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Novel exact solutions of coupled nonlinear Schödinger
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We construct various novel exact solutions of two coupled dynamical nonlinear Schödinger equations. Based on the
similarity transformation, we reduce the coupled nonlinear Schödinger equations with time- and space-dependent poten-
tials, nonlinearities, and gain or loss to the coupled dynamical nonlinear Schödinger equations. Some special types of
nontravelling wave solutions, such as periodic, resonant, and quasiperiodically oscillating solitons, are used to exhibit the
wave propagations by choosing some arbitrary functions. Our results show that the number of the localized wave of one
component is always twice that of the other one. In addition, the stability analysis of the solutions is discussed numerically.
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1. Introduction
The nonlinear Schödinger (NLS) equation and its various

generalizations have been used to describe a large number of
physical problems in modern science, including the nonlinear
optical systems,[1] dilute atomic gas Bose–Einstein conden-
sates (BECs),[2,3] biomolecular dynamics,[4] and others.[5,6]

In recent years, there has been much interest on the study of
NLS equations with nonlinear coefficients depending either on
space (inhomogeneous), time (nonautonomous), or both. The
motivation comes from the applications of the model to the
fields of BECs and nonlinear optics. In BEC, the nonlinear
interaction can be easily tuned by an external magnetic field,
namely, the Feshbach resonance management.[3,7] In the op-
tical soliton communication, the dispersion management has
been explored extensively to improve the communication.[1,8]

For those variable-coefficient equations, various methods have
been applied to investigate explicitly the exact solutions in
the literature, particularly soliton-like solutions. The Lax
pair analysis[9–14] and the Painlevé analysis[10,15–18] are very
useful in discussing integrability conditions, by which some
special solutions similar to the ones of the NLS equation
with constant coefficients can be derived directly.[19] How-
ever, the governing equations of fundamental theoretical in-
terest are usually not complete integrable, as the varying co-
efficients do not satisfy the corresponding integrability con-
ditions. These peculiar cases stimulate the researchers to
find other powerful techniques that can be applied to deal

with both the integrable and nonintegrable nonlinear wave
equations, such as the similarity transformation method,[20–34]

the Lie group symmetry method,[35–38] the Hirota bilinear
method,[39,40] the subequation expansion method,[41–44] the
F-expansion technique,[45,46] and the direct method.[47–50]

In particular, the similarity transformation allows us to find
self-similar solutions of equations by connecting the given
variable-coefficient equation to the corresponding equation
with constant coefficients. The coupled NLS (CNLS) equa-
tions in (1+1)-dimension are an important model for a variety
of physical problems.

In this work, we provide some novel solutions of two cou-
pled dynamical NLS equations by means of the special ratio-
nal form expansion method and then present a detailed study
on the exact solution of CNLS equations with variable coeffi-
cients using the similarity transformation method. Some spe-
cial types of nontravelling wave solutions, such as periodic,
resonant, and quasiperiodically oscillating solitons, are used
to exhibit the wave propagations by choosing some arbitrary
functions. Furthermore, the localized wave propagation and
interaction scenario are discussed and simulated. In particular,
for the two CNLS equations with time–space modulation, it is
shown that the number of the localized wave of one compo-
nent is always twice that of the other one. Finally, numerical
simulations are used to show the stability of our analytical so-
lutions.

This paper is organized as follows. In Section 2, we
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present some novel solutions of two coupled dynamical NLS
equations using the special rational form expansion method.
In Section 3, using the similarity transformation, we reduce
the CNLS equations with time- and space-dependent poten-
tials, nonlinearities, and gain or loss to coupled dynamical
NLS equations. Some special types of nontravelling wave so-
lutions, such as periodic, resonant, and quasiperiodically os-
cillating solitons, are used to exhibit the wave propagations
by choosing some arbitrary functions. In addition, the stabil-
ity analysis of the solutions is discussed numerically. Finally,
discussion and conclusion are given in Section 4.

