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Abstract We study the dynamic behaviors of mixed
localized solutions for the three-component coupled
Fokas–Lenells (FL) system. First, the corresponding
Lax pair and the generalized (n, M)-fold Darboux
transformation are constructed. Second, the first- and
second-order mixed localized solutions of the three-
component FL system are given and their dynamic
features are investigated. These results further reveal
the interesting dynamic behaviors of the higher-order
mixed localized solutions in the multi-component cou-
pled FL system. At last, the corresponding modulation
instability is studied.

Keywords Darboux transformation · Mixed localized
solutions · The three-component Fokas–Lenells
system

1 Introduction

The Fokas–Lenells (FL) equation is a generalized form
of the derivative Schrödinger equation, which was pro-
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posed by Fokas [1] and Lenells and Fokas [2]. The
soliton solutions of the FL equation describe the soli-
ton dynamics in optical fibers [3]. Recently, a large and
growing body of literature has investigated the soli-
ton solution and the dynamic characteristic for the FL
equation. By direct method,Matsuno [4] concluded the
dark soliton solutions in 2012. Then Xu and Fan [5]
investigated the long-time asymptotics with decaying
initial value problem. Triki and Wazwaz [6] got some
new types of chirped soliton solutions in 2017. Besides,
the solitons, breathers and n-order rogue waves of
FL equation were further studied by Darboux trans-
formation (DT) [7,8]. Ahmed et al. [9] obtained M-
shaped rational solitons and their interactionswith kink
waves. However, the mixed localized solutions for the
three-component FL system have not been considered.
Here we consider the following three-component FL
system

u1,xt + i

2
(2|u1|2 + σ |u2|2 + σ |u3|2)u1,x

+ i

2
σ(u∗

2u2,x + u∗
3u3,x )u1 + u1 = 0,

u2,xt + i

2
(|u1|2 + 2σ |u2|2 + σ |u3|2)u2,x

+ i

2
(u∗

1u1,x + σu∗
3u3,x )u2 + u2 = 0,

u3,xt + i

2
(|u1|2 + σ |u2|2 + 2σ |u3|2)u3,x

+ i

2
(u∗

1u1,x + σu∗
2u2,x )u3 + u3 = 0. (1)
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where uk (k = 1, 2, 3) is complex function for the
independent variables x and t , σ = ± 1 and the non-
numeric subscripts variables in system (1) stand for the
partial differentiation. uk∗ (k = 1, 2, 3) denotes com-
plex conjugate of uk (k = 1, 2, 3). In fact, in 2012,
Kundu [10] derived a novel higher-order deformation
of the FL equation, and system (1) is the generalized
three-component form. Ling et al. [11] generalized the
FL equation obtained in [10] to a two-component sys-
tem, they constructed multi-bright soliton solution by
generalized DT, and besides, they constructed multi-
Hamiltonian structure and infinitely many conserva-
tion laws for the coupled FL system. Some typical
rogue wave patterns such as the standard rogue wave,
dark rogue wave and twisted rogue wave pair for the
deformed FL equation were obtained in [12]. Xu and
Chen [13] got some novel higher-order semi-rational
solutions of the system in [11], which include higher-
order rogue waves interacting with multi-bright or dark
solitons, and higher-order roguewaves interacting with
multi-breathers. However, for the corresponding three-
component system, the various kinds of combination
forms for the mixed localized solutions are more abun-
dant and have not been investigated. In this present
paper, we explore the dynamic behaviors of the mixed
interaction solutions for the three-component coupled
FL system (1) and the modulation instability.

Numerous studies were trying to get kinds of non-
linear waves for the nonlinear systems. Among them,
solitons, breathers, rogue waves and their mixed forms
arise from a balance of the nonlinearity and disper-
sion terms [14–16]. The rogue wave, whose amplitude
is about three times than that of the plane wave and
appear from nowhere and disappear from nowhere, was
detected in [17]. Furthermore, the semi-rational solu-
tions which perform as a mixed form of the breathers
or solitons with rogue waves have been found in many
integrable systems [18–24]. For the multi-component
coupled system, themixed localized solutions aremore
colorful than ones in the single-component nonlinear
equations [25–30].

