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A study of rogue-wave solutions in the reverse-time nonlocal nonlinear Schr€odinger (NLS) and nonlocal

Davey-Stewartson (DS) equations is presented. By using Darboux transformation (DT) method, several

types of rogue-wave solutions are constructed. Dynamics of these rogue-wave solutions are further

explored. It is shown that the (1þ 1)-dimensional fundamental rogue-wave solutions in the reverse-time

NLS equation can be globally bounded or have finite-time blowing-ups. It is also shown that the

(2þ 1)-dimensional line rogue waves in the reverse-time nonlocal DS equations can be bounded for all

space and time or develop singularities in critical time. In addition, the multi- and higher-order rogue

waves exhibit richer structures, most of which have no counterparts in the corresponding local

nonlinear equations. Published by AIP Publishing. https://doi.org/10.1063/1.5019754

Recently, a number of reverse-space, reverse-time, and

reverse space-time nonlocal nonlinear integrable equa-

tions were found and triggered renewed interest in inte-

grable systems. These deformations of local integrable

equations are introduced with different space and/or time

coupling. As a largely unexplored subject, rogue waves in

the nonlocal integrable systems have been received much

attention. To investigate the connections between solu-

tions at reverse-time points t and –t, we need to consider

the reverse-time reduction. By using Darboux transfor-

mation method, we derive some interesting results from

several recently proposed reverse-time nonlocal integra-

ble equations. It is shown that these rogue-wave solutions

exhibit richer structures, which generalize rogue-wave

solutions of local NLS and DS equations into the nonlocal

models.

I. INTRODUCTION

The integrable nonlinear equations are exactly solvable

models which play an important role in the field of nonlinear

science, especially in the study of nonlinear physical systems,

including nonlinear optics, Bose-Einstein condensates, plasma

physics, and ocean water waves. Most of these integrable

equations are local equations, that is, the solutions’ evolution

depends only on the local solution value. In recent years, the

integrable nonlocal nonlinear equations were proposed and

studied. The first such nonlocal equation was the PT -sym-

metric nonlocal nonlinear Schr€odinger (NLS) equation1,2

iqtðx; tÞ ¼ qxxðx; tÞ þ 2rq2ðx; tÞq�ð�x; tÞ: (1)

Here, r¼6 1 is the sign of nonlinearity, and the asterisk *

represents complex conjugation. It is noted that PT -symmetric

systems have attracted a lot of attention in optics and other

physical fields in recent years.3

Following this nonlocal PT -symmetric NLS equation,

some new reverse space-time and reverse-time type nonlocal

nonlinear integrable equations were also introduced and

quickly reported.4 They are integrable infinite dimensional

Hamiltonian dynamical systems, which arise from remark-

ably simple symmetry reductions of general ZS-AKNS scat-

tering problems where the nonlocality appears in both space

and time or time alone.

Rogue waves have attracted a lot of attention in recent

years due to their dramatic and often damaging effects, such

as in the ocean and optical fibers.5–9 As an unexplored and

interesting subject, rogue waves in the nonlocal integrable

systems have received much attention.

In this article, we study rogue-wave solutions in several

reverse-time integrable nonlocal nonlinear equations via using

Darboux transformation method. As typically concrete exam-

ples, we focus on the reverse-time nonlocal NLS equation

iqtðx; tÞ ¼ qxxðx; tÞ þ 2q2ðx; tÞqðx;�tÞ; (2)

and the reverse-time nonlocal DS equations

iqt þ
1

2
c2qxx þ

1

2
qyy þ ðqr � /Þq ¼ 0; (3)

/xx � c2/yy � 2 qrð Þxx
¼ 0; (4)

where rðx; y; tÞ ¼ rqðx; y;�tÞ; q, r, and / are functions of

x, y, and t, respectively; and c2¼6 1 is the equation-type

parameter (with c2¼ 1 being the DS-I and c2¼ –1 being

DS-II).