2. Novel solutions of two coupled dynamical
NLS equations
The original N coupled nonlinear Schödinger-like equa-

tions can be written as

iq jτ +q jξ ξ +ϑ jq j +

(
k

∑
j=1

µ jk|q j|2
)

q j

+

(
k

∑
j=1

ι jk|q j|2
)

q∗j = 0, j = 1, · · ·,N, (1)

where q j(ξ ,τ) denotes the complex amplitude of the j-th elec-
tric field envelope in the nonlinear optics theory or the j-th
polarization component in the BEC theory, ϑ j, µ jk, and ι jk

are the parameters of the medium and interaction, and the sub-
scripts in ξ and τ denote the derivatives with respect to ξ and τ

as opposed to the subscript j for different components. Based
on an ansatz of Lamé functions, Hioe has developed a general
algorithm to study analytical solutions for the coupled nonlin-
ear Schödinger-like equations.[51,52]

To obtain the stationary-wave solution for Eq. (29), we
substitute q j(ξ ,τ) = Φ j(ξ )exp(iΩτ) in Eq. (29), then equa-
tion (29) reduces to the following equations:

d2Φ j

dξ 2 + v jΦ j +

(
k

∑
j=1

g jkΦ
2
k

)
Φ j = 0, j = 1, . . . ,N, (2)

where v j = ϑ j−Ω and g jk = µ jk + ι jk. Equation (2) can be
called as the associated dynamical coupled NLS equations. In
this work, we only consider the case of N = 2 for Eq. (29), and
rewrite the two coupled dynamical NLS equations as

d2Φ1

dξ 2 + v1Φ1 +g11Φ
3
1 +g12Φ

2
2Φ1 = 0, (3a)

d2Φ2

dξ 2 + v2Φ2 +g21Φ
2
1Φ2 +g22Φ

3
2 = 0. (3b)

For two coupled dynamical NLS equations (3), although abun-
dant families of elliptic function solutions have been given in
Refs. [51] and [52], there are other solutions with different
forms. In the following, with the help of one kind of the spe-
cial rational form expansion method, some nontrivial solutions

of Eq. (3) can be derived directly. We assume the solution of
Eq. (3) in the form

Φ1

=
a0 +a1φ +a2φ ′+a3φ 2 +a4φφ ′±

√
a5 +a6φ +a7φ 2√

c0 + c1φ + c2φ 2
,

(4a)

Φ2

=
b0 +b1φ +b2φ ′+b3φ 2 +b4φφ ′±

√
b5 +b6φ +b7φ 2√

d0 +d1φ +d2φ 2
,

(4b)

where φ is the Jacobi elliptic function or rational com-
bination of Jacobi elliptic functions such as sn(µξ ,k),
cn(µξ ,k), dn(µξ ,k), sn(µξ ,k)[A+dn(µξ ,k)]−1, and
cn(µξ ,k)[A+dn(µξ ,k)]−1 (A ≥ 0). The parameters am, bm

(m = 0,1, . . . ,7), cn, and dn (n = 0,1,2) are real constants to
be determined. Substituting Eq. (4) into Eq. (3) yields various
nontrivial solutions as follow.

Family 1 When Φ1 = a0 +a1φ and Φ2 = b0 +b1φ ,

case 1

Φ1 =−
λa1

k
+a1sn(µξ ,k),

Φ2 =
λb1

k
+b1sn(µξ ,k), λ =±

√
2k2 +2

2
, (5a)

v1 = v2 = µ
2(1+ k2),

3g11 = g21 =−
3µ2k2

2a2
1

, g12 = 3g22 =−
3µ2k2

2b2
1

; (5b)

case 2

Φ1 =−
λa1

k
+a1cn(µξ ,k),

Φ2 =
λb1

k
+b1cn(µξ ,k), λ =±

√
4k2−2

2
, (6a)

v1 = v2 = µ
2(1−2k2),

3g11 = g21 =
3µ2k2

2a2
1

, g12 = 3g22 =
3µ2k2

2b2
1

; (6b)

case 3

Φ1 =−λa1 +a1dn(µξ ,k),

Φ2 = λb1 +b1dn(µξ ,k), λ =±
√

4−2k2

2
, (7a)

v1 = v2 = µ
2(k2−2),

3g11 = g21 =
3µ2

2a2
1
, g12 = 3g22 =

3µ2

2b2
1

; (7b)

case 4
(i)

Φ1 = a1cd(µξ ,k), Φ2 = b1cd(µξ ,k),

v1 = v2 = µ
2(1+ k2), (8a)

g12 =−
g11a2

1 +2µ2k2

b2
1

, g22 =−
g21a2

1 +2µ2k2

b2
1

; (8b)
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(ii)