There are many efficient ways to get exact solutions
of the nonlinear system, for example, the variable sep-
aration approach [31], the Hirota bilinear method [32–
36], DT [37,38], Bäcklund transformation [39,40],
Riemann–Hilbert method [41,42] and so on. Among
them, DT is a momentous way to get new solu-
tions of the nonlinear integrable system. A consider-
able amount of studies have been published on DT

[20–24,38,43]. By classical DT and take N different
spectral parameters, the N -order solitons and N -order
breathers can be obtained, but the same spectral param-
eter cannot be iterated twice. So based on the classi-
cal DT, Mateev derived the generalized DT [37]. By
the generalized DT, many studies have investigated the
higher-order rogue waves [20–22]. Successively, the
semi-rational soliton solutions were researched widely
[23,24,43]. Based on the above method, some mean-
ingful results have been obtained. In order to get the
mixed localized solutions of system (1), from the spe-
cial vector solutions of Lax pair for system (1), we will
explore the generalized (n, M)-fold DT of system (1).
Then by dynamical analysis, some interesting dynami-
cal features of the mixed localized solutions for system
(1) will be exhibited.

The outline of this paper is organized as follows.
In Sect. 2, we derive the Lax pair of the system (1),
and the generalized (n, M)-fold DT of the system is
constructed. In Sect. 3, we study the dynamic behav-
iors of the first- and second-order exact mixed local-
ized solutions of system (1). Meanwhile, the dynamic
behaviors of themixed localized solutions for themulti-
component FL system are exhibited. Section 4 inves-
tigates the modulation instability. Several conclusions
and discussions are given in last section.

2 Lax pair and generalized (n,M)-fold DT

In this section, we investigate the Lax integrability and
construct the generalized (n, M)-foldDTof system (1).

2.1 Lax pair of system (1)

At first, the lax pair of system (1) is

Φx = UΦ =
(

i
λ2

σ3 + 1
λ
Qx

)
Φ,

Φt = VΦ = i
(

λ2

4 σ3 − λ
2 σ3Q + 1

2 σ3 Q2
)

Φ,
(2)

where

σ3 = diag(1,−1,−1,−1),

Q =

⎡
⎢⎢⎣

0 u1∗ σu2∗ σu3∗
u1 0 0 0
u2 0 0 0
u3 0 0 0

⎤
⎥⎥⎦ ,

Φ = (φ1, φ2, φ3, φ4)
T is a vector function, λ is the

spectral parameter. In fact, it is easy to check that the
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zero-curvature equation Ut − Vx + [U, V ] = 0 can
directly lead to system (1).

2.2 The generalized (n, M)-fold DT

The DT of the coupled two-component FL system has
been constructed in [11,13]. Based on the DT in [13]
and the loop group method [19], we exhibit the follow-
ing generalized (m, N )-fold DT of system (1).

Label Φk as the solution of the linear spectral prob-
lem (2) when λ = λk . Derive the solution Φ

λ=λ
′
k
of

Lax pair when λ
′
k = λk + ε (k = 1, 2, . . . , n) by Tay-

lor expansion at ε = 0.

Φ
λ=λ

′
k

= Φ
[0]
k + Φ

[1]
k ε + Φ

[2]
k ε2 + · · · ,

k = 1, 2, . . . , n, (3)

where

Φ
[ j]
k = 1

j !
∂ jΦ

λ=λ
′
k

∂λ
j
k

∣∣∣∣
ε=0

= (φ1[k, j], φ2[k, j], φ3[k, j], φ4[k, j])T ,

j = 1, 2, . . . ,

and k represents the spectrum parameter λ = λk , j is
corresponded with the coefficient of ε j .

Then take advantage of a limit technique,

Φ[k, j] = lim
ε→0

(T [k, j − 1] . . . T [k, 1]Φ
λ=λ

′
k
)
λ=λ

′
k

ε j

= (ψ1[k, j], ψ2[k, j], ψ3[k, j], ψ4[k, j])T,

(4)

and construct the transformation

T [k, j]=λ2 I+Γ1[k, j]λ+Γ0[k, j], j=2, . . . ,mk,

(5)

where

Γ1[k, j] = (λ∗
k
2 − λ2k)N1[k, j],

Γ2[k, j] = λ∗
1(λ

∗
k
2 − λ2k)N2[k, j] − λ∗

k
2 I,

N1[k, j] =
[ |ψ1[k, j]|2

Δ[k, j] 0

0 P[k, j]P[k, j]†
Δ∗[k, j]

]
,

N2[k, j] =
[

0 φ1[k, j]P[k, j]†
Δ∗[k, j]

P[k, j]φ∗
1 [k, j]

Δ[k, j] 0

]

with

P[k, j] = (ψ2[k, j], ψ3[k, j], ψ4[k, j])T ,

Δ[k, j] = λk |ψ1[k, j]|2 + λ∗
k(|ψ2[k, j]|2

+ |ψ3[k, j]|2 + |ψ4[k, j]|2).
Take Eq. (5) as the solutions of the correspond-

ing Lax pair system, we can formulate the generalized
(n, M)-fold DT for system (1).

