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In this paper, by means of a proper transformation and symbolic computation, we study the
travelling wave reduction for the generalized Pochhammer-Chree (PC) equations (1.3) and (1.4)
by use of the recently proposed extended-tanh method. As a result, rich travelling wave solutions,
which include kink-shaped solitons, bell-shaped solitons, periodic solutions, rational solutions,
singular solitons, are obtained. At the same time, using a direct assumption method, the more
general bell-shaped solitons for the generalized PC Eq. (1.3) are obtained. The properties of the
solutions are show in figures.
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1. Introduction

The nonlinear equations of mathematical physics
(NEMPS) are major subjects in physical science,
and various powerful methods have been presented,
such as, the Bäcklund transformation, Darboux trans-
formation, Cole-Hopf transformation, sine-cosine
method, Painlevé method, homogeneous balance
method, Hirota method, Lie group analysis, similar-
ity reduced method, and so on [1, 2, 7-10]. To ob-
tain new forms of solutions, various ansatz have been
proposed. Recently, based on the well-known Ric-
cati equation, Fan presented a useful extended-tanh
method [11] to find exact solutions of given NEMPS.
More recently, Fan [12, 13] and Yan [14, 15] fur-
ther developed this idea and made it much more lucid
and straightforward for a class of NEMPS. The mo-
tivation of this paper is to utilize the extended-tanh
method to explore new solutions of the generalized
Pochhammer-Chree equations.

The propagation of longitudinal deformation waves
in an elastic rod is modelled by the general Pochham-
mer-Chree (PC) equation

utt ! uttxx ! uxx ! 1
p

(up)xx = 0* (1)1)

where u(x* t) is the longitudinal displacement, at time
t, of a material point originally lying at the point x.
When p = 3 or p = 5, (1.1) reflects two possible

0932–0784 / 02 / 1100–0874 $ 06.00 c! Verlag der Zeitschrift für Naturforschung, Tübingen " www.znaturforsch.com

constitutive choices of the material [3, 4]. In [3, 4],
solitary-wave solutions are obtained when p = 2, p =
3 and p = 5. In [4], the authors presented the more
general equation

utt ! uttxx ! &(u)xx = 0* (1)2)

where & is a rational function of u.
In this paper, we consider the generalized PC

equation

utt ! uttxx ! (a1u + a2u
p + a3u

2p!1)xx = 0* (1)3)

where a1, a2, a3 are constants. As dissipation is in-
evitable in actual problems, we shall further study the
more important generalized PC equation

utt ! uttxx + #uxxt ! (a1u + a2u
p + a3u

2p!1)xx = 0*
(1)4)

where the additional parameters # $= 0 and ai(i =
1* 2* 3) are constants. The Cauchy problem of the
propagation of longitudinal deformation waves in an
elastic rod, which includes the dissipate term uxxt,
was studied in [5]. In [6], Zhang et al. considered
solitary-wave solutions of (1.3) and (1.4) with p = 2
and p = 3. But to our knowledge, the travelling wave
solutions of these two equations have not been studied
by now.

This paper is organized as follows: In Sect. 2 we
summarize the extended-tanh method. In Sect. 3 we



B. Li et al. · Travelling Wave Solutions for Generalized PC Equations 875

apply the extended-tanh method to the generalized PC
equations (1.3) and (1.4) and obtain many solutions.
In section 4 the general bell-shaped solitons of (1.3)
are found and six figure characterize some types of
the solutions. Conclusions will be presented finally.

2. The Extended-tanh Method

In this section, we describe the extended-tanh
method, developed by some authors [11 - 15], for
given nonlinear evolution equations in the two vari-
ables x, t:

F (u* ut* ux* uxt* utt* )))) = 0) (2)1)

Firstly, we make the transformation to a travelling
solution

u(x* t) = u(%)* % = x! "t* (2)2)

where " is a constant to be determined later. Then
(2.1) reduces to a nonlinear ordinary differential equa-
tion (ODE)

