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• Bell polynomial is linked to Hirota D operator.
• Two important higher-order KdV-type equations are investigated by Bell polynomials approach.
• Many significant integrable properties of these two equations are obtained.
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a b s t r a c t

The present paper investigates the higher-order Sawada–Kotera-type equation and
the higher-order Lax-type equation in fluids. The Bell polynomials approach is
employed to directly bilinearize the two equations. For the Lax-type equation,
bilinear Bäcklund transformation, Lax pair, Darboux covariant Lax pair and
infinitely many conservation laws are obtained by means of binary Bell polynomials.
Moreover, based on its bilinear form, N -soliton solutions are also obtained. For
the Sawada–Kotera-type equation, with the help of the Riemann theta function
and Hirota bilinear method, its one periodic wave solution is obtained. A limiting
procedure is presented to analyze in detail the relations between the one periodic
wave solution and one soliton solution.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

As is well known, integrability of the nonlinear evolution equations (NLEEs) plays an important role
in soliton theory, which can be regarded as a pretest and the first step of its exact solvability. Among
the properties that can characterize the integrability of NLEE are the bilinear representation, Bäcklund
transformation (BT), Lax pair, infinitely many conservation laws, infinite symmetries, Hamiltonian structure,
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Painlevé test and so on. It is well known that the Hirota bilinear method [1–6] enables one to obtain the
bilinear form and bilinear BT for a given NLEE, meanwhile the bilinear BT can be directly linearized to
associated Lax pair. Thus, the key of the Hirota bilinear method to construct bilinear BT, Lax pair and
infinitely many conservation laws is to transform the given NLEE to corresponding bilinear form. However,
the construction of bilinear form by using Hirota bilinear method is not as one would wish. It relies on a
particular skill by choosing suitable variable transformations, such as rational transformation, logarithmic
transformation, etc., but there is no general rule to find these transformations.

In recent years, the Bell polynomials linked with Hirota bilinear operator, are found to play an important
role in the characterization of bilinearizable equations and the relationship between the integrability of a
NLEE and the Bell polynomials [7–11]. In terms of the Bell polynomials approach, one may obtain, on one
hand, such results as the Bell polynomials expression (in the P or Y -polynomials form), Bell polynomials
type BT and Lax pair, and on the other hand, the connection between the Bell polynomials and Hirota
bilinear method can be revealed, namely, the Bell polynomials expression can be cast into the bilinear form,
and the Bell polynomials type BT can be mapped into the bilinear BT. Then, both the Bell polynomials
type BT and bilinear BT can lead to the corresponding Lax pair. Moreover, with the help of the gauge
transformation, Darboux covariant Lax pair which can be used to construct the higher-order members of
the given equation can also be obtained. In Refs. [12,13], Fan developed Bell polynomials approach to
nonisospectral and variable–coefficient nonlinear equations. In Refs. [14,15], Fan further developed classical
Bell polynomials into super version. In Ref. [16], Ma systematically analyzed the connection between Bell
polynomials and new bilinear equations.

The KdV equation arises as an approximate equation governing the weakly nonlinear long waves where
the first order nonlinear and dispersive terms are retained and in balance [17]. If the second-order terms are
retained, the following extended Korteweg–de Vries (eKdV) equation is given in the form [17]

ut + ux + α(6uux + u3x) + α2(c1u
2ux + c2uxu2x + c3uu3x + c4u5x) = 0, (1.1)

where α ≪ 1 is a non-dimensional measure of the small wave amplitude relative to depth, and c1, c2, c3
and c4 are the coefficients of the higher-order terms. Eq. (1.1) describes the evolution of steeper waves of
shorter wave-length than the KdV equation does [18]. Under the condition c1 = 45c4, c2 = c3 = 15c4 and
c1 = 30c4, c2 = 20c4, c3 = 10c4, eKdV equation (1.1) leads to a Sawada–Kotera-type equation [19]

ut + ux + α(6uux + u3x) + α2c4(45u2ux + 15uxu2x + 15uu3x + u5x) = 0, (1.2)

and a Lax-type equation [19]

ut + ux + α(6uux + u3x) + α2c4(30u2ux + 20uxu2x + 10uu3x + u5x) = 0. (1.3)

In present paper, our attention will be paid to the Bell polynomials approach, Hirota bilinear method
and Riemann theta function method to perform the analytic study on Eqs. (1.3) and (1.2).

Based on the above analysis, the main contexts of this paper will be organized as follows: In Section 2,
we will bilinearize equation (1.3) and (1.2) with the help of the Bell polynomials approach. For Eq. (1.3), we
introduce an auxiliary variable to construct its bilinear form. N -soliton solutions of Eq. (1.3) will be obtained
via Hirota bilinear method. In Sections 3–5, based on the bilinear form of Eq. (1.3), we will construct its
bilinear BT, Lax pair, Darboux covariant Lax pair and infinitely many conservation laws, respectively. In
Section 6, based on the bilinear form of Eq. (1.2), we will construct its Riemann theta function periodic
wave solution. A limiting procedure is presented to analyze in detail the asymptotic behavior of the one
periodic wave and the relations between the one periodic wave solution and one soliton solution. Section 7
will contain our conclusions. Finally, some introduction of Bell polynomials and Riemann theta function are
given in Appendices A and B, respectively.
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2. Bilinear representations

In this section, we construct the bilinear representation of Eqs. (1.2) and (1.3) via binary Bell polynomials
approach.

Theorem 1. Under the transformation

u = 2(lnF )2x, (2.1)

Eqs. (1.2) and (1.3) can be bilinearized into
DtDx +D2

x + αD4
x + α2c4D

6
x − c


F · F = 0, (2.2)

and 
DxDy +D4

x


F · F = 0, (2.3a)

DtDx +D2
x + αD4

x + α2c4D
6
x −

5
3α

2α4(D3
xDy +D2

y)− c

F · F = 0, (2.3b)

respectively, where c is an arbitrary constant.