We find that rogue-wave solutions in these two nonlocal

equations can either be bounded for all space and time or

develop finite-time collapsing singularities. In addition, multi-

and higher-order rogue-wave solutions exhibit more interest-

ing dynamic patterns, most of which have not been found

before in the integrable nonlocal nonlinear equations.
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II. ROGUE-WAVE SOLUTIONS IN THE REVERSE-TIME
NONLOCAL NLS EQUATION

The reverse-time nonlocal NLS equation (2) is an inte-

grable Hamilton evolution equation that admits an infinite

number of conservation laws.4 In addition, this equation is

invariant under the action of the PT operator, i.e., the joint

transformations x! – x, t! – t, and complex conjugation.10

That is, if u(x, t) is a solution, so is u�ð�x;�tÞ. For potential

applications, this might relate to the concept of PT -symme-

try, which is a hot research area in contemporary physics.3

For Eq. (2), it can be obtained from the following cou-

pled system:11,12

iqt ¼ qxx � 2q2r; irt ¼ �rxx þ 2r2q; (5)

under the time-reversal reduction

rðx; tÞ ¼ �qðx;�tÞ: (6)

It is well known that the integration of system (5) is based on

the fact that it is the condition of simultaneous solvability of

the linear system

Ux ¼ UU; Ut ¼ VU; (7)

where U is a column-vector, and

U ¼
�ik q

r ik

 !
; V ¼ 2ik2 þ iqr �2kq� iqx

�2kr þ irx �2ik2 � iqr

 !
:

A. Time-reversal reduction of Darboux transformation

Next, the Darboux transformation makes it possible to

construct solutions of the system (5) from the known poten-

tial functions ½qðx; tÞ; rðx; tÞ�, which can be written as ratios

of determinants.13–16 The reduction of system (5) and its sol-

utions to the reverse-time NLS equation (2) reduces to take

the following reductions:

Proposition 1. For any spectral k1; f1 2 C, if

f1 ¼ �k1; W1ðx; t; f1Þ ¼ aUT
1 ðx;�t; k1Þ; (8)

where a is a complex constant. Here, U1 solves the spectral
equation (7) at k¼ k1, and W1 solves the corresponding
adjoint spectral equation of (7) at f¼ f1. Then, the N-fold
Darboux formula15,16 for coupled system (5) accords with
reduction (6), that is, the Darboux transformation for the
reverse-time NLS equation (2).

This proposition can be readily proved via a direct calcu-

lation. Next, to construct high-order rogue waves for Eq. (2),

we choose a plane wave solution e�2 it to be the seed solution,

then the general wave function for the linear system (7) has

been constructed,17 with a constant normalization, it can be

further simplified into the following form:16

Uðx; tÞ ¼ D/ðx; tÞ; (9)

where D ¼ diagðe�it; eitÞ, and

/ðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
h� 1
p

sinh Aþ 1

2
ln hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � 1
p� �� �

sinh �Aþ 1

2
ln hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � 1
p� �� �

0
BBBB@

1
CCCCA;

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2 � 1

p
ðx� 2ktþ hÞ:

Here, imposing the conditions of k being purely imaginary,

i.e., k ¼ ih; jkj > 1, and h is complex constant which can be

taken as h ¼
PN�1

j¼0 sj�
2j; sj 2 C.

Furthermore, utilizing symmetry condition (8), the adjoint

wave function at f ¼ �k can be obtained as

Wðx; tÞ ¼ wðx; tÞD�; wðx; tÞ ¼ /Tðx;�tÞ: (10)

Thus, setting k ¼ ið1þ �2Þ; f ¼ �ið1þ ~�2Þ in functions (9)

and (10), applying the generalized Darboux transformation

scheme,15–17 we can construct the N-th order rogue-wave

solution for the focusing reverse-time NLS equation.

B. Dynamics of rogue-wave solutions

In this section, we give an analysis on the rogue-wave

solutions for the reverse-time NLS equation (2).

The expression for the first-order (fundamental) rogue-

wave solution can be obtained and simplified as

q1ðx̂; tÞ ¼ e�2it 1þ 4ð4it� 1Þ
16t2 þ 4 x̂ þ iy0ð Þ2 þ 1

" #
; (11)

where x̂ ¼ xþ x0 with x0 ¼ Reðs0Þ and y0 ¼ Imðs0Þ.
Hence, this solution has one non-reducible real parameter y0.

Moreover, it is indeed surprising to find that solution (11)

accords with the fundamental rogue wave recently reported

in the PT -symmetric NLS equation.16

For this rogue wave, when 0 � y2
0 < 1=4, this solution is

nonsingular and resemble those features in the Peregrine soli-

ton (corresponds to y0 ¼ 0). The peak amplitude accurately

attains at

���� 4y2
0
þ3

4y2
0
�1

����, which is higher than 3 when y0 6¼ 0.