G(u* u"* u""* u""" " " ") = 0* (2)3)

which is integrated if all terms contain derivatives,
and where “ "” denotes d/d%.The next crucial step is
to express the solution of the resulting ODE by the
more general ansatz

u(%) =
mX
i=1

'i!1(%)[Ai'(%) + Bi

p
R + '2(%)] + A0*

(2)4)
the new variable ' = '(%) satisfing

'" ! (R + '2) =
d'
d%

! (R + '2) = 0* (2)5)

where A0, Ai* Bi(i = 1* 2* )))*m) and R are constants
to be determined later, and m is a positive integer.
However, when we identify the highest order deriva-
tive term with the nonlinear term in (2.3), we find that
the constant m needs not be restricted to a positive
integer. In order to apply the extended-tanh method
described in [11 - 15] when m is equal to a fraction
or a negative integer, we make the following transfor-
mation:

(1) When m = q,p is a low fraction, we substitute

u(%) = (q$p(%) (2)6)

into (2.3) and return to determine the value of m by
balancing the highest order derivative term with the
nonlinear term in the new equation (2.3).

(2) When m is a negative integer, we substitute

u(%) = (m(%)* (2)7)

into (2.3) and return to determine the value of m as
before.

In general, the constant m can be changed into a
positive integer by means of the above transformation.
Otherwise, we have to seek another proper transfor-
mation.

We summarize the extended-tanh method as fol-
lows:

Step 1. Determine the values of m in (2.4) by bal-
ancing the highest order derivative term with the non-
linear term in (2.3).

(i) If m is a positive integer then Step 2;
(ii) If m = q,p, we make the transformation (2.6)

and then return to Step 1;
(iii) If m is a negative integer, we make the trans-

formation (2.7) and then return to Step 1.

Step 2. With the aid of Mathematica, substitut-
ing (2.4) along with the condition (2.5) into (2.3)
yields a system of algebraic equations with respect
to 'k(

p
R + '2)j (j = 0* 1; k = 0* 1* 2* )))). (where

'k denotes k power of ' and (
p
R + '2)j denotes j

power of
p
R + '2).

Step 3. Collect all terms with the same power in
'k(

p
R + '2)j (j = 0* 1; k = 0* 1* 2* )))) and set the

coefficients of the terms 'k(
p
R + '2)j (j = 0* 1; k =

0* 1* 2* )))) to zero to get an over-determined system
of nonlinear algebraic equations with respect to the
unknown variables $*R*A0* Ai* Bi(i = 1* 2* )))*m).

Step 4. With the aid of Mathematica, solving the
above over-determined system of nonlinear algebraic
equations obtained in step 3, yields the values of
$*R*A0* Ai* Bi(i = 1* 2* )))*m).

Step 5. It is well known that the general solutions
of (2.5) are

1. When R + 0:

'(%) = !
p
!R tanh(

p
!R%)*

'(%) = !
p
!R coth(

p
!R%)

(2)8)
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2. When R = 0:

'(%) = !1
%
* (2)9)

3. When R - 0:

'(%) =
p
R tan(

p
R%)* '(%) = !

p
R cot(

p
R%))
(2)10)

Thus according to (2.2), (2.4), (2.6) or (2.7), (2.8),
(2,9), (2.10) and the conclusions in step 4 we can
obtain many travelling wave solutions of (2.1).

3. Travelling Wave Solutions to the Generalized
PC Eqs. (1.4) and (1.3)

We now apply the extended-tanh method to the
generalized PC equation (1.4). We firstly make the
travelling wave transformation

u(x* t) = u(%)* % = x! "t* (3)1)

where " is a constant to be determined.
Substituting (3.1) into (1.4) yields

"2u""(%)! "2u(4)(%)! #"u"""(%)

! [a1u(%) + a2u
p(%) + a3u

2p!1(%)]## = 0)
(3)2)

Integrating the above equation twice, we have

"2u""(%) + #"u"(%) + (a1 ! "2)u(%)

+ a2u
p(%) + a3u

2p!1(%) = 0*
(3)3)

with the integration constants taken to be zero.
According to Step 1 in Sect. 2, by balancing the

highest order derivative term and the nonlinear term
in (3.3), we get m = 1,(p ! 1). Therefore we make
the transformation

u(%) = (
1

p!1 (%)) (3)4)

Then substituting (3.4) into (3.3) yields

(p! 1)"2((%)(""(%) + (p! 1)"#((%)("(%)

! (p! 2)"2("2(%)+(p ! 1)2(a1 ! "2)(2(%)

+ a2(p! 1)2(3(%) + a3(p! 1)2(4(%) = 0)

(3)5)

According to Step 1 in Sect. 2, we suppose that (3.5)
has the formal solutions

((%) = A0 + A1' + B1

p
R + '2* (3)6)

and ' = '(%) satisfies (2.5), where A0* A1* B1 are
constants to be determined later.