Proof. Introducing a dimensionless field q by setting

u = hq2x, (2.4)

with h being free constant to be determined such that eKdV equation (1.1) linked with P -polynomials (A.8).

Hereby, substituting transformation (2.4) into eKdV equation (1.1), we can write the resulting equation
as follows

qx,t + q2x + α(3q2
2x + q4x) + α2


1
3c1q

3
2x + 1

2c2q
2
3x + c3q2xq4x −

1
2c3q

2
3x + c4q6x


− c = 0, (2.5)

with the choice of h = 1 and c is an arbitrary constant.

• Case 1: c1 = 45c4, c2 = c3 = 15c4. Eq. (2.5) can be rewritten as

E(q) = qx,t + q2x + α(q4x + 3q2
2x) + α2c4(15q3

2x + 15q2xq4x + q6x)− c = 0, (2.6)

which can be cast into a combination form of P -polynomials (A.8)

Px,t(q) + P2x(q) + αP4x(q) + α2c4P6x(q)− cP0x(q) = 0. (2.7)

Thus, according to the relations between P -polynomials and Hirota bilinear operators (A.7), bilinear
representation (2.2) can be derived directly from (2.7) under the change of the dependent variable

q = 2 lnF ⇐⇒ u = q2x = 2(lnF )2x. (2.8)

• Case 2: c1 = 30c4, c2 = 20c4, c3 = 10c4. In this case, Eq. (2.5) can be rewritten as

E(q) = qx,t + q2x + α(q4x + 3q2
2x) + α2c4(10q3

2x + 5q2
3x + 10q2xq4x + q6x)− c = 0, (2.9)

which can be decomposed into

qx,t + q2x + α(q4x + 3q2
2x) + α2c4(15q3

2x + 15q2xq4x + q6x) + α2c4(5q2
3x − 5q2xq4x − 5q3

2x)− c
= 0. (2.10)
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In order to write Eq. (2.10) as the combination form of P -polynomials, we introduce an auxiliary variable
y and impose a subsidiary constraint condition

(q4x + 3q2
2x) + qx,y = 0, (2.11)

on account of which, Eq. (2.10) becomes

qx,t + q2x + α(q4x + 3q2
2x) + α2c4(15q3

2x + 15q2xq4x + q6x)

− 5
3α

2c4(q3x,y + 3q2xqx,y + q2y)− c = 0. (2.12)

Thus, Eqs. (2.11) and (2.12) can be cast into a couple of combination form of P -polynomials

P4x(q) + Px,y(q) = 0, (2.13a)

Px,t(q) + P2x(q) + αP4x(q) + α2c4P6x(q)− 5
3α

2c4[P3x,y(q) + P2y(q)]− cP0x(q) = 0. (2.13b)

Based on system (2.13), similar to case 1, the bilinear representation (2.3) can be directly obtained. �

From the bilinear equations (2.3), N soliton solutions of the Lax-type equation (1.3) can be obtained as
below:

u = 2

ln
 
µ=0,1

e

n
j=1

µjξj+
n

1≤j<l

µjµlAjl
2x
, eAjl = (kj − kl)2

(kj + kl)2 , j < l, j, l = 1, 2, 3, . . . ,

ξj = kjx+ ιjt+ ζj = kjx− kj(α2c4k
4
j + αk2

j + 1)t+ ζj ,

(2.14)

where

µ=0,1 indicates the summation over all possible combination of µj = 0, 1(j = 1, 2, . . .).

For example, taking n = 1, the one soliton solution of the Lax-type equation (1.3) can be written as
below:

u = 2

ln(1 + eξ1)


2x = k2

2 sech2
k1

2 (x− α2c4k
4
1t− αk2

1t− t) + ζ1

2


. (2.15)

The two soliton solution and three soliton solution can also be obtained by taking n = 2 and n = 3,
respectively.

Figs. B.1–B.3 are depicted to graphically discuss the propagation and evolution of two solitons. It can be
shown that Figs. B.1–B.3 lead to the following conclusions

• The sign of the velocity v can control the collisions: the collision will be head-on (Fig. B.3) as we choose
the opposite sign of the two soliton velocities, meanwhile the same sign of the two soliton velocities leads
to the overtaking case (Figs. B.1 and B.2).
• Fig. B.1 illustrates the soliton with the larger amplitude travels faster and catches up with the smaller

one, while the smaller one catches up with the larger one in Fig. B.2.
• Figs. B.1–B.3 have in common that the two solitons maintain their original shapes and amplitudes except

for phase shifts after the collision.

3. Bilinear BT and Lax pair

3.1. Bilinear BT

In this section, we construct the bilinear BT and the Lax pair of the Lax-type equation (1.3).
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Theorem 2. Suppose that F is a solution of the bilinear equation (2.3), then G satisfying
D2
x − λ


F ·G = 0, (3.1a)

Dt + (15c4α
2λ2 + 3αλ+ 1)Dx + αD3

x + α2c4D
5
x − ϱ


F ·G = 0, (3.1b)

is another solution of Lax-type equation (1.3), where λ is spectral parameter and ϱ is an arbitrary constant.
Therefore, the system (3.1) is called a bilinear BT for Lax-type equation (1.3).

