2) + e−θ2−θ∗

2

z2 − z∗2
,

(79)

(a1, b1, c1, d1) =
(
eiγ1

2
,
eiγ1

2
,
eiγ1

2
,
eiγ1

2
, 1

)
,

(a2, b2, c2, d2) =
(
eiγ2

2
,
eiγ2

2
,
eiγ2

2
,
eiγ2

2
, 1

)
,

(80)

and γ1 and γ2 are arbitrary real parameters.
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Fig. 2 Two-soliton given in (66) of the nonlocal SS equation (1). (a) and (b) with parameters: (z1, z2) = (0.5i, 0.5 + i). (c) and (d)
with parameters: (z1, z2) = (0.5 + i, 1 + 0.5i). (e) and (f) with parameters: (z1, z2) = (0.5i, 1.5 + i)

Figure3 and Fig. 4 respectively present the dynamic
characteristics of solutions (72) and (75) in this case. In
Fig. 3, one-soliton solution of the nonlocal SS equation
(1) has the shape of a line soliton, which is the most
common type of waveform among single solitons with
a constant amplitude. At the same time, two-soliton
solutions of the nonlocal SS equation (1) are displayed
in Fig. 4, which presents two different forms. The first
one is an oblique elastic collision between a line soliton
and a breather-type soliton, and the second one is an
oblique elastic collision between two line solitons. It is
obvious that the amplitude increases at the moment of
the interaction, and the propagation direction of one of
the branches changes before and after the collision.

5 The PINN method and the data-driven solutions

In this section, we would like to obtain some data-
driven solutions of the nonlocal SS equation (1) by
applying the PINN method. Meanwhile, the feasibility
of the PINN approach could be analyzed by the exper-
iment. Firstly, give the initial condition and boundary

condition of the nonlocal SS equation (1)

q(x, t1) = q1(x), x ∈ [x1, x2], (81)

q(x1, t) = qlb(t), q(x2, t) = qub(t), t ∈ [t1, t2]. (82)
It is easy to see that the range in the x direction is
[x1, x2] and in the t direction is [t1, t2]. Considering the
existence of nonlocal terms, and effectively separating
the real and imaginary parts of the function expres-
sions,wewould like to suppose thatq(x, t) = u(x, t)+
iv(x, t) and q∗(−x,−t) = u(−x,−t) − iv(−x,−t).
Introducing u = u(x, t) and v = v(x, t), the nonlocal
SS equation (1) is transformed into

ut + ivt + uxxx + ivxxx + 12(uu(−x,−t)

+ vv(−x,−t))(ux + ivx ) + 6(u + iv)

(uu(−x,−t) + vv(−x,−t))x = 0,

(83)
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Fig. 3 One-soliton given in (72) of the nonlocal SS equation (1). (a) and (b) with parameters: z1 = 0.4i , γ1=2

Then, the form of the equation in PINN is obtained by
separating the real and imaginary parts, which is given
as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fu := ut + uxxx + 12(u(−x,−t)u + v(−x, −t)v)ux

+ 6u(u(−x,−t)u + v(−x,−t)v)x ,

fv := vt + vxxx + 12(u(−x,−t)u + v(−x,−t)v)vx

+ 6v(u(−x, −t)u + v(−x,−t)v)x .

(84)

Combining with the weight ω and bias b, the solu-
tions u and v in the above expressions can be applied
to simulate the solutions for the nonlocal SS equation,
meanwhile, they are the output elements of the PINN.
Moreover, the PINN algorithm has a network of L lay-
ers, and in addition to the input and output layers, each
layer has Nl neurons.And thePINN is a fully connected
multi-layer feedforward neural network, in which the
relationship between the front and back layers of neu-
rons can be expressed as

xl � σ(Wl xl−1 + bl). (85)

To observe the structure of the neural network more
intuitively, the frame diagram of the PINN algorithm
is displayed in Fig. 5 below. It is obvious that this net-
work not only obtains the part of neural neurons but
also contains the part of physical information of the
equation, thus we would like to cover the second part
in detail next. Based on the automatic differentiation

(AD) mechanism [46], the derivatives of the functions
u and v are derived efficiently and accurately by com-
puter programs. In the following, the loss function of
the PINN system (84) consists of four parts, which are
constructed as follows

Loss = LossI + LossI I + LossI I I + LossI V , (86)

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LossI =
⎛
⎝

Nu∑
j=1

|û(x j
q , t jq ) − u j |2

⎞
⎠ /Nu,

LossI I =
⎛
⎝

Nu∑
j=1

|v̂(x j
q , t jq ) − v j |2

⎞
⎠ /Nu,

LossI I I =
⎛
⎝

N f∑
m=1

| fu(xmf , tmf )|2
⎞
⎠ /N f ,

LossI V =
⎛
⎝

N f∑
m=1

| fv(xmf , tmf )|2
⎞
⎠ /N f .