Φ1 =−
λa1

k
+a1cd(µξ ,k),

Φ2 =
λb1

k
+b1cd(µξ ,k), λ =±

√
2k2 +2

2
, (9a)

v1 = v2 = µ
2(1+ k2),

3g11 = g21 =−
3µ2k2

2a2
1

, g12 = 3g22 =−
3µ2k2

2b2
1

; (9b)

(iii)

Φ1 =
a1cn(µξ ,k)√

1− k2 +dn(µξ ,k)
, Φ2 =

b1cn(µξ ,k)√
1− k2 +dn(µξ ,k)

, (10a)

v1 = v2 =
µ2(2− k2)

2
,

g11 =−
2g12b2

1 +µ2k4

2a2
1

, g22 =−
2g21a2

1 +µ2k4

2b2
1

; (10b)

case 5
(i)

Φ1 = a1sd(µξ ,k), Φ2 = b1sd(µξ ,k),

v1 = v2 = µ
2(1−2k2), (11a)

g12 =
2µ2k2−2µ2k4−g11a2

1

b2
1

,

g22 =
2µ2k2−2µ2k4−g21a2

1

b2
1

; (11b)

(ii)

Φ1 =−
λa1

k
+a1sd(µξ ,k), Φ2 =

λb1

k
+b1sd(µξ ,k),

λ =±
√

2(k2−2)(1−2k2)

2(k2−1)
, (12a)

v1 = v2 = µ
2(1−2k2),

3g11 = g21 =
3µ2k2(1− k2)

2a2
1

,

g12 = 3g22 =
3µ2k2(1− k2)

2b2
1

; (12b)

(iii)

Φ1 =
a1sn(µξ ,k)

1+dn(µξ ,k)
, Φ2 =

b1sn(µξ ,k)
1+dn(µξ ,k)

,

v1 = µ
2(1− k2

2
), (13a)

v1 = v2 = µ
2
(

1− k2

2

)
,

g12 =−
µ2k4 +2g11a2

1

2b2
1

, g22 =−
µ2k4 +2g21a2

1

2b2
1

; (13b)

(iv)

Φ1 =
λa1

k2 +
a1sn(µξ ,k)

1+dn(µξ ,k)
,

Φ2 =−
λb1

k2 +
b1sn(µξ ,k)

1+dn(µξ ,k)
, λ =

√
2− k2 (14a)

v1 = v2 = µ
2
(

1− k2

2

)
,

3g11 = g21 =−
3µ2k4

8a2
1

, g12 = 3g22 =−
3µ2k4

8b2
1

. (14b)

Family 2 When Φ1 = a0 +a3φ 2 and Φ2 = b0 +b3φ 2,

Φ1 =−
a3b3

3b0k2 +a3cd2(µξ ,k),

Φ1 = b0 +b3cd2(µξ ,k), (15a)

k2 =− b3(b3 +2b0)

b0(3b0 +2b3)
,

v1 =−v2 =
2µ2(3b2

0 +3b0b3 +b2
3)

b0(3b0 +2b3)
, (15b)

g12 = g22 =−
a2

3g21

b2
3

,

g11 = g21 =
−9µ2b2

3(b3 +2b0)
2

2b0a2
3(3b0 +2b3)(3b2

0 +3b0b3 +b2
3)
. (15c)

Family 3 When Φ1 = a0 +a1φ and Φ2 =±
√

b5 +b6φ ,
case 1

Φ1 =
a1λ1

k
+a1cd(µξ ,k),

Φ2 =±[b5±b5kcd(µξ ,k)]1/2, (16a)

λ =±
√

2(k2 +1)
2

, g12 =±
6λ µ2

b5
,

g22 =
µ2(1±3λ )

2b5
, (16b)

g11 =
8g21

3
=−2µ2k2

a2
1

,

v1 = µ
2(k2∓6λ +1), v2 =

µ2(5k2∓12λ −1)
8

; (16c)

case 2

Φ1 = a1λ1 +a1dn(µξ ,k),

Φ2 = ±
[

µ2(3k2−4)(4−λ2)

8g22(λ2−2)

− 6µ2kλ1dn(µξ ,k)
g22λ2

]1/2

, (17a)

λ1 = ±
√

2(2− k2)

2
,

λ2 =
12[3k2−6±

√
2(2− k2)]

9k2−16
,

g11 =
8g21

3
=

2µ2

a2
1
, (17b)

g12 = λ2g22,

v1 =
µ2(13λ2k2−24λ2−40k2 +80)

2(λ2−2)
,

v2 =
µ2(5λ2k2−12λ2−17k2 +40)