Proof. In order to obtain the bilinear BT of the Lax-type equation (1.3), let

q = 2 lnG and q′ = 2 lnF, (3.2)

be two different solutions of Eq. (2.9), respectively. On introducing two new variables

v = (q′ − q)/2 = ln(F/G), w = (q′ + q)/2 = ln(FG), (3.3)

we associate the two-field condition

E(q′)− E(q) = E(w + v)− E(w − v)
= 2


vx,t + v2x + α(v4x + 6w2xv2x) + α2c4(10v3xw3x + 30w2

2xv2x + v6x + 10v4xw2x + 10v3
2x)


= 2∂x

Yt(v) + Yx(v) + αY3x(v, w) + α2c4Y5x(v, w)


+ R(v, w) = 0, (3.4)

with

R(v, w) = α(6w2xv2x − 6v2
xv2x − 6w3xvx) + α2c4(10w4xv2x + 20v3

2x + 30w2
2xv2x − 10w5xvx − 20v4xv

2
x

− 40v3xvxv2x − 60w2xvxw3x − 20w3xv
3
x − 60w2xv

2
xv2x − 10v4

xv2x).

Then, the next step is to decouple the two-field condition (3.4) into a pair of constraints. Thus, a auxiliary
constraint should be introduced which enable one to express R(v, w) as the x-derivative of a combination
of Y -polynomials. The simplest possible choice of such constraint may be

Y2x(v, w) = w2x + v2
x − λ = 0, (3.5)

where λ is an arbitrary constant called spectral parameter. In terms of the constraint (3.5), R(v, w) can be
rewritten as

R(v, w) = 6αλv2x + 30α2c4λ
2v2x = 2∂x(3αλ+ 15c4α

2λ2)Yx(v), (3.6)

with the help of the following relations

w2x = λ− v2
x and w3x = −2vxv2x.

Then, combining Eqs. (3.4)–(3.6), we deduce a coupled system of Y -polynomials expression

Y2x(v, w)− λ = 0, (3.7a)
∂tYx(v) + ∂x


(15c4α

2λ2 + 3αλ+ 1)Yx(v) + αY3x(v, w) + α2c4Y5x(v, w)− ϱ


= 0, (3.7b)

where the second equation can be used to construct conservation laws later. Based on the identity (A.5),
the system (3.7) immediately leads to the bilinear BT (3.1). �

3.2. Lax pair

Theorem 3. The Lax-type equation (1.3) admits the following Lax pair

L1ψ = (∂2
x + u)ψ = λψ, (3.8a)



538 Y. Wang, Y. Chen / Nonlinear Analysis: Real World Applications 31 (2016) 533–551

(ψt + L2)ψ
=

∂t + ∂x + α(∂3

x + 3u∂x + 3λ∂x) + α2c4(∂5
x + 5u2x∂x + 15u2∂x + 10u∂3

x + 15λ2∂x)− ϱ

ψ,

(3.8b)

where ϱ is an arbitrary constant and u is a solution of Lax-type equation (1.3).

Proof. By transformation v = lnψ, it follows from the formulas (A.9) and (A.10) that

Yt(v) = ψt
ψ
, Yx(v) = ψx

ψ
, Y2x(v, w) = q2x + ψ2x

ψ
, Y3x(v, w) = 3q2x

ψx
ψ

+ ψ3x

ψ
,

Y5x(v, w) = ψ5x

ψ
+ 10q2x

ψ3x

ψ
+ 5(q4x + 3q2

2x)ψx
ψ
.

(3.9)

Then, with the help of (3.9), the system (3.7) is then linearized into a couple of equations with double
parameters λ and ϱ

L1ψ = (∂2
x + q2x)ψ = λψ, (3.10a)

(ψt + L2)ψ =

∂t + ∂x + α(∂3

x + 3q2x∂x + 3λ∂x) + α2c4(∂5
x + 5q4x∂x

+ 15q2
2x∂x + 10q2x∂

3
x + 15λ2∂x)− ϱ


ψ, (3.10b)

which is equivalent to the system (3.8) by replacing q2x with u. It is easy to check that the integrability
condition of (3.10)

[∂t + L2, L1 − λ] = ut + ux + α(6uux + u3x) + α2c4(20uxu2x + 10uu3x + 30u2ux + u5x) = 0, (3.11)

exactly gives the Lax-type equation (1.3). Thus, system (3.8) is called the Lax pair of Lax-type equation
(1.3). �

4. Darboux covariant Lax pair

In this section, we construct a kind of Darboux covariant Lax pair whose form is invariant under a certain
gauge transformation.

Theorem 4. Using the associated Lax pair (3.8), the Lax-type equation (1.3) admits a kind of Darboux
covariant Lax pair as follows:

L̃1ψ = (∂2
x + q̃2x)ψ = λψ, (4.1a)

(ψt + L̃2,cov)ψ =

∂x + ∂t + α(4∂3

x + 3q̃3x + 6q̃2x∂x) + α2c4(40q̃2x∂
3
x + 60q̃3x∂

2
x + 50q̃4x∂x + 16∂5

x

+ 15q̃5x + 30q̃2xq̃3x + 30q̃2
2x∂x)− ϱ


ψ, (4.1b)

whose form is Darboux covariant, namely

TL1(q)T−1 = L̃1(q̃),
T (∂t + L2,cov)(q)T−1 = (∂t + L̃2,cov)(q̃),

(4.2)

with q̃ = q + 2 lnψ, under a certain gauge transformation

T = ψ∂xψ
−1 = ∂x − σ, σ = ∂x lnψ. (4.3)

Proof. To begin with, we let ψ is a solution of the first equation of Lax pair (3.10). It can be verified that
the gauge transformation (4.3) maps the operator L1(q)− λ onto a similar operator

T (L1(q)− λ)T−1 = L̃1(q̃)− λ, (4.4)
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which satisfies the covariance condition

L̃1(q̃) = L1(q̃ = q + ∆q) with ∆q = 2 lnψ. (4.5)

But it can be verified that similar property does not hold for the second evolution equation of Lax pair
(3.10). However, one can find another third order operator L2,cov(q) with appropriate coefficients, such that
∂t + L2,cov(q) be mapped, by gauge transformation (4.3), onto a similar operator L̃2,cov(q̃) which satisfies
the covariance condition