With the aid of Mathematica, substituting (3.6)
into (3.5) along with (2.5) and collecting all terms
with the same power in 'k(

p
R + '2)j (j = 0* 1; k =

0* 1* 2* 3* 4) yields a system of equations with re-
spect to 'k(

p
R + '2)j . Setting the coefficients of

'k(
p
R + '2)j (j = 0* 1; k = 0* 1* 2* 3* 4) in the ob-

tained system of equations to zero, we deduce the fol-
lowing set of over-determined algebraic polynomials
with respect to the unknowns A0, A1, B1, R, ":

A0
3a2(!1 + p)2 + A0

4a3(!1 + p)2

+ A0
2(!1 + p)2(a1 + 6a3B1

2R)

+ R
'
a3B1

4(!1 + p)2R!A1
2(!2 + p)R"2

+ B1
2(!1 + p)(a1(!1 + p) + R"2)

(
+ A0(!1 + p)R

!
3a2B1

2(!1 + p) + A1"#
"

= 0*

(3)7)

B1(!1 + p)(3A0
2a2(!1 + p) + 4A0

3a3(!1 + p)

+A0(2a1(!1 + p) +R
!
4a3B1

2(!1 + p) + "2)
"

(3)8)

+ R
!
a2B1

2(!1 + p) + A1"#)
"

= 0*

(!1 + p)(3A0
2A1a2(!1 + p) + 4A0

3A1a3(!1 + p)

+2A0A1(a1(!1+p)+R
!
6a3B1

2(!1+p)+"2)
"

(3)9)

+ R
!
3A1a2B1

2(!1 + p) + A1
2"# + B1

2"#)
"

= 0*

B1

'
2a1A1(!1 + p)2 + 12A0

2A1a3(!1 + p)2

+ A1R
!
4a3B1

2(!1 + p)2 + (1 + p)"2" (3)10)

+ A0(!1 + p)
!
6A1a2(!1 + p) + "#

"(
= 0*

6A0
2a3(A1

2 + B1
2)(!1 + p)2

+ A1
2
'
a1(!1 + p)2 + 2R

!
3a3B1

2(!1 + p)2 + "2)
"(

+ B1
2
'
a1(!1 + p)2 + R

!
2a3B1

2(!1 + p)2 (3)11)

+ (!1 + 2p)"2)
"(

+ A0(!1 + p)
'

3A1
2a2(!1 + p)

+ 3a2B1
2(!1 + p) + A1"#

(
= 0*



B. Li et al. · Travelling Wave Solutions for Generalized PC Equations 877

B1(!1 + p)
'

3A1
2(a2 + 4A0a3)(!1 + p)

+ a2B1
2(!1 + p) + 2A0

!
2a3B1

2(!1 + p) + "2"
+ 2A1"#

(
= 0* (3)12)

(!1 + p)
'
A1

3(a2 + 4A0a3)(!1 + p)

+ A1
#
3a2B1

2(!1 + p) + 2A0
!
6a3B1

2(!1 + p) + "2"$
+ A1

2"# + B1
2"#

(
= 0* (3)13)

2A1B1(2A1
2a3(!1 + p)2

+ 2a3B1
2(!1 + p)2 + p"2) = 0* (3)14)

A1
4a3(!1 + p)2 + a3B1

4(!1 + p)2 + B1
2p"2

+ A1
2(6a3B1

2(!1 + p)2 + p"2) = 0) (3)15)

From (3.7) - (3.15), with the aid of Mathematica, we
have

Case 1.