4(λ2−2)
; (17c)
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case 3

Φ1 =
a1λ1

2k(k2−1)
+a1sd(µξ ,k),

Φ2 =±
[

λ2kµ2

g12
+

3λ1kµ2sd(µξ ,k)
g12

]1/2

, (18a)

λ1 =±
√

2(2k2−1)(1− k2), λ2 =±3
√

2(2k2−1),

g22 =
g12(18k2−λ2k−9)

36(2k2−1)
, (18b)

g11 =
8g21

3
=

3µ2k2(1− k2)

4a2
1

,

v1 =−µ
2(2k2 +λ2k−1), v2 =−

µ2(4k2 +λ2k−5)
8

.(18c)

Family 4 When Φ1 = a2φ ′ and Φ2 =
b4φφ ′√
1+d2φ2

,

case 1

Φ1 =
a2µcn(µξ ,k)

dn2(µξ ,k)
, Φ2 =

b4µsn(µξ ,k)
dn2(µξ ,k)

v1 = µ
2(4k2−5), (19a)

v2 = µ
2(k2−5),

g11 = g21 =−
6(k2−1)

a2
2

, g12 = g22 =
6(k2−1)2

b2
4

; (19b)

case 2

Φ1 =
a2µcn(µξ ,k)

dn2(µξ ,k)
,

Φ2 =
b4µsn(µξ ,k)cn(µξ ,k)

dn2(µξ ,k)
,

v1 = µ
2(4k2 +1), (20a)

v2 = µ
2(k2 +4), g11 = g21 =−

6k2

a2
2
,

g12 = g22 =
6k4

b2
4

; (20b)

case 3

Φ1 =−
a2µ(1− k2)sn(µξ ,k)

dn2(µξ ,k)
,

Φ2 =−
b4µ
√

1− k2sn(µξ ,k)cn(µξ ,k)
dn2(µξ ,k)

, (21a)

v1 =−µ
2(5k2−1), v2 =−µ

2(5k2−4),

g11 = g21 =
6k2

a2
2
, g12 = g22 =

6k4

b2
4
. (21b)

3. Similarity transformation and the solution to
variable-coefficient CNLS equations
To show the significance of the special solutions obtained

in the above section, we will utilize them to study the novel
features of the two CNLS equations with varying coefficients.

The two CNLS equations with time- and space-dependent po-
tentials and nonlinearities can be written in a dimensionless
form

i∂tψ j =

(
−∂

2
x +Vj(x, t)+

2

∑
k=1

G jk(x, t)|ψk|2−Γj(x, t)

)
ψ j,

j = 1,2, (22)

where ψ j(x, t) are complex functions with external potential
Vj(x, t) and nonlinearities G jk(x, t) ( j,k = 1,2), and Γj(x, t) are
the gain or loss coefficients. Here, we mainly focus on the spa-
tially localized solutions for which lim|x|→∞ψ j = 0 ( j = 1,2).
Our first objective is to reduce Eq. (22) to two coupled dynam-
ical NLS equations (3) in Section 2. Therefore, we search for
the similarity transformation

ψ j = ρ j(x, t)eϕ j(x,t)Φ j(ξ (x, t)), j = 1,2, (23)

where ξ ≡ ξ (x, t), and Φ j(ξ ) ( j = 1,2) satisfy Eq. (3). Then
the following set of equations is found:

2ρ jxξx +ρ jξxx = 0, ξt +2ξxϕ jx = 0, (24a)

G jk(x, t)ρ2
k +g jkξ

2
x = 0,

ρ jt +2ρ jxϕ jx +ρ jϕ jxx +ρ jΓj(x, t) = 0, (24b)

ρ jx−ρ j[Vj(x, t)+ v jξ
2
x +ϕ jt +ϕ

2
jx] = 0,

j,k = 1,2. (24c)

Next, we introduce a new function ξ (x, t) such that
ξ (x, t) = F(X), where X = γ(t)χ(x)+ δ (t). In this case, we
can obtain

Vj(x, t) =
ρ jxx

ρ j
−ϕ jt −ϕ

2
jx− v jξ

2
x ,

G jk(x, t) =−
g jkξ 2

x

ρ2
k

, (25a)

Γj(x, t) =−ϕ jxx−
ρ jt

ρ j
−

2ρ jtϕ jx

ρ j
,

ϕ j =−
1
2

∫
χ(x)γ ′(t)+δ ′(t)