L̃2,cov(q̃) = L2,cov(q̃ = q + ∆q). (4.6)

Therefore, assuming that ψ is a solution of the following Lax pair

L1ψ = λψ, (∂t + L2,cov)ψ = 0, (4.7)

with

L1 = ∂2
x + q2x, L2,cov = 16α2c4(∂5

x + b1∂
3
x + b2∂

2
x + b3∂x + b4) + 4α(∂3

x + b5∂x + b6) + ∂x,

and b1, . . . , b6 are functions to be determined. It suffices that we require the transformation (4.3) map the
operator ∂t + L2,cov onto the similar one

T (∂t + L2,cov)T−1 = ∂t + L̃2,cov, (4.8)

where

L̃2,cov = ∂t + 16α2c4(∂5
x + b̃1∂

3
x + b̃2∂

2
x + b̃3∂x + b̃4) + 4α(∂3

x + b̃5∂x + b̃6) + ∂x, (4.9)

with b̃1, . . . , b̃6 satisfy the following covariant condition

b̃j = bj(q) + ∆bj = bj(q + ∆q), j = 1, . . . , 6. (4.10)

By virtue of (4.7) and (4.8), we can find that

∆b1 = b̃1 − b1 = 5σx, (4.11a)
∆b2 = b̃2 − b2 = b1,x + 10σ2x + ∆b1σ, (4.11b)
∆b3 = b̃3 − b3 = σ∆b̃2 + 3σxb̃1 + b3 + 10σ3x + b2,x, (4.11c)
∆b4 = b̃4 − b4 = 5σ4x + b3,x + b4 + 3σ2xb̃1 + 2σxb̃2 + σ∆b3, (4.11d)
∆b5 = b̃5 − b5 = 3σx, (4.11e)
∆b6 = b̃6 − b6 = b̃5,x + b6 + 3σσx, (4.11f)

and

σt + σx + 4α(∆b6σ + σ3x + b6,x + b̃5σx) + 16α2c4(σ5x + b̃3σx + b4,x

+ b̃4σ + b̃1σ3x − b4σ + b̃2σ2x) = 0. (4.12)

In terms of relation (4.10), it remains to determine b1, . . . , b6 in the form of polynomial expressions in terms
of derivatives of q

bj = Fj(q, qx, q2x, q3x, . . .), j = 1, . . . , 6, (4.13)

such that

∆Fj = Fj(q + ∆q, qx + ∆qx, . . .)− Fj(q, qx, . . .) = ∆bj , (4.14)

with ∆qkx = 2(ln q)kx, k = 1, . . . , 6 and the ∆bj being determined by the relations (4.11).
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Thus, in order to satisfy the first condition

∆b1 = ∆F1 = F1,q∆q + F1,qx∆qx + · · · = 5σx = 5
2∆q2x, (4.15)

one chooses

b1 = F1(q2x) = 5
2q2x + d1, (4.16)

with d1 being arbitrary constant.

The relation (4.11b) contains the term b1,x = 5
2q3x, which should be eliminated such that ∆b2 admits the

form (4.14). It follows from the eigenvalue equation in (4.7), we have

q3x = −σ2x − 2σσx. (4.17)

Substituting (4.16) and (4.17) into (4.11b) yields

∆b2 = 15
2 σ2x = 15

4 ∆q3x. (4.18)

It is can be verified that the second condition is satisfied

∆F2 = F2,q∆q + F2,qx∆qx + · · · = ∆b2, (4.19)

if one chooses

b2 = F2(q3x) = 15
4 q3x + d2, (4.20)

in which d2 being arbitrary constant.

Proceeding in the same way, we have

b3 = 25
8 q4x + 15

8 q
2
2x + d3, (4.21a)

b4 = 15
16q5x + 15

8 q2xq3x + d4, (4.21b)

b5 = 3
2q2x + d5, (4.21c)

b6 = 3
4q3x + d6, (4.21d)

where d3, d4, d5 and d6 are all arbitrary constants.

Setting di = 0(i = 1, . . . , 6) in (4.16), (4.20) and (4.21), it follows from (4.7) that we find the following
Darboux covariant evolution equation

ψt + L2,covψ = 0, (4.22a)

L2,cov = ∂x + α(4∂3
x + 3q3x + 6q2x∂x) + α2c4(40q2x∂

3
x + 60q3x∂

2
x + 50q4x∂x + 16∂5

x + 15q5x
+ 30q2xq3x + 30q2

2x∂x), (4.22b)

which is in agreement with Eq. (4.12).

The integrability condition of the Darboux covariant Lax pair (4.7) precisely gives rise to Lax-type
equation (1.3) in Lax representation

[∂t + L2,cov, L1 − λ] = ut + ux + α(6uux + u3x) + α2c4(20uxu2x + 10uu3x + 30u2ux + u5x) = 0, (4.23)

which implies that system (4.7) is also a Lax pair for the Lax-type equation (1.3).

Moreover, the relation between the operator L2,cov and the operator L2 is given by

L2,cov = L2 + 3α∂x(L1 − λ) + α2c4[15(∂3
x + λ∂x + u∂x + ux)(L1 − λ) + ϱ]. (4.24)
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It is note that the higher-order members of Lax-type equation (1.3) can be obtained in a similar way step
by step. �

5. Infinitely many conservation laws

In this section, we derive the infinitely many conservation laws for the Lax-type equation (1.3) by using
the binary Bell polynomials.

