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Abstract Combining Adomian decomposition method (ADM) with Padé approximants, we solve two differential-
difference equations (DDEs): the relativistic Toda lattice equation and the modified Volterra lattice equation. With the
help of symbolic computation Maple, the results obtained by ADM-Padé technique are compared with those obtained
by using ADM alone. The numerical results demonstrate that ADM-Padé technique give the approximate solution with
faster convergence rate and higher accuracy and relative in larger domain of convergence than using ADM.
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1 Introduction

Since the work of Fermi et al. in the 1950s,[1]

differential-difference equations (DDEs) have been the fo-

cus of many nonlinear studies. There is a vast body of

work on it.[2−8] The DDEs play an important role in mod-

eling complicated physical phenomena such as particle vi-

brations in lattices, currents flow in electrical networks,

and pulses in biological chains. Unlike difference equa-

tions, which are fully discrete, DDEs are semi-discrete

with some (or all) of their spacial variables discrete while

time is usually kept continuous.

The Adomian decomposition method (ADM)[9−11] is

powerful to obtain approximate solution or even closed

form analytical solution of differential equation[12−18]

without linearization or perturbation and provides an ef-

ficient numerical solution with minimal calculation. How-

ever, in some cases, the convergence interval of the ADM

series solution is very small and outside it high error is

obtained. To overcome the drawback, the Padé approx-

imants, which often show superior performance over se-

ries approximation, are employed to the series solution

of ADM to improve the accuracy and enlarge the con-

vergence domain. The nature idea is that we first use

ADM to obtain series solution of the DDEs and PDEs

and employ Padé approximants to improve the accuracy

and enlarge the convergence domain. Recently, combing

ADM with Padé approximants, Mehdi Dehghan et al.[19]

Wazwaz[20] investigated the continuous solitary system.

More recently, Yang et al.[21] and Wang et al.[22] stud-

ied the differential-difference equations. Numerical and

graphical illustrations show that it is a promising tool for

solving nonlinear problem.

In this paper, we combine ADM with Padé approxi-

mants to solve the relativistic Toda lattice equation,[23,24]

ut(n, t) = (1 + αu(n, t))(v(n, t)− v(n− 1, t)) ,

vt(n, t) = v(n, t)(u(n+ 1, t) − u(n, t)

+ αv(n+ 1, t) − αv(n− 1, t)) , (1)

and the modified Volterra lattice equation,[25,26]

ut(n, t) = (u(n, t)2 − 1)(u(n+ 1, t) − u(n− 1, t)) , (2)

where the subscript n in Eqs. (1) and (2) represents the

n-th lattice.

It is arranged as follows. In Sec. 2, ADM–Padé tech-

nique for solving the discrete differential-difference equa-

tions is outlined. In Sec. 3, the relativistic Toda lattice

equation is studied. And the modified Volterra lattice

equation is investigated in Sec. 4. Finally, conclusions are

followed.

2 Description of ADM-Padé Technique

2.1 Description of ADM for Solving DDEs

For the purposes of the illustration of the decom-

position method, we consider a system of nonlinear

differential-difference equation as follows:

L(u(n, t)) = g(n, t) +R(ui(n, t), ui(n− 1, t),

ui(n+ 1, t), . . .) +N(ui(n, t),

ui(n− 1, t), ui(n+ 1, t), . . .) , (3)
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where ui(n, t), ui(n−1, t), and ui(n+1, t) is the unknown

function with respect to the discrete spatial variable n and

the temporal variable t; L is the highest-order derivative,

which is assumed to be invertible; R is the remaind lin-

ear operator and N is the nonlinear operator and g is the

source term.

Applying the inverse operator L−1 on both sides of

Eq. (3) gives

L−1L(u(n, t)) = L−1g(n, t) + L−1R(ui(n, t), ui(n− 1, t),

ui(n+ 1, t), . . .) + L−1N(ui(n, t),

ui(n− 1, t), ui(n+ 1, t), . . .) . (4)

Using the initial conditions, we get

u(n, t) = f(n, t) + L−1R(ui(n, t), ui(n− 1, t),

ui(n+ 1, t), . . .) + L−1N(ui(n, t),

ui(n− 1, t), ui(n+ 1, t), . . .) , (5)

where the function f represents the term arising from inte-

grating the source term g and the given initial or boundary

conditions. According to the ADM,[9−11] we assume that

a series solution of the unknown function u(n, t) can be

expressed by an infinite series of the form:

u(n, t) =
∞
∑

m=0

um(n, t) . (6)