γ(t)χ ′(x)
dx+α j(t), (25b)

ρ j(x, t) =
β j(t)exp[−γ1(t)

∫
χ(x)U dx/2]√

χ ′(x)
, U =

Fξ ξ

Fξ

, (26)

where α j(t) and β j(t) ( j = 1,2) are arbitrary functions of t.
It follows from Eqs. (25) and (26) that if γ(t),χ(x), δ (t), and
F(X) are given, one can generate potential Vj(x, t), nonlinear-
ities G jk(x, t), and gain or loss coefficients Γj(x, t) ( j,k = 1,2)
for which the solutions of Eq. (22) can be constructed natu-
rally from Eq. (3) using transformation (23). To illustrate the
procedure, we only focus our attention to some specific cases.
Actually, there are many different choices of the free func-
tions. Here, we only consider that X is a linear function of x,
namely, χ(x) = x, Γj(x, t) = 0. And we select the Gaussian
shaped nonlinearities

G jk(x, t) =−
g jkγ(t)exp(−3X2)

R2
k

, (27)
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which can be obtained by the application of modulated Gaus-
sian laser beams on a BEC, as experimentally demonstrated in
Ref. [25] to realize optically controlled interactions via opti-
cal Feshbach resonance. Therefore, the potentials including a
combination of harmonic trap and Gaussian barrier read

Vj(x, t) = w2(t)x2 + f (t)x+h j(t)− v jγ(t)2 exp(−2X2),

( j = 1,2), (28)

where

w2(t) =
γ ′′(t)
4γ(t)

− γ ′(t)2

2γ(t)2 + γ(t)4, (29a)

f (t) =
δ ′′(t)
2γ(t)

− γ ′(t)δ ′(t)
γ(t)2 +2γ(t)3

δ (t), (29b)

h j(t) = γ(t)2[1+δ (t)2]− δ ′(t)2

4γ(t)2 −α
′
j(t),

( j = 1,2). (29c)

Furthermore, if setting f (t) = 0, h j(t) = 0, and τ(t) =∫
γ(t)2 dt, one can obtain the potentials

Vj(x, t) = w2(t)x2− v jγ(t)2 exp(−2X2), ( j = 1,2), (30)

under the conditions

δ (t) = Acos(2τ(t)), α j(t) = A2 sin[4τ(t)]+ τ(t)+ c j0,

( j = 1,2). (31)

From Eq. (29a), which is equivalent to the Ermakov–
Pinney equation ztt + 4w2(t)z = 4/z3 with z = 1/γ(t), we
known that γ(t) has the form γ(t) = [2s2

1(t)+2s2
2(t)/∆ 2]−1/2,

where ∆ is the Wronskian of two linearly independent solu-
tions {s1(t),s2(t)} of the Mathieu equation stt + 4w2(t)s = 0.
To discuss the explicit solution, we choose

w2(t) = 1+ ε cos(w0t), (32)

where ε ∈ (−1,1) and w0 6= 0 (∈ R). The different choices
of parameters ε and w0 imply that one can single out three
different types of behaviors: periodic, resonant, and quasiperi-
odic. In the following, we present some special examples cor-
responding to the three different cases.

Now, we select a solution of two coupled dynamical NLS
equations (3) of the following form:

Φ1 =−
a2µ(1− k2)sn(µξ ,k)

dn2(µξ ,k)
,

Φ2 =−
b4µ
√

1− k2sn(µξ ,k)cn(µξ ,k)
dn2(µξ ,k)

, (33a)

v1 =−µ
2(5k2−1), v2 =−µ

2(5k2−4),

g11 = g21 =
6k2

a2
2
, g12 = g22 =

6k4

b2
4
. (33b)

Meanwhile, we choose ξ =
√

πerf(X)/2+
√

π/2 in the par-
ticular case δ (t) = 0 (A = 0), which takes values in (0,

√
π).

So µ = 2nK(k)/
√

π , where K(k) is the elliptic integral, can
be derived when the requirement that the zero boundary con-
dition for x→ ∞ must be meet. This leads to the family of
solutions

ψ1n = −
2a2R1nK(k)(1− k2)

√
γ(t)e iϕ1(x,t)sn[θn(x, t),k]√

π e−[γ(t)+δ (t)]2/2dn2[θn(x, t),k]
,

(34a)

ψ2n = −2b4R2nK(k)
√

(1− k2)γ(t)e iϕ2(x,t)sn[θn(x, t),k]

× cn[θn(x, t),k]{
√

π e−[γ(t)+δ (t)]2/2dn2[θn(x, t),k]}−1,

(34b)

with θn(x, t) = nK(k)erf[γ(t)x]+nK(k).