Theorem 5. The Lax-type equation (1.3) admits an infinitely many conservation laws

In,t + Fn,x = 0, n = 1, 2, . . . . (5.1)

The conversed densities I ′ns are given by the recursion formulas

I1 = −1
2q2x = −1

2u,

I2 = −1
2I1,x = 1

4q3x = 1
4ux,

. . . ,

In+1 = −1
2


In,x +

n
k=1

IkIn−k


, n = 2, 3, . . . ,

(5.2)

and the fluxes F ′ns are given by

F1 = −u2 −
1
2α(3u2 + u2x)− α2c4


5u3 + 5

2u
2
x + 1

2u4x + 5uu2x


,

F2 = 1
4ux + α

1
4u3x + 3

2uux


+ α2c4


5uxu2x + 5

2uu3x + 1
4u5x + 15

2 u
2ux


,

. . . ,

Fn = In + α

In,2x − 2


i+j+k=n

IiIjIk − 6


i+j=n+1

IiIj


+ α2c4


In,4x + 40


i+j+k=n+2

IiIjIk

− 10


i+j+k=n

(IiIjIk,2x + IiIj,xIk,x)− 10


i+j=n+1

(2IiIj,2x + Ii,xIj,x)

+ 30


i+j+k+l=n

IiIjIkIl + 6


i+j+k+l+m=n

IiIjIkIlIm


.

(5.3)

Proof. The conservation laws actually have been hinted in the two-field constraint system (3.7), which can
be rewritten in the conserved form

Y2x(v, w)− λ = 0, (5.4a)
∂tYx(v) + ∂x


(15c4α

2λ2 + 3αλ+ 1)Yx(v) + αY3x(v, w) + α2c4Y5x(v, w)


= 0, (5.4b)

by using the relation

∂tYx(v) = ∂xYt(v) = vx,t,

with ϱ = 0.

By introducing a new potential function

η = q′x − qx
2 , (5.5)
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it follows from the relation (3.3) that

vx = η, wx = qx + η. (5.6)

Substituting (5.6) into (5.4), we get a Riccati-type equation

ηx + η2 + q2x − ε2 = 0, (5.7)

and a divergence-type equation

ηt +

30α2c4ηε

4 − 2α(10αc4η
3 − 5αc4η2x − 3η)ε2 − 10α2c4η

2η2x − 10α2c4ηη
2
x + η + 6α2c4η

5 + αη2x

+α2c4η4x − 2αη3

x

= 0, (5.8)

with λ = ε2.

To proceed, inserting the expansion

η = ε+
∞
n=1

In(q, qx, . . .)ε−n, (5.9)

into (5.7) and equating the coefficients for power of ε, we explicitly obtain the recursion relations (5.2) for
the conserved densities I ′ns.

Furthermore, substituting expansion (5.9) into the divergence-type equation (5.8) leads to
∞
n=1

In,tε
−n +

30α2c4ε
4


ε+

∞
n=1

Inε
−n


− 2α

10αc4


ε+

∞
n=1

Inε
−n

3

− 5αc4

∞
n=1

In,2xε
−n − 3


ε+

∞
n=1

Inε
−n


ε2 − 10α2c4


ε+

∞
n=1

Inε
−n

2 ∞
n=1

In,2xε
−n

− 10α2c4


ε+

∞
n=1

Inε
−n

 ∞
n=1

In,xε
−n

2

+ ε+
∞
n=1

Inε
−n + 6α2c4


ε+

∞
n=1

Inε
−n

5

+α

∞
n=1

In,2xε
−n + α2c4

∞
n=1

In,4xε
−n − 2α


ε+

∞
n=1

Inε
−n

3

x

= 0, (5.10)

which provides us the infinitely many conservation laws (5.1).

In Eq. (5.1), the conversed densities I ′ns are given by recursion formulas (5.2), and the fluxes F ′ns are
obtained by (5.3) through a cumbersome calculation. The first equation of conservation law (5.1) is exactly
the Lax-type equation (1.3). �

6. Quasi-periodic wave solution and asymptotic property

A. Nakamura [20,21] proposed a convenient way to construct a kind of quasi-periodic solutions of nonlinear
equations by means of the Hirota bilinear method and Riemann theta function. More recently, this method
is extended to investigate many NLEEs which include both continuous and discrete ones [22–27]. In the
following, we construct the one periodic wave solution of Sawada–Kotera-type equation (1.2) by this method
and discuss its asymptotic property in detail.

6.1. Quasi-periodic wave solution

Based on the bilinear form (2.2) of Sawada–Kotera-type equation (1.2)
DtDx +D2

x + αD4
x + α2c4D

6
x − c


F · F = 0, (6.1)
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with c is a nonzero constant, we consider Riemann theta function solution of Sawada–Kotera-type equation
(1.2)

ϑ(θ) = ϑ(θ, τ) =

n∈ZN

eπi⟨nτ,n⟩+2πi⟨θ,n⟩, (6.2)

where the integer value vector n = (n1, n2, . . . , nN )T ∈ ZN , the complex phase variables θ = (θ1, θ2,

. . . , θN )T ∈ ZN and −iτ is a positive definite and real-valued symmetric N ×N matrix.

Theorem 6. Assuming that ϑ(θ, τ) is a Riemann theta function for N = 1 with θ = ρjx + ωjt + γj , j =
0, 1, 2, . . ., the Sawada–Kotera-type equation (1.2) admits a one periodic wave solution as follows:

u = 2∂2
x lnϑ(θ, τ), (6.3)

where

ω = a12b2 − b1a22

a11a22 − a21a12
, c = a11b2 − b1a21

a11a22 − a21a12
, (6.4)

with

δ = eπiτ , a11 =
+∞

n=−∞
−16n2π2ρδ2n2

, a12 =
+∞

n=−∞
δ2n2

,

b1 =
+∞

n=−∞
(−16n2π2ρ2 + 256αn4π4ρ4 − 4096α2c4n

6π6ρ6)δ2n2
,

a21 =
+∞

n=−∞


−4(2n− 1)2π2ρ


δ2n2−2n+1, a22 =

+∞
n=−∞

δ2n2−2n+1,

b2 =
+∞

n=−∞


−4(2n− 1)2π2ρ2 + 16α(2n− 1)4π4ρ4 − 64α2c4(2n− 1)6π6ρ6δ2n2−2n+1,

(6.5)

and the other parameters ρ and γ are free.