The nonlinear term N will be decomposed by the infinite

series of the Adomian polynomials,

N(ui(n, t), ui(n− 1, t), ui(n+ 1, t), . . .) =

∞
∑

m=0

Am ,

Am = Am(ui(n, t), ui(n− 1, t), ui(n+ 1, t), . . .) , (7)

Am are the so-called Adomian polynomials. In order to

determine the Adomian polynomials, we introduce a pa-

rameter λ and equation (7) becomes

N
(

∞
∑

m=0

ui,m(n, t)λm,

∞
∑

m=0

ui,m(n− 1, t)λm,

∞
∑

m=0

ui,m(n+ 1, t)λm, . . .
)

=

∞
∑

m=0

Amλ
m . (8)

Let ui,λ(u, t) =
∑∞

m=0 ui,m(n, t)λm, then

Am =
1

m!

[ dm

dλm
N(ui,λ(u, t), ui,λ(u− 1, t), ui,λ(u+ 1, t), . . .)

]

λ=0

=
1

m!

[ dm

dλm
N

(

∞
∑

m=0

ui,m(n, t)λm,

∞
∑

m=0

ui,m(n− 1, t)λm,

∞
∑

m=0

ui,m(n+ 1, t)λm, . . .
)]

λ=0
. (9)

To determine the components um(n, t), m ≥ 0, we employ the recursive relation

u0(n, t) = f(n, t) , um+1(n, t) = L−1R(um(n, t), um(n− 1, t), um(n+ 1, t), . . .) + L−1Am , m ≥ 0 . (10)

The expression

φr =

r
∑

m=0

um(n, t) , (11)

denotes the r-term approximation to u(n, t).

2.2 Padé Approximants on Series Solution

When we obtain the truncated series solution u(n, t)

of order at least (L+M) in t by ADM and use it, we can

obtain Padé [L/M ](n, t) approximants solution for u(n, t).

The procedure is to seek a rational function for the series.

Given a known function f(z) expanded in a Maclaurin

series

f(z) =

∞
∑

n=0

cnz
n , (12)

we can use the coefficients of the series to represent the

function by a ratio of two polynomials

A[L/M ](Z)

B[L/M ](z)
=
a0 + a1z + · · · + aLz

L

b0 + b1z + · · · + bMzM
, (13)

symbolized by [L/M ] and called the Padé approximants.

The basic idea is to match the series coefficients as far

as possible. Even though the series has a finite region of

convergence, we can obtain the limit of the function as

z → ∞ if L = M . We note that there are L+ 1 indepen-

dent coefficients in the numerator and M + 1 coefficients

in the denominator. To make the system determinable,

let b0 = 1. We then have M independent coefficients in

the denominator and L +M + 1 independent coefficients

in all. Now the [L/M ] approximants can fit the power

series through orders 1, z, z2, . . . , zL+M with an error of

O(zL+M+1). Consequently,

a0 + a1z + · · · + aLz
L = (b0 + b1z + · · · + bMz

M)

× (c0 + c1z + c2z
2 + . . .) . (14)

Balancing the each coefficients of zL+1, zL+2, . . . , zL+M , we

can get

bMcL−M+1 + bM−1cL−M+2 + · · · + b0cL+1 = 0 ,

bMcL−M+2 + bM−1cL−M+3 + · · · + b0cL+2 = 0 ,

·
·
·

bMcL + bM−1cL+1 + · · · + b0cL+M = 0 , (15)

Since c0, c1, . . ., are known, when taking b0 = 1 into
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Eq. (15) and solving these linear equations, we can ob-

tain bi (i = 1, . . . ,M). At the same time, we can get

a0, a1, . . . , aL by equating the coefficients of 1, z, z2, . . . , zL

of both sides in Eq. (14). Here

a0 = c0 ,

a1 = c1 + b1c0 ,

a2 = c2 + b1c1 + b2c0 ,

·
·
·

aL = cL + cL−1b1 + · · · + c0bL , (16)

Therefore, substituting ai and bi into Eq. (13), we can

calculate the diagonal approximants like [2/2], [3/3], . . .

In the following, we will give two examples to illustrate

the applications of ADM-Padé techniques in details.