A0 =
!a2p# #

p!a3p

2a3(1 + p)
*

A1 = #B1 = #
s
! p"2

4a3(!1 + p)2
*

R =
4A2

0a3(!1 + p)2

p"2
*

" = #
q
a1 + 2a2A0 + 4a3A2

0)

(3)16)

Case 2.

A0 =
!a2p# #

p!a3p

2a3(1 + p)
*

A1 = #
s
! p"2

a3(!1 + p)2
*

R =
A2

0a3(!1 + p)2

p"2
*

" = #
q
a1 + 2a2A0 + 4a3A

2
0)

(3)17)

Case 3.

R = 0* A0 = 0*

A1 = #B1 =
r
! a1p

16a3(!1 + p)2
*

" = #pa1* #
2 = !a2

2p

4a3
)

(3)18)

Case 4.

# = 0* A0 = A1 = a2 = 0* B1 = #
s
! p"2

a3(!1 + p)2
*

R =
(!1 + p)2(a1 ! "2)

"2
) (3)19)

Case 5.

# = 0* p = 2* A0 = B1 = a2 = 0*

A1 = #
s
!2"2

a3
* R =

a1 ! "2

"2
) (3)20)

Case 6.
# = 0* A0 = a2 = 0* p = 2* (3)21)

A1 = #B1 = #
s
! "2

2a3
* R = !2(a1 ! "2)

"2
)

Case 7.

# = A1 = 0* p = 2* A0 = ! a2

3a3
* (3)22)

B1 = #
s
!2"2

a3
* " = #

s
a1 !

2a2
2

9a3
* R = ! a2

2

9a3"2
)

Therefore, combining (2.8), (2.9), (3.1), (3.4), (3.6)
along with Cases 1 - 3, the travelling wave solutions
of the generalized PC equation (1.4) are found as
follows:

Case 1.

When R + 0, i. e., a3p + 0:

u11 =
n
A0[1 # tanh[

p
!R(x! "t + %0)]

# i sech[
p
!R(x! "t + %0)]

o 1
p!1

* (3)23)

u12 =
n
A0[1 # coth[

p
!R(x! "t + %0)]

# csch[
p
!R(x! "t + %0)]

o 1
p!1

* (3)24)

when R - 0, i. e., a3p - 0:

u13 =
n
A0[1 # i tan[

p
R(x! "t + %0)]

# i sec[
p
!R(x! "t + %0)]

o 1
p!1

* (3)25)
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u14 =
n
A0[1# i cot[

p
R(x! "t + %0)]

# i csc[
p
!R(x! "t + %0)]

o 1
p!1

* (3)26)

where A0 =
% ! a2p # #

p!a3p
&
,2a3(1 + p)* R =

4A2
0a3(!1 + p)2,p"2* " = #

q
a1 + 2a2A0 + 4a3A2

0

and %0 is an arbitrary constants. (Note: the rest of
this paper %0 is an arbitrary constants.)

Case 2.

When R + 0, i.e., a3p + 0:

u21 =
n
A0[1#tanh[

p
!R(x!"t+%0)]

o 1
p!1

* (3)27)

u22 =
n
A0[1#coth[

p
!R(x!"t+%0)]

o 1
p!1

* (3)28)

when R - 0, a3p - 0:

u23 =
n
A0[1#i tan[

p
!R(x!"t+%0)]

o 1
p!1

* (3)29)

u24 =
n
A0[1#i cot[

p
!R(x!"t+%0)]

o 1
p!1

* (3)30)

where A0 =
% ! a2p # #

p!a3p
&
,2a3(1 + p)* R =

A2
0a3(!1 + p)2,p"2* " = #

q
a1 + 2a2A0 + 4a3A

2
0)

Case 3.

From (3.18), (1.4) has the rational solutions

u3 =
n
#
r
! a1p

4a3(!1 + p)2

1
x#pa1t + %0

o 1
p!1

*

(3)31)
where #2 = !a2

2p,4a3.
The results given in [6] are special cases with p = 2

of our solutions (3.27). But, to our knowledge, the
other obtained solutions have not been found before.