Proof. In order to obtain the one periodic wave solution of Sawada–Kotera-type equation (1.2), we consider
the simplest case of the Riemann theta function ϑ(θ, τ) with N = 1, namely

ϑ(θ, τ) =
+∞

n=−∞
eπin

2τ+2πinθ, (6.6)

where the phase variable θ = ρx+ωt+ γ and the parameter Imτ > 0. Thus, ρ, ω and γ satisfy the following
system:

+∞
n=−∞

L (4nπiρ, 4nπiω)e2n2πiτ = 0, (6.7a)

+∞
n=−∞

L

2πi(2n− 1)ρ, 2πi(2n− 1)ω


e(2n2−2n+1)πiτ = 0. (6.7b)

Substituting the bilinear form (6.1) into the system (6.7) yields
+∞

n=−∞
(−16n2π2ρω − 16n2π2ρ2 + 256αn4π4ρ4 − 4096α2c4n

6π6ρ6 − c)e2n2πiτ = 0, (6.8a)

+∞
n=−∞


−4(2n− 1)2π2ρω − 4(2n− 1)2π2ρ2 + 16α(2n− 1)4π4ρ4 − 64α2c4(2n− 1)6π6ρ6 − c


× e(2n2−2n+1)πiτ = 0. (6.8b)
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We introduce the notations by system (6.5), then system (6.8) is simplified into a linear system for the
frequency ω and the integration constant c, namely

a11 a12
a21 a22


ω

−c


=

−b1
−b2


. (6.9)

Now we obtain a one quasi-periodic wave solution of Sawada–Kotera-type equation (1.2)

u = 2∂2
x lnϑ(θ, τ), (6.10)

which provided the vector (ω,−c)T solves Eq. (6.9) with the theta function ϑ(θ, τ) given by Eq. (6.6) and
parameters ω, c by Eq. (6.9). The other parameters ρ and γ are free. Fig. B.4 shows the propagation of the
one periodic wave via solution (6.10). �

6.2. Asymptotic property of one periodic wave solution

Based on the bilinear representation (2.2), the one soliton solution of Sawada–Kotera-type equation (1.2)
can be obtained as

u = 2

ln(1 + eη)


2x, with η = µx+ νt+ ς = µx− µ(α2c4µ

4 + αµ2 + 1)t+ ς, (6.11)

on account of which, the relation between the one periodic wave solution and the one soliton solution can
be directly established as follows.

Theorem 7. If the vector (ω,−c)T is a solution of the system (6.9) for the one periodic wave solution, we
let

ρ = µ

2πi , γ = ς − πiτ
2πi , (6.12)

where µ and ς are given in (6.11). Then we have the following asymptotic properties:

c→ 0, 2πiθ → η − πiτ, ϑ(θ, τ)→ 1 + eη, as δ → 0. (6.13)

Proof. Based on the system (6.5), we write functions aij , bi, i, j = 1, 2 as the series about δ,

a11 = −32π2ρδ2(1 + 4δ6 + · · ·+ n6δ2n2−2 + · · · ),

a12 = 1 + 2(δ2 + δ8 + · · ·+ δ2n2
),

b1 = −32π2ρ2δ2(1− 16απ2ρ2 + 256α2c4π
4ρ4) + δ6(4− 256απ2ρ2 + 16 384α2c4π

4ρ4)

+ · · ·+ δ2n2−2(n2 − 16n4 + 256n6) + · · ·

,

a21 = −4π2ρδ

2 + 18δ4 + 98δ24 + · · ·+ 2(2n− 1)2δ2n2−2n + · · ·


,

a22 = 2(δ + δ5 + δ13 + · · ·+ δ2n2−2n+1 + · · · ),

b2 = −4π2ρ2δ


(2− 8απ2ρ2 + 32α2c4π
4ρ4) + δ4(18− 648απ2ρ2 + 23 328α2c4π

4ρ4) + · · ·

+ δ2n2−2n[2(2n− 1)2 − 8(2n− 1)4απ2ρ2 + 32(2n− 1)6α2c4π
6ρ6] + · · ·


.

(6.14)

With the help of Theorem 9 in Appendix B, we have

A0 =


0 1
0 0


, A1 =


0 0

−8π2ρ 2


, A2 =


−32π2ρ 2

0 0


, A5 =


0 0

−72π2ρ 2


,

A3 = A4 = 0, . . . ,
(6.15)
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and

B1 =


0
4π2ρ2∆1


, B2 =


32π2ρ2∆2

0


, B5 =


0

4π2ρ2∆3


,

B0 = B3 = B4 = 0, . . . ,
(6.16)

where

∆1 = 2− 8απ2ρ2 + 32α2c4π
4ρ4,

∆2 = 1− 16απ2ρ2 + 256α2c4π
4ρ4,

∆3 = 18− 648απ2ρ2 + 23 328α2c4π
4ρ4.

(6.17)

Substituting the system (6.15), (6.16) and (6.17) into formulas (B.8), one can obtain

X0 =

−ρ2∆1

0


, X2 =


−4ρ∆1
−16π2ρ2∆1


, X4 =


−ρ2(∆3 + 39∆1)
−96π2ρ2∆1


,

X1 = X3 = 0, . . . .

(6.18)

From (B.4), one then has

ω = −ρ2∆1 − 4ρ∆1δ
2 − ρ

2(∆3 + 39∆1)δ4 + o(δ4),

c = 16π2ρ2∆1δ
2 + 96π2ρ2∆1δ

4 + o(δ4),
(6.19)

which implies by using relation (6.12) that

c→ 0,
2πiω → −πiρ(2− 8απ2ρ2 + 32α2c4π

4ρ4) = −µ(1 + αµ2 + α2c4µ
4), when δ → 0.