3 Soliton Solution of Relativistic Toda Lattice

Equation

Considering the relativistic Toda lattice equation (1)

as follows:

ut(n, t) = (1 + αu(n, t))(v(n, t)− v(n− 1, t)) ,

vt(n, t) = v(n, t)(u(n+ 1, t) − u(n, t)

+ αv(n+ 1, t) − αv(n− 1, t)) ,

assuming the initial conditions as

u(n, 0) = f1(n) , v(n, 0) = f2(n) , (17)

where

f1(n) = −
1

α
− c coth(k) + c tanh(kn+ c0) ,

f2(n) =
c

α
coth(k) −

c

α
tanh(kn+ c0) , (18)

we rewrite Eq. (1) in operator form:

Ltu(n, t) = v(n, t) − v(n− 1, t) + αu(n, t)v(n, t)

− αu(n, t)v(n− 1, t) ,

Ltv(n, t) = v(n, t)u(n+ 1, t) − v(n, t)u(n, t)

+ αv(n, t)v(n+ 1, t)− αv(n, t)v(n− 1, t) , (19)

where Lt is a first order differential operator and L−1
t is

an integral operator defined by

L−1
t =

∫ t

0

(·)dt . (20)

For convenience, we set the nonlinear terms as:

P (u(n, t), v(n, t)) = u(n, t)v(n, t) ,

Q(u(n, t), v(n− 1, t)) = u(n, t)v(n− 1, t) ,

S(v(n, t), u(n+ 1, t)) = v(n, t)u(n+ 1, t) ,

T (v(n, t), v(n+ 1, t)) = v(n, t)v(n+ 1, t) ,

K(v(n, t), v(n− 1, t)) = v(n, t)v(n− 1, t) . (21)

Operating L−1
t on both sides of Eq. (19) and using the

initial conditions, we obtain

u(n, t) = f1(n) + L−1
t (v(n, t) − v(n− 1, t))

+ αL−1
t (P (u(n, t), v(n, t))

−Q(u(n, t), v(n− 1, t))) ,

v(n, t) = f2(n) + L−1
t (S(v(n, t), u(n+ 1, t))

− P (u(n, t), v(n, t)))

+ αL−1
t (T (v(n, t), v(n+ 1, t))

−K(v(n, t), v(n− 1, t))) . (22)

We assume the expressions of u(n, t), v(n, t), in the de-

composition forms:

u(n, t) =
∞
∑

m=0

um(n, t) , v(n, t) =
∞
∑

m=0

vm(n, t) . (23)

According to Eqs. (7) ∼ (9), the nonlinear terms (21)

can be expressed in terms of Adomian polynomial as fol-

lows:

P (u(n, t), v(n, t)) =

∞
∑

m=0

Am ,

Q(u(n, t), v(n− 1, t)) =
∞
∑

m=0

Bm ,

S(v(n, t), u(n+ 1, t)) =
∞
∑

m=0

Cm ,

T (v(n, t), v(n+ 1, t)) =

∞
∑

m=0

Mm ,

K(v(n, t), v(n− 1, t)) =
∞
∑

m=0

Nm . (24)

For exmaple, we can get the first components of Adomian

polynomial as follows:

A0 = u0(n, t)v0(n, t) , B0 = u0(n, t)v0(n− 1, t) ,

C0 = v0(n, t)u0(n+ 1, t) , M0 = v0(n, t)v0(n+ 1, t) ,

N0 = v0(n, t)v0(n− 1, t) ,

A1 = u0(n, t)v1(n, t) + u1(n, t)v0(n, t) ,

B1 = u0(n, t)v1(n− 1, t) + u1(n, t)v0(n− 1, t)

C1 = v0(n, t)u1(n+ 1, t) + v1(n, t)u0(n+ 1, t) ,

M1 = v0(n, t)v1(n+ 1, t) + v1(n, t)v0(n+ 1, t) ,

N1 = v0(n, t)v1(n− 1, t) + v1(n, t)v0(n− 1, t) ,

A2 = u0(n, t)v2(n, t) + u1(n, t)v1(n, t) + u2(n, t)v0(n, t) ,

B2 = u0(n, t)v2(n− 1, t) + u1(n, t)v1(n− 1, t)

+ u2(n, t)v0(n− 1, t) ,

C2 = v0(n, t)u2(n+ 1, t) + v1(n, t)u1(n+ 1, t)

+ v2(n, t)u0(n+ 1, t) ,

M2 = v0(n, t)v2(n+ 1, t) + v1(n, t)v1(n+ 1, t)

+ v2(n, t)v0(n+ 1, t) ,

N2 = v0(n, t)v2(n− 1, t) + v1(n, t)v1(n− 1, t)