Moreover, location of zeros of u1(x, t) is ðxc; tcÞ, where xc

¼6

ffiffiffiffiffiffiffiffiffi
4y2

0
þ3

1�4y2
0

r
, tc¼�y0

2
xc. However, once y2

0�1=4, this solution

will blow-up at location xc¼0 with tc¼6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4y2

0�1Þ=16
p

.

Graphs of solution (11) are qualitatively similar to those of

the fundamental rogue waves in the PT -symmetric NLS

equation.16

Next, we consider the second-order rogue waves. In this

case, we get rational solution with two free complex parame-

ters s0 and s1. This solution can be either globally bounded or

blowing-up in finite-times with certain spatial locations. One

such nonsingular triangular pattern rogue-wave solution is

observed and displayed in Fig. 1(a). This pattern features the

double temporal bumps with a single temporal bump, which

resemble those reported in the local NLS equation.8,9,17,18

Besides, the exploding rogue-wave solutions exhibit more

interesting patterns, which have not been observed before.

One of those is displayed in Fig. 1(b). This solution contains
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two blowing-up peaks on the vertical t axis, and two

nonsingular “Peregrine-like” humps on the horizontal x axis.

Moreover, the maximum number of singular peaks in these

solutions is six.

The third-order rogue waves would exhibit a wider

variety of patterns. Apart from the triangular and pentagon

pattern, “Peregrine-like” rogue waves, that resembles those

patterns reported in the local NLS equation,18 there are other

interesting patterns which are quite different from the known

results in other models. Two of them are chosen and displayed

in Fig. 1. In panel (c), there is a hybrid pattern rogue-wave

solution consisted of four “Peregrine-like” nonsingular humps

along with four singular peaks. In panel (d), there is one

“Peregrine-like” nonsingular hump surrounded by ten singular

peaks. In this case, the maximum number of singular peaks is

found to be twelve. These results can be apparently extended

to the Nth order rogue waves. By special choices of the free

parameters sk ðk 2NþÞ, we could derive even richer spatial-

temporal patterns, in the form of nonsingular humps, singular

peaks, or their hybrid patterns, but with more intensity.

In addition, as to why these rogue-wave solutions are so

similar to those of other models, for instance, the local NLS

model, we hold the opinion that this could be connected with

modulation instability (MI), which gives a physical explana-

tion for the inception of rogue waves. For the local NLS

equation and the reverse-time NLS equation (2), their sim-

plest plane wave solutions are in the same form, which is

q0 ¼ re�2ir2t, where r is the background amplitude. consider-

ing introducing disturbance quantities ~q as multiplicative

perturbations to the plane wave, i.e., q ¼ ðr þ ~qÞe�2ir2t, and

~q can be conveniently expressed as linear combinations of

pure Fourier modes ~q ¼ f1ðx; tÞeijðxþXtÞ þ f2ðx;�tÞeijðx�XtÞ,
where j and X are the real wave number of the disturbance

and the complex phase velocity, respectively. Then, impos-

ing the modulation instability analysis for this constant back-

ground solution, we find that when j2 > r2, this constant

background is modulationally unstable with the growth rate

jjImðXÞj ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r4�ð2r2�4j2Þ2
p

2jjj . Moreover, when we perform

this modulation stability analysis on the local NLS equation,

we get the same growth rate which is in accordance with that

in the reverse-time NLS model. Despite the similarity for

these rogue-wave solutions, there also exist some different

features. For example, the peak amplitude as well as the

locations of zeros in the fundamental rogue-wave solution

(11) is different from the Peregrine soliton, depending on the

parameter y0.

III. ROGUE-WAVE SOLUTIONS IN THE REVERSE-TIME
NONLOCAL DS SYSTEM

In this section, we construct the rogue-wave solution in

the reverse-time nonlocal DS systems (3) and (4). Considering

the following auxiliary linear system:

LU ¼ 0; L ¼ @y � J@x � P; (12)

MU ¼ 0; M ¼ @t �
X2

j¼0

V2�j@
j
x; (13)

where

V0 ¼ ic�1J; V1 ¼ ic�1P; V2 ¼
i

2c
Px þ c2JPy þQ
� �

;

J ¼ c�1
1 0

0 �1

 !
; P ¼

0 q

�r 0

 !
; Q ¼

/1 0

0 /2

 !
;

/ ¼ qr � 1

2c
ð/1 �/2Þ:

The compatibility condition ½L;M� ¼ 0 yields to the reverse-

time nonlocal DS equations (3) and (4) under the reverse-

time reduction

rðx; y; tÞ ¼ rqðx; y;�tÞ: (14)

A. Unified binary Darboux transformation with
reduction

The standard scheme for the construction of binary DT

was first introduced by Matveev and Salle.19 Especially, for

operators L and M given in (12) and (13), a binary DT has

been constructed.19,20 Generally, the n-fold Datrboux transfor-

mation has been reported.21 Moreover, if we introduce special

parameters in the wave-functions as “spectral” parameters, we

can apply the generalized Darboux transformation to construct

high-order solutions, and the explicit formulas have been

given,21 which can be directly used for our purposed here.