(6.20)

In order to show that the one periodic wave degenerates to the one soliton solution under the limit δ → 0,
we first expand the periodic function in the form of

ϑ(θ, τ) = 1 + (e2πiθ + e−2πiθ)δ + (e4πiθ + e−4πiθ)δ4 + · · · . (6.21)

Using the transformation, one has

ϑ(θ, τ) = 1 + eθ̄ + (e−θ̄ + e2θ̄)δ2 + (e−2θ̄ + e3θ̄)δ6 + · · · → 1 + eθ̄, as δ → 0,
θ̄ = 2πiθ + πiτ = µx+ 2πiωt+ ς.

(6.22)

Combining Eqs. (6.20) and (6.22), one deduces that

θ̄ = 2πiθ + πiτ = µx+ 2πiωt+ ς = µx− µ(1 + αµ2 + α2c4µ
4) + ς, as δ → 0,

2πiθ → η − πiτ, as δ → 0.
(6.23)

With the aid of Eqs. (6.22) and (6.23), one can obtain

ϑ(θ)→ 1 + eη, as δ → 0. � (6.24)

7. Conclusions

In present paper, with the help of the binary Bell polynomials, Hirota bilinear method and symbolic
computation, we systematically investigate the integrability of Eqs. (1.3) and (1.2) in fluids with the second-
order nonlinear and dispersive terms.
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• For Sawada–Kotera-type equation (1.2), P -polynomials expression (2.7) and bilinear form (2.2) are
obtained. Employing the Hirota bilinear method, Riemann theta function and symbolic computation,
we derive the one periodic wave solution (6.10) and given the corresponding Fig. B.4. The exact relations
between the one periodic wave solution and the one soliton solution are established. It is rigorously shown
that the one periodic wave solution tend to the one soliton solution under a small amplitude limit δ → 0.
• For Lax-type equation (1.3), by introducing an auxiliary variable y and impose a subsidiary constraint

condition (2.11), P -polynomials expression (2.13) and bilinear form (2.3) are obtained. Based on bilinear
form (2.3), by virtue of the Hirota bilinear method, the N soliton solution (2.14) is obtained.
• From the expression (2.9) and by choosing a suitable constraint condition (3.5), the Y -polynomials-type

BT (3.7) and bilinear BT (3.1) are obtained. With the help of formulas (A.9) and (A.10), the Lax pair (3.8)
is obtained, which can also be regarded as the compatibility condition for the bilinear BT (3.1). Moreover,
by applying the properties of elementary Darboux transformation, namely gauge transformation (4.3), a
type of Darboux covariant Lax pair (4.1) is obtained. Note that the Darboux covariant Lax pair (4.1)
can be used to find the higher-order members of Lax-type equation (1.3). Finally, a Riccati-type equation
(5.7) and a divergence-type equation (5.8) are used to construct the infinitely many conservation laws for
the Lax-type equation (1.3). All conserved densities (5.2) and fluxes (5.3) are given with explicit recursion
formulas.

In addition, the present results in this paper demonstrate that the Bell polynomials play an important role
in the characterization of bilinear BTs, Lax pairs and infinitely many conservation laws. We also believe that
there are still many deep relations between generalized Bell polynomials and integrable structures, which
still remain open and worth to be considered. For instance, the relations between the Bell polynomials with
symmetries, Sato theory, Hamiltonian functions, etc.
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Appendix A. Bell polynomials

In this section, we simply recall some necessary notations on the Bell polynomials (see F. Lambert and
his co-workers’ work for details [7–9]).

With the assumption that f = f(x) is a C∞ function of x and frx = ∂rxf, r = 1, 2, . . . , n, then

Ynx(f) ≡ Yn(fx, . . . , fnx) = Yn({frx(1 ≤ n)}) = e−f∂nx e
f , f0x ≡ f, (A.1)

i.e.

Yx(f) = fx, Y2x(f) = f2x + f2
x , Y3x(f) = f3x + 3fxf2x + f3

x , . . . , (A.2)

is a polynomial in the derivatives of f with respect to x, which called the one dimensional Bell polynomials
or Y -polynomials.
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With f = f(x1, x2, . . . , xl) be a C∞ function with multi-variables and fr1x1,...,rlxl = ∂r1
x1
. . . ∂rlxlf, f0xi ≡ f ,

where l denotes arbitrary integer, then

Yn1x1,...,nlxl(f) ≡ Yn1,...,nl({fr1x1,...,rlxl(1 ≤ ri ≤ ni, 0 ≤ i ≤ l)}) = e−f∂n1
x1
. . . ∂nlxl e

f (A.3)

is a polynomial in the partial derivatives of f with respect to x1, . . . , xl, which called the multi-dimensional
Bell polynomials.

Based on the multi-dimensional Bell polynomials, the multi-dimensional binary Bell polynomials can be
defined as follows:

Yn1x1,...,nlxl(v, w) ≡ Yn1x1,...,nlxl(f) ≡ Yn1,...,nl({fr1x1,...,rlxl})


fr1x1,...,rlxl=


vr1x1,...,rlxl ,

l
i=1

ri is odd,

wr1x1,...,rlxl ,

l
i=1

ri is even,

(A.4)

where the vertical line means that the elements on the left-hand side are chosen according to the rule on
the right-hand side, v and w are both the C∞ functions of (x1, x2, . . . , xl).

Proposition 1. The relations between the binary Bell polynomials and the standard Hirota D-operators can
be given by the identity

Yn1x1,...,nlxl


v = ln F

G
,w = lnFG


= (FG)−1Dn1

x1
. . . Dnl

xl
F ·G, (A.5)

where
l
i=1 ni ≥ 1, and Hirota D-operators defined by

Dn1
x1
. . . Dnl

xl
F ·G = (∂x1 − ∂x′1)n1 . . . (∂xl − ∂x′l)

nlF (x1, . . . , xl)G(x′1, . . . , x′l)

x′1=x1,...,x′l=xl.