Next, we shall consider the travelling wave so-
lutions of the generalized PC equation (1.3). From
(3.23) - (3.31) under # = 0 and (3.19) - (3.20), the
following travelling solutions for the generalized PC
equation (1.3) are obtained (to simplify, the periodic
formal solutions are omited):

Case 1.

u11 =
n
A[1# tanh[

p
!R(x! "t + %0)]

# i sech[
p
!R(x! "t + %0)]]

o 1
p!1

* (3)32)

u12 =
n
A[1 # coth[

p
!R(x! "t + %0)]

# csch[
p
!R(x! "t + %0)]]

o 1
p!1

* (3)33)

where A = !a2p,2a3(1 + p), R = 4A2a3(!1 + p)2 /
p"2 + 0* " = #

p
a1 + 2a2A + 4a3A2.

Case 2.

u21 =
n
A[1#tanh[

p
!R(x!"t+%0)]

o 1
p!1

* (3)34)

u22 =
n
A[1#coth[

p
!R(x!"t+%0)]

o 1
p!1

* (3)35)

where A = !a2p,2a3(1 + p), R = A2a3(!1 + p)2 /
p"2 + 0* " = #

p
a1 + 2a2A + 4a3A2.

Case 3.

From (3.31) we can only deduce the rational solutions
of the equation utt ! uttxx ! (a1u + a3u

2p!1)xx = 0
as follows:

u3 =
n
#
r
! a1p

4a3(!1 + p)2

1
x#pa1t + %0

o 1
p!1

)

(3)36)

Case 4.

From (3.19), the general PC equation utt ! uttxx !
(a1u+a3u

2p!1)xx = 0 has the following solutions for
a1 ! "2 + 0:

u41 =

-
#
s
p(a1 ! "2)

a3
(3)37)

" sech
h
#
s
! (!1+p)2(a1 ! "2)

"2
(x! "t + %0)

i. 1
p!1

*

u42 =

-
#
s
!p(a1 ! "2)

a3
(3)38)

" csch
h
#
s
! (!1+p)2(a1 ! "2)

"2
(x! "t + %0)

i. 1
p!1

)

Case 5.

From (3.20), the equation utt ! uttxx ! (a1u +
a3u

3)xx = 0 has the following solutions for a1!
"2 + 0:
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u51 = #
s

2(a1 ! "2)
a3

" tanh
h
#
s
!a1 ! "2

"2
(x! "t + %0)

i
* (3)39)

u52 = #
s

2(a1 ! "2)
a3

" coth
h
#
s
!a1 ! "2

"2
(x! "t + %0)

i
) (3)40)

Case 6.

From (3.21), the equation utt ! uttxx ! (a1u +
a3u

3)xx = 0 has also the following solutions if
a1 ! "2 + 0

u61 = #
s
!a1 ! "2

a3
(3)41)

"
-

tanh
hs2(a1 ! "2)

"2
(x! "t + %0)

i

# i sech
hs2(a1 ! "2)

"2
(x! "t + %0)

i.
*

u62 = #
s
!a1 ! "2

a3
(3)42)

"
-

coth
hs2(a1 ! "2)

"2
(x! "t + %0)

i

# csch
hs2(a1 ! "2)

"2
(x! "t + %0)

i.
)

Case 7.

From (3.22), the equation utt!uttxx! (a1u+a2u
2 +

a3u
3)xx = 0 has the following solutions

u71 = ! a2

3a3
#
s
!2a2

2

9a2
3

sech
)s

a2
2

9a3"2
(x!"t+ %0)

*
*

(3)43)

u71 = ! a2

3a3
#
s

2a2
2

9a2
3

csch
)s

a2
2

9a3"2
(x! "t + %0)

*
*

(3)44)
where "2 = a1 ! 2a2

2,9a3, a3 - 0.

The results given in [6] are special cases with p = 2
of our solutions (3.27), (3.34) and (3.43). From (3.37),
it is not difficult to obtain the solutions of (1.1) as
follows:

u(x* t) =
)
#
r

("2 ! 1)p(p + 1)
2

(3)45)

" sech
h (p! 1)

p
"2 ! 1

2"
(x! "t + %0)

i* 2
p!1

)

The above solution is just the solution (1.2) in [4].
But, to our knowledge, the other solutions obtained
here were not found before.