Theorem 2.1 Suppose λ1, λ2, . . . , λn are n different
spectral parameters, then TM = FnFn−1 . . . F1 is a M-
fold DT, where Fk = T [k,mk]T [k,mk −1] . . . T [k, 1]
with M = ∑n

k=1mk . Then

uk[M] = uk[0] +
n∑

k=1

mk∑
j=1

(λ∗
k
2 − λ2k)ψ

∗
1 [k, j − 1]ψk[k, j − 1]
D[ j − 1] . (6)

If n = M, the DT reduces to the elementary situation.
By the reduced DT, we can obtain the N solitons and N
breathers when begin with different background waves.
If n = 1, the DT includes only one spectral parameter,
which is similar to the DT in [11].

Begin with the nontrivial seed solution uk[0] =
ckeiθ (k = 1, 2, 3), where θ = x

τ
and ck is real con-

stant. Then the vector eigenfunctions of the linear Lax
system (2) can be denoted as Φ = LMQΛ, where

L = diag(l1, l2, l3, l4),

M = e
1
3 iθdiag(e−iθ , 1, 1, 1),

Q =

⎡
⎢⎢⎣

Q11 Q12 0 0
λ a1 λ a1 −σ a2 −σ a3
λ a2 λ a2 a1 0
λ a3 λ a3 0 a1

⎤
⎥⎥⎦ ,

Λ = diag(eξ1 , eξ2 , eξ3 , eξ3)

with

Q11 = 1

2
λ2 + τ + 1

2

√
λ4 + 4 τ 2,

Q12 = 1

2
λ2 − τ + 1

2

√
λ4 + 4 τ 2,

ξ1 = 1

6

(
iλ2 + 3 i

√
λ4 + 4 τ 2

)

λ2τ
x + i

4

√
λ4 + 4 τ 2t,

ξ2 = 1

6

(
iλ2 − 3 i

√
λ4 + 4 τ 2

)

λ2τ
x − i

4

√
λ4 + 4 τ 2t,

ξ3 = −i
(
λ2 + τ

)

λ2τ
x − i

4
λ2t (7)

and lk is an arbitrary constant for k = 1, 2, 3, 4.
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In order to get the semi-rational solutions of system
(1),we set lk appropriate value. ThenΦ can be rewritten
as

Φ =

⎡
⎢⎢⎣

φ1

φ2

φ3

φ4

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

(
h1eη1 − h2e−η1

)
eη2

ρ1
(
h2eη1 − h1e−η1

)
e−η2 − (α a2σ + β a3σ) eθ0

ρ2
(
h2eη1 − h1e−η1

)
e−η2 + a1α eθ0

ρ3
(
h2eη1 − h1e−η1

)
e−η2 + a1β eθ0

⎤
⎥⎥⎦ ,

(8)

where

ρ1 = a1√
τ

, ρ2 = a2√
τ

, ρ3 = a3√
τ

,

θ0 = −i
(
λ4t + 4 x

)

4λ2
,

η1 = i
(
tτ λ2 + 2 x

) √
λ4 + 4 τ 2

4λ2τ
, η2 = −i

2τ
x,

h1 =
√

λ2 + 2 τ + √
λ4 + 4 τ 2√

λ4 + 4 τ 2
,

h2 =
√

λ2 + 2 τ − √
λ4 + 4 τ 2√

λ4 + 4 τ 2
.

3 Dynamic behaviors of mixed localized solutions

Compared to the solutions of deformed FL system [10]
and the two-component coupled FL system in [11,13],
the mixed localized solutions of the three-component
system are more rich and varied. In this section, we
analyze the dynamic behaviors of the first- and second-
order mixed localized solutions. In the rest part of this
paper, we take σ = 1.