(A.6)

In the particular case of F = G, the formula (A.5) can be rewritten as

F−2Dn1
x1
· · ·Dnl

xl
F · F = Yn1x1,...,nlxl(0, q = w − v = 2 lnF ) =


0,

l
i=1

ni is odd,

Pn1x1,...,nlxl(q),
l
i=1

ni is even,
(A.7)

which is also called P -polynomials

Pn1x1,...,nlxl(q) = Yn1x1,...,nlxl(0, q = 2 lnF ), (A.8)

where they vanish unless
l
i=1 ni is even.

The binary Bell polynomials Yn1x1,...,nlxl(v, w) can be written as the combination of P -polynomials and
Y -polynomials

(FG)−1Dn1
x1
. . . Dnl

xl
F ·G = Yn1x1,...,nlxl(v, w)


v=lnF/G,w=lnFG

= Yn1x1,...,nlxl(v, v + q)

v=lnF/G,q=2 lnG

=
n1
r1=0

. . .

nl
rl=0

l
i=1


ni
ri


Pn1x1,...,nlxl(q)Y(n1−r1)x1,...,(nl−rl)xl(v). (A.9)
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Proposition 2. Under the Hopf–Cole transformation v = lnψ, i.e., ψ = F/G, the Y -polynomials can be
written as

Yn1x1,...,nlxl(v)

v=lnψ

= ψn1x1,...,nlxl

ψ
, (A.10)

which provides the shortest way to the associated Lax systems of NLEEs.

Appendix B. Riemann theta function

Based on the results in Refs. [23,27], when N = 1, the Riemann theta function reduces the following
Fourier series in n:

ϑ(θ, τ) =
+∞

n=−∞
eπin

2τ+2πinθ, (B.1)

which can be used to construct the one periodic solution and the phase variable θ = a1x1+a2x2+· · ·+ajxj+a0
and the parameter Im(τ) > 0.

Theorem 8. Assuming that ϑ(θ, τ) is a Riemann theta function for N = 1 with θ = a1x1+a2x2+· · ·+ajxj+a0
and the parameters a1, a2, . . . , aj , a0 satisfy the following system

+∞
n=−∞

L [4nπia1, 4nπia2, . . . , 4nπiaj , 4nπia0]e2n2πiτ = 0, (B.2a)

+∞
n=−∞

L

2πi(2n− 1)a1, 2πi(2n− 1)a2, . . . , 2πi(2n− 1)aj , 2πi(2n− 1)a0


e(2n2−2n+1)πiτ = 0,

(B.2b)

the expression

u = h∂pxj lnϑ(θ, τ), (B.3)

is the one periodic wave solution of the NLEE.

We write the coefficient matrix and the vector of system (6.9) into power series of δ
a11 a12
a21 a22


= A0 +A1δ +A2δ

2 + · · · , (B.4a)
−b1
−b2


= B0 +B1δ +B2δ

2 + · · · , (B.4b)
ω

−c


= X0 +X1δ +X2δ

2 + · · · , (B.4c)

where δ = eπiτ .
Substituting (B.4) into (6.9), we have the following recursion relations

A0X0 = B0,

A0X1 +A1X0 = B1,

A0X2 +A2X0 +A1X1 = B2,

. . . ,

A0Xn +A1Xn−1 + · · ·+AnX0 = Bn.

(B.5)
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(a) t = −20. (b) t = 2.3. (c) t = 20.

Fig. B.1. Overtaking collision of two solitons via solution (2.14). Parameters are k1 = 0.95, k2 = −0.6, α = 0.8, c4 = 3 and
ζ1 = ζ2 = 0.

(a) t = −25. (b) t = −0.6. (c) t = 25.

Fig. B.2. Overtaking collision of two solitons via solution (2.14). Parameters are k1 = 1.5, k2 = 2, α = 0.2, c4 = −2 and ζ1 = ζ2 = 0.

(a) t = −15. (b) t = −0.15. (c) t = 15.

Fig. B.3. Head-on collision of two solitons via solution (2.14). Parameters are k1 = 2.5, k2 = 2, α = 0.2, c4 = −2 and ζ1 = ζ2 = 0.

Theorem 9. If the matrix A0 is reversible, solving (B.5) leads to

X0 = A−1
0 B0, Xn = A−1

0


Bn −

n
j=1

AjBn−1


, n = 1, 2, . . . . (B.6)

If A0 and A1 are not inverse, but they take the following form

A0 =


0 1
0 0


, A1 =


0 0

−8π2ρ 2


, (B.7)
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Fig. B.4. A one periodic wave of the Sawada–Kotera-type equation (1.2) via expression (6.10) with the parameters c1 = 45c4, c2 =
c3 = 15c4, c4 = 1, α = 1, γ1 = 0, ρ1 = 0.5. (a) The perspective view of the real part of the periodic wave. (b) Overhead view of the
wave, with contour plot shown. The bright lines are crests and the dark lines are troughs. (c) The wave propagation pattern of the
wave along the x axis.

solving relations (B.5) leads to

X0 =

− 1
8π2ρ

(B(II)
1 − 2B(I)

0 )

B
(I)
0

 ,

X1 =

− 1
8π2ρ

[(B2 −A2X0)(II) − 2B(I)
1 ]

B
(I)
1

 ,

. . . ,

Xn =


− 1

8π2ρ

Bn+1 −
n+1
j=2

AjXn+1−j

(II)

1

− 2

Bn+1 −

n
j=2

AjXn−j

(I)



Bn+1 −

n
j=2

AjXn−j

(I)

 , n = 2, 3, . . .

(B.8)

where V I and V II denote the first and second component of a two dimensional vector V , respectively.
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