4. The Bell-shaped Solitons to the Generalized
PC Equation (1.3)

In Sect. 3, the bell-shaped soliton (3.37) for the
PC equation (1.3) with a2 = 0 are obtained. In this
section we consider the bell-shaped solitons for the
generalized PC equation (1.3) under the condition
a2 $= 0. Setting # = 0 in formula (3.5), it changes into
the equation

(p! 1)"2((%)(""(%) ! (p! 2)"2("2(%)

+ (p! 1)2(a1 ! "2)(2(%)

+ a2(p! 1)2(3(%) + a3(p! 1)2(4(%) = 0)

(4)1)

Now, we assume that the solution of (4.1) has the form

((%) =
Ae!(#+#0)

(1 + e!(#+#0))2 + Be!(#+#0)

=
A sech2(!,2)(% + %0)

4 + B sech2(!,2)(% + %0)
*

(4)2)

whereA,B and! are constants to be determined, and
%0 is an arbitrary constant phase shift.

With the aid of Mathematica, substituting (4.2) into
(4.1) we obtain

A2(a1(!1 + p)2 + (!1 + 2p! p2 +!2)"2) = 0* (4)3)

A2(!1 + p)(Aa2(!1 + p) + 2a1(2 + B)(!1 + p)

! (2 + B)(!2 + 2p + !2)"2) = 0* (4)4)

A2
'
A2a3(!1 + p)2 + Aa2(2 + B)(!1 + p)2 (4)5)

+ a1(6 + 4B + B2)(!1 + p)2 ! !6 + 4B(!1 + p)2

+ B2(!1 + p)2 + 6p2 ! 2!2 + 4p(!3 + !2)
"
"2
(

= 0*
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A2(!1 + p)(Aa2(!1 + p) + 2a1(2 + B)(!1 + p)

! (2 + B)(!2 + 2p + !2)"2) = 0* (4)6)

A2(a1(!1 + p)2 + (!1 + 2p! p2 +!2)"2) = 0) (4)7)

By solving (4.3) - (4.7) with the aid of Mathematica,
we get the conclusions

! = # (p! 1)
p
"2 ! a1

"
* (4)8)

(1(%) =

(1+p)("2!a1)
p
pp

a2
2p+a3(1+p)2("2!a1)

sech2[
(p!1)

p
"2!a1

2j"j (x! "t + %0)]

2 + (!1 + 2a2
p
pp

a2
2p+a3(1+p)2("2!a1)

) sech2[
(p!1)

p
"2!a1

2j"j (x! "t + %0)]
* (4)11)

(2(%) =
! (1+p)("2!a1)

p
pp

a2
2p+a3(1+p)2("2!a1)

sech2[
(p!1)

p
"2!a1

2j"j (x! "t + %0)]

2 + (!1! 2a2
p
pp

a2
2p+a3(1+p)2("2!a1)

) sech2[
(p!1)

p
"2!a1

2j"j (x! "t + %0)]
) (4)12)

From (3.4), (4.11) and (4.12), the generalized PC
equation (1.3) has the following solutions

u1(x* t) = u(x! "t) = [(1(%)]
1

p!1 * (4)13)

where (1(%) is given by (4.11).

u2(x* t) = u(x! "t) = [(2%)]
1

p!1 * (4)14)

where (2(%) is given by (4.12).
Notice that (1.1) is a special form of (1.3). By use

of the formulae (4.13) and (4.14), it is not difficult to
obtain the same solution as (3.45). If taking p = 2* 3 in
(4.13) and (4.14) respectively, the solutions in [6] are
recovered. In addition, by means of the transformation

u(%) = (
2

p!1 (%) (4)15)

for the general PC equation (1.1), according to the
steps in Sect. 3, we can also obtain the same bell-
shaped solitons (3.45) to (1.1).

By use of Maple, we complete six figures to display
and characterize some types of the solutions.