+ v2(n, t)v0(n− 1, t) . (25)
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The components um(n, t) and vm(n, t) can be determined

by using recursive relations given by

u0(n, t) = f1(n) ,

um(n, t) = L−1
t (vm−1(n, t) − vm−1(n− 1, t))

+ αL−1
t (Am−1 −Bm−1) ,

v0(n, t) = f2(n) ,

vm(n, t) = L−1
t (Cm−1 −Am−1)

+ αL−1
t (Mm−1 −Nm−1) . (26)

The r-term approximate solution is evaluated as

φr =
r

∑

m=0

um(n, t) , ψr =
r

∑

m=0

vm(n, t) . (27)

With the aid of Maple, we can obtain fourth-order approx-

imation

φ4 =

4
∑

m=0

um(n, t) , ψ4 =

4
∑

m=0

vm(n, t) . (28)

The exact solutions of the relativistic Toda lattice equa-

tion is[23]

u(n, t) = −
1

α
− c coth(k) + c tanh(kn+ ct+ c0) ,

v(n, t) =
c

α
coth(k) −

c

α
tanh(kn+ ct+ c0) , (29)

In order to verify whether the numerical solutions ob-

tained by us achieve high accuracy, we give the figures.

Here we set α = 1, c = 0.2, k = 0.5, and c0 = 0. Figure 1

shows that the series solutions of ADM give good approx-

imation in small interval of convergence, and outside it

high error is obtained.

Fig. 1 The comparison between the ADM solutions and the exact solutions of the relativistic Toda lattice at
n = 1. Line stands for the numerical solution figure and point for the exact one.

Using ADM-Padé approximants at n = 1, the rational approximants [2/2] is

u[2/2](1, t) =
−1.340367251 − 0.09242346073 t− 0.01787156510 t2

1.0 + 0.09242345331 t+ 0.01333333513 t2
,

v[2/2](1, t) =
0.3403672511 + 0.000000006146422623 t+ 0.004538229938 t2

1.0 + 0.09242344891 t+ 0.01333333472 t2
. (30)

Figure 2 shows that ADM-Padé technique can enlarge the convergence domain of the series solution at n = 1. It is

clear that the interval of convergence has increased by ADM–Padé technique. From Fig. 3 we can see that the absolute

errors between the [2/2] ADM-Padé solutions and the exact solutions is very smaller than that between the ADM

solutions and the exact one. Figure 4 shows that the ADM-Padé approximate solution of u(n, t) and v(n, t).

Fig. 2 The comparison between the [2/2] ADM-Padé solutions and the exact solutions of the relativistic Toda
lattice at n = 1. Line stands for the [2/2] ADM–Padé solutions and point for the exact one.
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Fig. 3 The comparison of the error between the ADM solutions and [2/2] ADM–Padé solutions of the relativistic
Toda lattice equation at n = 1, Line stands for the error between ADM solution and exact solution; point for the
error between the [2/2] ADM-Padé solution and the exact one.

Fig. 4 The graph shows the ADM-Padé approximate solution of u(n, t), v(n, t) at −5 ≤ t ≤ 5,−20 ≤ n ≤ 20.

4 Soliton Solution of Modified Volterra
Lattice Equation

Take the modified Volterra lattice equation (2) as:

ut(n, t) = (u(n, t)2 − 1)(u(n+ 1, t) − u(n− 1, t)) ,

and the initial condition

u(n, 0) = g(n) , (31)

where
g(n) = m sn(k,m) sn(kn+ c,m) , (32)

The operator form of Eq. (2) is

Ltu(n, t) = u(n, t)2u(n+ 1, t) − u(n, t)2u(n− 1, t)

+ u(n− 1, t) − u(n+ 1, t) , (33)

where Lt(·) = ∂(·)/∂t. For convenience, we set the non-
linear terms as:

M(u(n, t)2, u(n+ 1, t)) = u(n, t)2u(n+ 1, t) ,

N(u(n, t)2, u(n− 1, t)) = u(n, t)2u(n− 1, t) . (34)

Operating L−1
t on both sides of Eq. (33) and using the

initial condition, we obtain

u(n, t) = g(n) + L−1
t (M(u(n, t)2, u(n+ 1, t))

−N(u(n, t)2, u(n− 1, t))

+ L−1
t (u(n− 1, t) − u(n+ 1, t)) . (35)

We assume the expressions of u(n, t), in the decomposition
forms:

u(n, t) =
∞
∑

m=0

um(n, t) . (36)