3.1 First-order mixed localized solutions

When n = 1, by the generalized (n, M)-fold DT in
Theorem 3.1 and take the special vector solutions (8) of
the Lax equation (2), then the first-order semi-rational
solutions can be obtained as

u1[1] = a1e
i x
τ

+ − (α a2 + β a3) κ1e
tτ2−(1−i)x

2τ + a1κ2e
i x
τ

ι1e
tτ2−x

τ + ι2

,

u2[1] = a2e
i x
τ

+ a1ακ1e
tτ2−(1−i)x

2τ + a2κ2e
i x
τ

ι1e
tτ2−x

τ + ι2

,

u3[1] = a3e
i x
τ

+ a1β κ1e
tτ2−(1−i)x

2τ + a3κ2e
i x
τ

ι1e
tτ2−x

τ + ι2

, (9)

where κ1, κ2 and ι2 are complex functions in terms of
(x, t), ι1 is a polynomial of ak(k = 1, 2, 3) and α, β

κ1 = 2
√
2
√
1 + i i

[
2 tτ 4 + (−1 + i) τ 3 + 2 i xτ 2

]
,

κ2 = − (1 + i) i

[(
2 tτ 2 + iτ

)2 − (2 i x − τ)2
]

,

ι1 = 2
√
2iτ 3

[(
α2 + β2

)
a1

2 + (α a2 + β a3)
2
]
,

ι2 = (1 + i)
(
2 x2 − 2 i xτ + 2 t2τ 4

+ 2 iτ 3t + τ 2
)

. (10)

Equation (9) is three semi-rational complex func-
tions which are consisted by the rational functions
and exponential functions. We analyze the dynamic
behaviors of these semi-rational solutions with differ-
ent hybrid forms of rogue waves emerging during the
propagation of various combination of breathers and
solitons.

If α = β = 0, then ι1 = 0, all of the three compo-
nents reduced to a totally rational functions of (x, t),
which behave as the rogue waves with two peaks and
two hollows. The plots of the rogue waves are similar
to which in [44,45], we omit them here.

Case 1.1. One-line bright or dark soliton with first-
order rogue waves.

If some of the background waves are vanished and
take some suitable parameter values, one component is
one-line bright soliton with first-order rogue wave and
the others are one-line dark solitons with first-order
rogue waves. Another case is one one-line dark soli-
ton with first-order rogue wave and two one-line bright
solitons with first-order rogue waves.

(1) Three different arrangements of two dark solitons
with roguewaves and one bright solitonwith rogue
wave can be obtained. The first background wave
is vanished (a1 = 0), and the others are non-
vanished. Then, the first component u1 is a bright
soliton with a weak first-order rogue-like wave and
the others u2, u3 are dark solitons with first-order
rogue waves in Fig. 1a. If a3 = 0 and α = 0,
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the first two components u1, u2 are dark solitons
with rogue waves and the third component u3 is a
bright soliton with a weak rogue-like wave. Simi-
lar to the former situation, if a2 = 0 and β = 0,
the components u1, u3 transform to dark solitons
with rogue waves and the component u2 is a bright
soliton with a weak rogue-like wave.

(2) If the second and third background waves are all
vanished (a2 = a3 = 0) and the first one is non-
vanished (a1 �= 0), the first component u1 is a
dark soliton with a rogue wave and the other two
component u2, u3 are bright solitons with rogue-
like waves (Fig. 1b).

Particularly, in Fig. 1, the rogue waves appearing in
the propagation of the bright solitons are very weak. In
fact, we even cannot call them roguewaves, because the
altitude of the roguewaves is very low and the energy is
very small compare to the propagating bright solitons.
In other words, if the propagating waves perform as the
bright solitons, the influence of the rogue waves which
appear in the vicinity of t = 0 is very weak.

Case 1.2. One-line soliton or breather with first-
order rogue waves.

If only one of the parameters α, β, a2, a3 is zero,
one of the components presents as a one-line bright or
dark soliton with first-order rogue wave and the other
two components are breathers with first-order rogue
waves.

(1) If a2 = 0 or a3 = 0, the second or third component
is a bright soliton with rogue wave and the rest two
components are breathers with roguewaves.When
the third component u3 is the zero-plane (a3 = 0),
u3 is a one-line bright soliton with a very weak
rogue-like wave in Fig. 2a. The breathers in u1 and
u2 are different. The energy and altitude for the
upper half of the background plane u1 are much
less than that for the lower half. But the breather
in u2 performs as opposite dynamic features com-
pares to u1.