5. Conclusions

In summary, making use of the extended-tanh
method and symbolic computation, we have derived

A = # 2(1 + p)("2 ! a1)
p
pq

a2
2p + a3(1 + p)2("2 ! a1)

* (4)9)

B = !2# 2a2
p
pq

a2
2p + a3(1 + p)2("2 ! a1)

) (4)10)

Therefore, there are two solutions of the form (4.2)
for (4.1):

many types of travelling solutions for the general-
ized PC equations (1.3) and (1.4) by proper trans-
formations. Secondly, utilizing the direction assump-
tion method, the more general bell-shaped soli-
tons for the PC equation (1.3) are obtained. The
method can be used to seek more travelling wave
solutions of NEMPS. In addition, this method is
also computerizable, which allows us to perform
complicated and tedious algebraic calculation on a
computer.

Fig. 1. Real part of solution (3.23) with parameters A0 = 1,
a1 = 4, a2 = 1, a3 = 1, p = 2, ! = 2, " = 1.
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Fig. 2. Imaginary part of solution (3.23) with parameters
A0 = 1, a1 = 4, a2 = 1, a3 = !1, p = 2, ! = 2, " = 1.

Fig. 3. Solution (3.27) with parameters A0 = 1, a1 = 4,
a2 = 1, a3 = !1, p = 2, ! = 2, " = 1.
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Appendix

In order to show that the transformation (2.7) is
correct for some PDEs, we consider the nonlinear
heat conduction equation [11,16]

ut ! (u2)xx = pu! qu2* (A1)

where p, q $= 0 are constants.

Let u(x* t) = u(%), % = x!$t, then (A1) reduces to

!$u" ! (u2)"" ! pu + qu2 = 0) (A2)

Fig. 4. Solution (3.28) with parameters A0 = 1, a1 = 4,
a2 = 1, a3 = !1, p = 2, ! = 2, " = 1.

Fig. 5. Solution (3.37) with parameters a1 = 1, a2 = !1,
p = 3, ! = 2.

Balancing between u" and (u2)"" yields m = !1,
which is a negative integer. Let u(%) = v(%)!1, then
(A2) becomes

!pv3 ! 6v"2 + v2(q + $v") + 2vv"" = 0* (A3)

Now balancing v2v" with vv"", we obtain m = 1.
Therefore we assume that

v = A0 + A1' + B1

p
R + '2 (A4)

and ' satisfies (2.5).
Substituting (A4) into (A3) yields

!A0
3p! 3A0B1

2pR + A0
2(q + A1R$)

+ R(!6A1
2R + B1

2(q + 2R + A1R$)) = 0*

B1(!3A0
2p!B1

2pR + 2A0(q + R + A1R$)) = 0*

!3A0
2A1p! 3A1B1

2pR + 2A0(A1(q + 2R)

+ A1
2R$ + B1

2R$) = 0*
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Fig. 6. Solution (4.13) with parameters a1 = 1, a2 = 6,
a3 = !1, p = 4, ! = 2.

B1(!6A0A1p + 2A1(q ! 3R) + A0
2$

+ 2A1
2R$ + B1

2R$) = 0*

!3A0(A1
2 + B1

2)p + B1
2q + A1

2(q ! 8R) + A0
2A1$

+ A1
3R$ + 4A1B1

2R$ = 0*

B1(!(3A1
2 + B1

2)p + 4A0(1 + A1$)) = 0*

!A1(A1
2 + 3B1

2)p + 2A0(2A1 + A1
2$ + B1

2$) = 0*

B1(!4A1 + 3A1
2$ + B1

2$) = 0*

!2A1
2 ! 2B1

2 + A1
3$ + 3A1B1

2$ = 0)

The above equations have two solutions

A0 =
q

2p
* A1 = #2

p
q

p
* B1 = 0*

R = ! q

16
* $ = # pp

q
*

(A5)
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A0 =
q

2p
* A1 = #B1 = #

p
q

p
*

R = !q

4
* $ = # pp

q
)

(A6)

Therefore we have,

u11 =
+
q

2p
[1 # tanh[

p
q

4
(x# pp

q
)]
,!1

*

u12 =
+
q

2p
[1 # coth[

p
q

4
(x# pp

q
)]
,!1

)

u21 =

-
q

2p

)
1# tanh

hpq
2

!
x# pp

q

"i

# i sech
hpq

2

!
x# pp

q

"i*.!1

*

u22 =

-
q

2p

)
1# coth

hpq
2

!
x# pp

q
)
i

# csch
hpq

2

!
x# pp

q

"i*.!1

)