Samely, the nonlinear terms (34) can be expressed in terms
of Adomian polynomial as follows:

M(u(n, t)2, u(n+ 1, t)) =
∞
∑

m=0

Am ,

N(u(n, t)2, u(n− 1, t)) =

∞
∑

m=0

Bm . (37)

Also, we can get the first components of Adomian poly-
nomial as follows:

A0 = u0(n, t)
2u0(n+ 1, t) ,

B0 = u0(n, t)
2u0(n− 1, t) ,

A1 = 2u0(n, t)u0(n+ 1, t)u1(n, t) + u0(n, t)
2u1(n+ 1, t) ,

B1 = 2u0(n, t)u0(n− 1, t)u1(n, t) + u0(n, t)
2u1(n− 1, t) ,

A2 = u1(n, t)
2u0(n+ 1, t) + 2u0(n, t)u1(n+ 1, t)u1(n, t)

+ 2u0(n, t)u0(n+ 1, t)u2(n, t) +u0(n, t)
2u2(n+ 1, t) ,

B2 = u1(n, t)
2u0(n− 1, t) + 2u0(n, t)u1(n− 1, t)u1(n, t)

+2u0(n, t)u0(n−1, t)u2(n, t)+u0(n, t)
2u2(n−1, t) .(38)
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The components um(n, t) can be determined by using re-

cursive relations given by:

u0(n, t) = g(n) ,

um(n, t) = L−1
t (Am−1 −Bm−1) + L−1

t (um−1(n− 1, t)

− um−1(n+ 1, t)) , (39)

so the r-term approximate solution is evaluated as follows:

φr =

r
∑

m=0

um(n, t) . (40)

Therefore, we can get sixth-order approximation

φ6 =
6

∑

m=0

um(n, t) . (41)

The exact solutions of this problem is[25]

u(n, t) = m sn(k,m) sn(kn− 2 sn(k,m)t+ c,m) , (42)

we set k = 0.5, m = 0.25, and c = 0. Using ADM–Padé
approximation at n = 1, the rational approximations [3/3]
is

u[3/3](1, t) =
0.05720203865 − 0.09964049754 t− 0.02325966601 t2 + 0.008599089448 t3

1.0 + 0.001842353272 t+ 0.06971860967 t2 + 0.01298099644 t3
.

Figure 5(a) shows that the series solutions of ADM give good approximation in small interval of convergence, and

outside it high error is obtained. Figure 5(b) shows that ADM–Padé technique can enlarge the convergence domian

of the series solution at n = 1. It is clear that the interval of convergence has increased by ADM-Padé technique.

Figure 6(a) shows that the absolute errors between the [3/3] ADM-Padé solutions and the exact solutions is very smaller

than that between the ADM solutions and the exact one at n = 1. Figure 6(b) shows that the ADM approximate

solution of u(n, t).

Fig. 5 The comparison between the ADM solutions and the exact solutions of the modified Volterra lattice
equation at n = 1. Line stands for the exact solution and the point for ADM solution (a) and the [3/3] ADM–
Padé solutions (b).

Fig. 6 The comparison of the error between the exact solution and the ADM solutions as well as the [3/3]ADM-
Padé solutions of the modified Volterra lattice equation at n = 1, respectively. Line stands for the error between
ADM solution and the exact solution and the point for the error between the [3/3] ADM-Padé solution and the
exact one. The right graph shows the ADM approximate solution of u(n, t), at −1.5 ≤ t ≤ 1.5,−20 ≤ n ≤ 20.

5 Conclusions

Combining Adomian decomposition method (ADM)

with Padé approximants, we successfully solve the cou-

pled Relativistic Toda lattice equations and the modi-

fied Volterra lattice equation. Numerical simulations show

that ADM-Padé technique is an effective tool to solve non-

linear equations. It not only can improve the accuracy but

also enlarge convergence domain of the truncated ADM
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solution. At the same time, the numerical solutions ob-

tained can convergent the exact solutions with minimal

calculation. To see approximate effective of the numer-

ical solution by ADM-Padé technique directly, the dis-

crete three-dimentional ADM-Padé approximate solution

is drawn in three-dimentional space. However, in some

cases, due to complex and tedious computation, we only

drawn the figures of the ADM approximate solution, the

figures of the ADM-Padé approximate solution cannot be

easily given. Whether existing other methods to accel-

erate its convergent speed, the problem will be further

studied.
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