(2) If α = 0 or β = 0, one component is a dark soliton
with rogue wave and the rest two components are
breathers with rogue waves. In Fig. 2b, set α = 0

and β �= 0, the second component u2 is a dark
soliton with a rogue wave, but the other two com-
ponents u1 and u3 are breathers with rogue waves.
And the energy of the breathers in u1 and u3 also
behaves opposite which is similar to that in Fig. 2b.
If α �= 0 and β = 0, the third component u3 is a
dark soliton with rogue wave and the other two
components u1 and u2 are breathers with rogue
waves, we omit the corresponding plots here.

Case 1.3. Breathers with first-order rogue waves.
If ak (k = 1, 2, 3) and α, β are all nonzero, three

components uk (k = 1, 2, 3) are all present as the
first-order rogue waves emerging in the propagation
of breathers in Fig. 3. When α = β = 10−4, the rogue
wave is separated with the breather in Fig. 3a, keep
ak (k = 1, 2, 3) still and when α = β increase to 10−1,
the rogue waves stick together with the propagating
breathers in Fig. 3b.

3.2 Second-order mixed localized solutions

In this section, we investigate the dynamic behav-
iors of the second-order mixed localized solutions for
the system (1). Rewrite T [1, 2]

λ=λ
′
1
as (λ1 + ε)2 I +

Γ1[1, 2](λ1 + ε) + Γ0[1, 2] and substitute Eq. (3) into
the limit below

lim
ε→0

T [1, 2]
λ=λ

′
1
Φ

λ=λ
′
1

ε
= lim

ε→0

[
(λ1 + ε)2 I + Γ1[1, 2](λ1 + ε) + Γ0[1, 2]

] [
Φ

[0]
1 + Φ

[1]
1 ε + o(ε2)

]

ε

= T [1, 2]Φ[1]
1 + (2λ1 I + Γ1[1, 2]) Φ

[0]
1 = Ψ1[2]. (11)

Take the limit Ψ1[2] = (ψ1[2], ψ2[2], ψ3[2], ψ4[2])T
as the newsolution of theLaxpair (2). Then implement-
ing the iterative formula (6) on the first-order solutions
(9), we can get the second-order semi-rational solution
uk[2] where k = 1, 2, 3. The expression of uk[2] is so
cumbersome that we only show the iterative formula

uk[2] = uk[1] + (λ21 − λ∗
1
2)ψ∗

1 [2]ψk[2]
D[2] ,

k = 1, 2, 3, (12)

with D[2] = λ1|ψ1[2]|2 + λ∗
1(|ψ2[2]|2 + |ψ3[2]|2 +

|ψ4[2]|2).
Here uk[2] is a complex function of (x, t) with

parameters ak (k = 1, 2, 3),α, β and s = s1+is2. Here
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(a) A one-line bright soliton and two one-line dark solitons with rogue waves

(b) A one-line dark soliton and two one-line bright solitons with rogue waves

Fig. 1 The 3-D map for case 1.1. Parameters with a a1 = 0, a2 = 1, a3 = 1
4 , α = 1

10 , β = 1
10 , b a1 = 1, a2 = 0, a3 = 0, α = β = 1

10
(Color online)

s1, s2 are arbitrary parameters to control the structures
of higher-order rogue waves. Firstly, if α = β = 0,
the second-order rogue wave can be obtained in Fig. 4.
When s1 = s2 = 103, one can get separated forms of
the second-order rogue wave with the triangle patterns
in the second line of Fig. 4.

Then similar to the analysis of the first-order solu-
tions, we give three kinds of second-order mixed local-
ized solutions of system (1).

Case 2.1. Two-line bright or dark solitons with
second-order rogue waves.

Similar to case 1.1, two different arrangements of
with three two-line bright or dark solitons with second-
order rogue waves can be obtained.

(1) If the first background is vanished (a1 = 0) and
a2, a3, α, β �= 0, in Fig. 5a, the first component
u1 is a two-line bright soliton with second-order
rogue-like wave, the second-order rogue-like wave

in u1 is much lower than the bright soliton. The
other two components u2, u3 are two-line dark
solitons with second-order rogue waves.