3
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Fig. 1. (color online) The density plots of |ψ1(x, t)|2 and |ψ2(x, t)|2
given by Eq. (3) with parameters R1 = R2 = a2 = b4 = 1, k = 1/2, and
n = 1 in panels (c) and (d); n = 2 in panels (g) and (h). The plots of
|ψ1(x, t)|2 and |ψ2(x, t)|2 at time t = 0 are shown in panels (a), (b) and
panels (e), (f), respectively.

For the first example, we consider the periodic behav-
ior of solutions (34), for which γ(t) occurs when ε = 0 or in
the frontiers between the stability and instability regions of
Eq. (32). So we set ε = 0 and require that the initial data for
the Ermakov–Pinney equation are z(0) =

√
2 and zt(0) = 0.
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In Fig. 1, the plots of the periodic soliton are exhibited cor-
responding to n = 1,2. When ε 6= 0 and s1,2(t) belong to the
instability region of Eq. (32), the resonant phenomenon can be
observed. In Fig. 2, in the case of ε = 0.5 and w0 = 2 and with
the same initial data as the periodic case, we show an exam-
ple of such a group of solutions for n− 1, which displays an
increasing resonant behavior. In fact, in this case, few papers
pay attention to the search for some exact solutions to describe
the resonant behavior. Our results provide the explicit reso-
nant solution in a parametrically modulated one-dimensional
BEC. In the quasiperiodic case, we still choose ε = 0.5 and
use the same initial data as the periodic case but w0 =

√
2 to

ensure that the solutions s1,2(t) of Eq. (32) belong to the stabil-
ity region. In this way, γ(t) is a quasiperiodic solution and the
solutions (34) show a quasiperiodic behavior. An example of
this behavior is displayed in Fig. 3. For the above three cases,
multisoliton solutions can be constructed when n is larger in
Eq. (34).
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Fig. 2. (color online) The density plots of (a) |ψ1(x, t)|2 and (b)
|ψ2(x, t)|2 given by Eq. (34) with the same parameters as those in Fig. 1.
(c) The z(t) and (d) amplitude

√
γ(t) for ψ1 and ψ2 versus t.

It is necessary to point out such a fact that the number
of the localized wave of ψ2 is always twice that of ψ1 (or ex-
change of both) in the expression of solutions (34). This dif-
fers from the situation in Refs. [24], [29], and [37], in which
the propagation of ψ2 is deemed to be similar to ψ1 in cou-
pled system (22). In addition, the center of mass of the soliton
moves with zero velocity δ (t) = 0 (A = 0), as shown in the

previous discussion. Similarly, if one set δ (t) 6= 0, a moving
solution will be constructed, in which the center of mass of the
soliton moves in a complex way according to the first equation
in Eq. (31).
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To verify the stability of the solutions, we carry out nu-
merical simulations of a solution with a small perturbation
initially implanted to see whether the propagation is station-
ary or not. Here we just present a simulation of the solutions
in Figs. 1(a) and 1(b), where about five percent of the ampli-
tudes are initially added as the perturbations. The profiles of
|ψ1(x, t)|2 and |ψ2(x, t)|2 at different time are plotted in Fig. 4.
It is observed that during their propagations, ψ1 is quite stable,
whereas ψ2 becomes unstable because the oscillation appears
at both ends of two main wave peaks after a longer time.

4. Discussion and summary
In this paper, some novel solutions of two coupled dy-

namical NLS equations are derived using one special rational
form of solution. Based on the similarity transformation, the
CNLS equations with time- and space-dependent potentials,
nonlinearities, and gain or loss are reduced to the coupled dy-
namical NLS equations. Some special types of nontravelling
wave solutions, such as periodic, resonant, and quasiperiodi-
cally oscillating solitons, are used to exhibit the wave propa-
gations by choosing some arbitrary functions. Furthermore,
the localized wave propagation and interaction scenario are
discussed and simulated. In particular, our results show that
the number of the localized wave of one component is always
twice that of the other one. Finally, numerical simulations are
used to show the stability of our analytical solutions. These re-
sults may provide more information for the nonlinear physical
system and should be readily verified experimentally.
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