(87)

The loss function is optimizedbyL-BFGSoptimization
method [47] to derive an relatively accurate prediction
solution. It is worth mentioning that the PINN we con-
structed has 10 hidden layers with 50 neurons each.
In addition, both the input layer and the output layer
contain two neurons. The whole procedure is operated
through Python 3.7 and run via Tensorflow 1.15.
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Fig. 4 Two-soliton given in (75) of the nonlocal SS equation (1). (a) and (b) with parameters: (z1, z2) = (2.5i, i), (γ1, γ2) = (1, 1).
(c) and (d) with parameters: (z1, z2) = (0.6i, i), (γ1, γ2) = (1, 1)

Then, we would like to derive data-driven solutions
for the nonlocal SS equation (1) via simulations in the
PINN algorithm, and then compare themwith the exact
solutions shown in the above section. Firstly, the line
soliton solution shown in Fig. 3 is fitted by the PINN
method, which is displayed in Fig. 6 with parameters
z1 = 0.4i and γ1 = 2. For this line soliton, the space
and time ranges are taken as [x0, x1] = [−3, 3] and
[t0, t1] = [−2, 2]. To derive the discrete grid data, the
spatial region is divided into 2000 points, and the tem-
poral region is divided into 1000 points in MATLAB.
Based on the discrete grid data in the spatio-temporal
region, the original training data consists of random

sampling points [48] which include Nu = 1500 points
for the initial value and N f = 30000 points for the
inner points. In Fig. 6, the density images of exact and
learned dynamics are given, where the darkness of the
color is closely related to the height of the line soliton.
In order to more intuitively observe the fitting of the
predicted solution to the exact solution, we also show
the vertical section diagrams at different times.

Secondly, we learn the oblique elastic collision
between two line solitons shown in Fig. 4 (c) with
parameters (z1, z2) = (0.6i, i) and (γ1, γ2) = (1, 1).
In this time, we choose [x0, x1] = [−4, 4] and
[t0, t1] = [−0.1, 0.1]. Similar to the above, we also
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Fig. 5 Frame diagram of the PINN method with two main parts for the nonlocal SS equation. ũ and ṽ represent u(−x,−t) and
v(−x,−t), respectively

divide the discrete grid points to get the discrete grid
data, and then derive the training data in the neural
network. In Fig. 7, the density images and vertical sec-
tion diagrams are shown the training results about the
oblique elastic collision between two line solitons.

Thirdly, the breather-type solution shown in Fig. 1
(c) is learned via the PINN method, which is pre-
sented in Fig. 8 with parameters z1 = 0.5 + 0.5i and
(a1, b1, c1, d1) = (1+ 0.5i,−1+ i, 0.5+ i,−2+ 2i).
For the breather-type solution of the nonlocal SS
equation (1), we take the space and time ranges are
[x0, x1] = [−1.5, 3.5] and [t0, t1] = [−0.01, 0.01]. In
Fig. 8, comparison results between the exact and pre-
dicted breather-type solutions are shown.

Through processing the training data, these data-
driven solutions are learned by the PINN scheme. Fig-
ures6-8 show these three sets of comparisons between
the predicted data-driven solution and the exact solu-
tion from which it is clear that the error range is rather
weak between the learned dynamics and exact dynam-
ics. Thus, it is obvious that the PINN is an effective tool
for describing solutions of the nonlocal SS equation (1)
with initial and boundary conditions.

6 Conclusions

Firstly, this paper constructs nonlocal integrable SS
hierarchies (20) by providing arbitrary order space-
time spectralmatrixes of zero curvature formula, which
can deduce not only a novel nonlocal SS equation (1)
but also a two-component nonlocal SS system. Fur-
thermore, the Liouville integrability of these nonlocal
hierarchies is illustrated by the bi-Hamiltonian struc-
ture. Secondly, through giving the Riemann-Hilbert
problem and the symmetric constraints, we derive the
precise expressions of N-soliton solutions, especially
one-soliton and two-soliton, for the nonlocal SS equa-
tion (1) with space-time nonlocal terms. In order to
intuitively display their dynamic characteristics, some
figures are given to describe the one-soliton and two-
soliton solutions. There are different dynamic with
different parameters, such as a line soliton, breather-
type solutions, and so on. Finally, we learn the data-
driven solutions of the nonlocal SS equation (1) with
the initial and boundary conditions by applying the
PINN method, and then three comparison diagrams
display the contrast between the exact dynamics and
the predicted dynamics. The error range is rather weak
between the learned data-driven solutions and exact
calculated solutions, and the results show the PINN
is an effective tool for describing solutions of the non-
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Fig. 6 Comparison diagram for the line soliton of the nonlocal SS equation(1): the error between the exact line soliton solution and
the predicted data-driven solution

Fig. 7 Comparison diagram for the oblique elastic collision between two line solitons of the nonlocal SS equation (1): the error between
the exact solution and the predicted data-driven solution
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Fig. 8 Comparison diagram for the breather-type solution of the nonlocal SS equation (1): the error between the exact breather-type
solution and the predicted data-driven solution

local SS equation (1) with the initial and boundary con-
ditions. What’s more, based on the nonlocal integrable
SShierarchieswe construct, theRiemann-Hilbert prob-
lem and some soliton solutions for the nonlocal inte-
grable hierarchies could be investigated. However, they
go beyond the scope of this paper and will be studied
in the future.
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