(2) If the second and third background waves are all
vanished (a2 = a3 = 0) and a1, α, β �= 0, the first
component u1 is a two-line dark soliton with the
second-order rogue wave, and the other two com-
ponents u2, u3 are two-line bright solitons with the
second-order rogue-like waves in Fig. 5b. The alti-
tudes of the rogue-likewaves in u2, u3 are also very
low and tend to zero. These results are consisted
with that in the first-order case.

Case 2.2. Two-line solitons or breathers with second-
order rogue waves.

Under this case, one component is a two-line bright
or dark soliton with second-order rogue wave and the
other two are breathers with second-order roguewaves.
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(a) Two one-line breathers and one one-line bright solitons with rogue waves

(b) Two one-line breathers and one one-line dark solitons with rogue waves

Fig. 2 The 3-D map for case 1.2. Parameters with a a1 = 1, a2 = 1
4 , a3 = 0, α = β = 10−2 b a1 = 1, a2 = 1

2 , a3 = 1
4 , α = 0, β =

10−4 (Color online)

(1) If the second or third background is vanished
(a2 = 0 or a3 = 0), one component is a two-line
bright soliton with second-order rogue wave and
the other two components are all two-line breathers
with second-order rogue waves. Here we exhibit
the plot of the case a3 = 0 in Fig. 6a, the third com-
ponent u3 is two-line bright soliton with a weak
second-order rogue-like wave. And if a2 = 0 and
other parameters are nonzero, we can also get that
the second component u2 is two-line bright soliton
with second-order rogue wave.

(2) Ifα = 0 orβ = 0, ak �= 0, one component is a two-
line dark solitonwith second-order roguewave and
the others are two-line breathers with second-order
rogue waves. In Fig. 6b, when α = 0, the second
component u2 is two-line dark solitonwith second-
order rogue wave. When β = 0, we can also get
the case that the third component u3 is two-line
dark soliton with second-order rogue wave.

Case 2.3. Breathers with second-order rogue waves.
If all the parameters are nonzero, the three compo-

nents are all two parallel breathers with second-order
rogue waves in Fig. 7, which is parallel to the cor-
responding case of the first-order solutions. Increasing
the values ofα orβ, the locations of second-order rogue
waves will be closer to the propagating breathers.

Thehigher-order semi-rational solutions alsobehave
as three kinds of hybrid forms: (1) One component is
N -line bright solitonwith N -order roguewave, the oth-
ers are dark solitons with rogue waves. Alternatively,
one component is N -line dark soliton with rogue wave
and two are N -line bright solitons with rogue waves.
(2) One component is N -line bright or dark soliton
with N -order rogue wave, the others are breathers with
N -order rogue waves. (3) Three components are all N -
line breathers with N -order rogue waves. These con-
clusions are also suitable for the multiple-component
FL systems. Take particular solutions similar to the
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(a) α = β = 10−4

(b) α = β = 10−1

Fig. 3 The 3-D map for case 1.3. Parameters with a1 = 1, a2 = 1
2 , a3 = 1

5 (Color online)

solutions (9). Sign the altitude of the M-component
background wave as ak (k = 1, 2, . . . , M) and the dis-
turbing parameter in ul as bl for l = 2, 3, . . . , M − 1.
Then the higher-order rogue waves can be obtained
easily by taking bl = 0. Besides, the following three
kinds of interacting solutions can be made. If ak and
bl are all nonzero, components u1, u2, . . . , uM are all
breathers with rogue waves and the features of the first
component u1 is quite discrepant from the other M −1
components. Secondly, when one of the background
wave except the first one is vanished (al = 0), the cor-
responding component ul is a bright soliton with rogue
wave and the others the breathers with rogue waves.
Besides, when one of the parameters bl = 0, the corre-
sponding component ul performs as a dark soliton with
rogue wave and others the breathers with rogue waves.
Thirdly, when the first background wave (a1 = 0) is a
zero-plane, the first component u1 is bright solitonwith
rogue wave and the other components are all dark soli-
tons with rogue waves. Besides, when the value of the

parameters bl increase, the locations of the roguewaves
will be closer to the propagating solitons or breathers.

4 Modulation instability of continuous waves

The modulation instability (MI) analysis is an efficient
way to get the conditions for rogue waves. In this sec-
tion, we analyze the MI by starting with the following
steady-state ansatz as the carrier waves.

uk = ake
bk x+ck t , k = 1, 2, 3, (13)

where ak represents the real amplitude of the plane
wave uk , bk is a real wave number and ck is the real
frequency of the carrier waves for k = 1, 2, 3. Substi-
tute (13) into system (1), then the nonlinear dispersion
relations can be obtained as

− a1c1b1 − σ

2
a1a2

2b1 − 1

2
σa1a3

2b1 − a1
3b1

− 1

2
a1σa2

2b2 − σ

2
a1 a3

2b3 + a1 = 0,
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(a) s1 = s2 = 0

(b) s1 = s2 = 103

Fig. 4 Plots of second-order rogue waves. Other parameters with a1 = 1, a2 = − 1
2 , a3 = 1

2 , α = β = 0 (Color online)

− a2c2b2 − σ a2
3b2 − σ

2
a2a3

2b2 − 1

2
a1

2a2b2

− σ2

2
a2 a3

2b3 − 1

2
a2a1

2b1 + a2 = 0,

− a3c3b3 − σ

2
a2

2a3b3 − σa3
3b3 − 1

2
a1

2a3b3

− σ

2
a3 a2

2b2 − 1

2
a3a1

2b1 + a3 = 0. (14)

Introducing the linear stability for the perturbed sys-
tem (1)

uk = (1 + εpk)ake
bk x+ck t , k = 1, 2, 3, (15)

where εpk is a small perturbation of each carrier wave.
After substituting Eq. (15) into system (1), keep the
linear terms only in εpk , then we get the following
equations

2 p1,xt b1 +
(
−ia2

2b2 − ia3
2b3 + 2 i

)
p1,x

+ 2ib1 p1,t + ia1b1(p2,xa2 + p3,xa3)

+ (−2 a2 (b1 + b2) p2 − 2 a3 (b1 + b3) p3

− 4 p1a1b1) a1b1 = 0,

2 p2,xt b2 +
(
−ia1

2b1 − ia3
2b3 + 2 i

)
p2,x

+ 2ib2 p2,t + ia2b2(p1,xa1 + p3,xa3)

+ (−2 a1 (b1 + b2) p1 − 2 a3 (b2 + b3) p3

− 4 p2a2b2) a2b2 = 0,

2 p3,xt b3 +
(
−ia1

2b1 − ia2
2b2 + 2 i

)
p3,x

+ 2ib3 p3,t + ia3b3(p1,xa1 + p2,xa2)

+ [−2 (2 p3a3b3 + a1 (b1 + b3) p1

+ a2 (b2 + b3) p2)] a3b3 = 0. (16)

Assume that pk = vk[1]eiω(kx+t) + vk[2]e−iω(kx+t)

with vk[ j] is the complex amplitudes of the perturba-
tionwave for k = 1, 2, 3,ω is theMI gain. Then system
(16) changes into a system of vk[ j] for j = 1, 2, k =
1, 2, 3. Since vk[ j] is not zero, the following condition
can be derived.
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(a) One two-line bright soliton and two dark solitons with rogue waves

(b) One two-line dark soliton and two bright solitons with rogue waves

Fig. 5 The 3-D map for case 2.1. Parameters with a a1 = 0, a2 = 1
4 , a3 = 1, α = β = 2 × 10−3, s1 = 100, s2 = −100. b

a1 = 1, a2 = 0, a3 = 0, α = β = 2 × 10−3, s1 = 100, s2 = −100 (Color online)

A =

∣∣∣∣∣∣∣∣∣∣∣∣

− a2r1a1 − 2a1a2 A13 − 2σa22 − a2r1σa3 0
− r2a1a3 − 2 a1a3 − σa2r1 a3 − 2σa2a3 A25 0
− 2 a1a3 r2a1a3 − 2σa2a3 σa2r2a3 − 2σa32 A36

− 2a1a2 a2r2a1 − 2σa22 A44 − 2σa2a3 σa2a3 (r2 − 2)
− 2a12 A52 − 2σa1a2 σa2r2a1 − 2σa1a3 σa1a3 (r2 − 2)
A61 − 2a12 − σa2r1a1 − 2σa1a2 − σr1a1a3 0

∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (17)

with

τ = σa2
2 + σa3

2 + a1
2,

r1 = kω τ + 2, r2 = kω τ − 2,

A61 = −2 kτ ω2 +
(
−kτ a1

2 − kτ 2 − 2
)

ω − 2 a1
2

A52 = −2 kτ ω2 +
(
kτ a1

2 + kτ 2 + 2
)

ω − 2 a1
2,

A13 = −2 kτ ω2 +
(
−kσ τ a2

2 − kτ 2 − 2
)

ω

− 2 σ a2
2,

A44 = −2 kτ ω2 +
(
kσ τ a2

2 + kτ 2 + 2
)

ω

− 2 σ a2
2,

A25 = −2 kτ ω2 +
(
−kσ τ a3

2 − kτ 2 − 2
)

ω

− 2 σ a3
2,
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(a) Two two-line breathers and one two-line bright soliton with rogue waves

(b) Two two-line breathers and one two-line dark soliton with rogue waves

Fig. 6 The 3-D map for case 2.2. Parameters with a a1 = 1, a2 = 1
4 , a3 = 0, α = β = 2 × 10−4, s1 = 100, s2 = −100. b

a1 = 1, a2 = 1
4 , a3 = 1

2 , α = 0, β = 2 × 10−4, s1 = 100, s1 = −100 (Color online)

Fig. 7 The 3-D map for case 2.3. Parameters with a1 = 3
2 , a2 = 1

2 , a3 = 1
4 , α = β = 10−4, s1 = 100, s2 = −100 (Color online)
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A36 = −2 kτ ω2 +
(
kσ τ a3

2 + kτ 2 + 2
)

ω

− 4 σ a3
2.

Since A = 0 is a sixth-order equation of ω, we can
derive the relation(

−ω4τ 2 + ω2τ 4
)
k2

+
[(

τ 2 −
((

a2
2 + 2 a3

2
)

σ + a1
2
)

τ
)

ω2

−ω σ τ 2a3
2
]
k

− a3
2σ ω − 2 a3

2σ τ + ω2 = 0, (18)

then

k =
√
g+ [−τ+ (

a22+2 a32
)
σ + a12

]
ω+a32σ τ

− 2ω3τ+2ω τ 3
,

(19)

with

g = 4ω4 − 4ω3σa3
2

+
[(

a2
2 + 2a3

2
)2

σ 2 +
((

4a1
2 − 12τ

)
a3

2

− 2a2
2
(
−a1

2 + τ
))

σ
]
ω2

(
a1

4 − 2τa1
2 − 3τ 2

)
ω2 + 2

[(
a2

2 + 2a3
2
)

σ

+ a1
2 + τ

]
a3

2τσω + σ 2τ 2a3
4 + 8στ 3a3

2.

When g > 0, Im(k) = 0, k is real and the plane
wave background is stable under the perturbations pk .
But when g < 0, Im(k) �= 0. k is complex, the small
perturbations growexponentiallywith x , theMIoccurs.

5 Conclusion

In summary, we generalize the three-component cou-
pled FL system and the corresponding Lax pair are
derived. Then the generalized (n, M)-fold DT is con-
structed. Compared to the semi-rational solutions of
the two-component coupled FL system in [13], for the
number of the component increase, the solutions of
the three-component system havemore abundant struc-
tures. In case 1.2 and case 2.2, we also get the mixed
localized solutions that one component is a bright or
dark soliton with rogue wave and the other two are
breatherswith roguewaves. But for the two-component
system in [13], these kinds of solutions have not been
found. Moreover, in this paper, the higher-order mixed
localized solutions also present as the higher-order

rogue waves, respectively, emerging in three kinds of
arrangements: (1) One component is N-line bright soli-
ton, and the others are N -line dark solitons. Alterna-
tively, one component is N-line dark soliton and the
other two are N -line bright solitons. (2) One compo-
nent is N-line bright or dark soliton, and the others are
N -line breathers. (3) Three components are all N par-
allel breathers. These results can also be generalized to
the N -component FL system. Besides, the modulation
instability conditions of the plane-wave solutions for
system (1) are present.

However, some significant limitations need to be
considered. Firstly, for the second-order mixed local-
ized solutions, we have not obtained the solution that
rogue waves emerging in the spread of the coexistence
wave of the breather and line soliton. Secondly, the
expressions of second-order or even higher-order solu-
tions are cumbersome; we cannot show them in concise
forms. Furthermore, the solutions in determinant forms
would be of great help in the analysis of the compo-
nents.

These findings enhance our understandings of the
localized solution structures for the multi-component
FL system. We hope these results will be matched with
the physical experiments later.
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