Next, to reduce the binary DT for the reverse-time non-

local DS equations (3) and (4), it can be verified via a direct

FIG. 1. The upper row displays two second-order rogue waves with parame-

ters: (a) s0 ¼ 0:05i; s1 ¼ 20 and (b) s0 ¼ 2i; s1 ¼ 30i. The lower row exhib-

its two third-order rogue waves with parameters: (c) s0 ¼ 2i; s1 ¼ 10i; s2

¼ �180i and (d) s0 ¼ s1 ¼ 0; s2 ¼ 300i.
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calculation that the eigenfunction hðx; y; tÞ and the adjoint

eigenfunction qðx; y; tÞ are restricted to satisfy the following

reduction:

qðx; y; tÞ ¼ srh
�ðx; y;�tÞ; sr ¼ diag 1; rð Þ; (15)

where h satisfy LðhÞ ¼ 0, and q admits the adjoint operator:

L
†ðqÞ ¼ 0. Here, † stands the (formal) adjoint on an operator.

In the following discussions, we choose a constant

q½0� ¼ c; /½0� ¼ rc2 ðc 2 R, and it can be further normalized

to the unit background) as the seeding solution and perform

the Darboux transformation. Then, the eigenfunction was

solved from Eqs. (12) and (13)

hðx; y; tÞ :¼ ffi þ @ui
g ni; gið ÞT ; fi 2 C; (16)

where ki ¼ ri exp ðiuiÞ,

niðx; y; tÞ ¼ cie
xiðx;y;tÞ; giðx; y; tÞ ¼

kici

c
exiðx;y;tÞ;

xiðx; y; tÞ ¼ aixþ biyþ cit; ci ¼ ic�1aibi;

ai ¼ �
1

2
c ki þ rc2k�1

i

� 	
; bi ¼

1

2
ki � rc2k�1

i

� 	
:

Here, ri and ui are real parameters and ci is set to be one

without loss of generality. Moreover, the form of the adjoint

wave-functions qðx; y; tÞ can be obtained from reduction (15).

B. Multi- and high-order Rogue-wave solutions

The first-order rational solution for the reverse-time

nonlocal DS equations (3) and (4) is given as

q1ðx; y; tÞ ¼ 1� 2F1ðtÞ
Fðx; y; tÞ ; (17)

/1ðx; y; tÞ ¼ rþ 2c2 lnðFðx; y; tÞÞ½ �xx; (18)

where k1 ¼ r1eiu1 , with

F1ðtÞ ¼ 4ic2ðk�2
1 þ k2

1Þtþ 2;

Fðx; y; tÞ ¼ Hðx; yÞ½ �2 þ 4 k�2
1 þ k2

1

� �2
t2 þ 1;

Hðx; yÞ ¼ rk�1
1 ðcxþ yÞ � k1ðcx� yÞ � 2if1 þ 1:

In the case, the reverse-time nonlocal DSI corresponds to

c2¼ 1. If [Re ðf1Þ�2 < 0:25 with u1 ¼ kp (i.e.,, k1 is a real

number). According to the definition of line rogue waves,22,23

solution (17) describes the globally bounded line rogue-wave

solution. Similarly, for the reverse-time nonlocal DSII

equation (corresponds to c2 ¼ �1). If [Reðf1Þ�2 < 0:25 and

r¼ 1, r1 ¼ 1, i.e., jk1j ¼ 1. We can also derive the funda-

mental line rogue-wave solution. As t! 61, both of these

two solutions uniformly approach the constant background 1

everywhere in the spatial plane. But in the intermediate times,

jqj reaches maximum amplitude
4½Reðf1Þ�2þ3

4½Reðf1Þ�2�1
at the center of the

line wave at time t¼ 0. Moreover, since (17) is a ð2þ 1Þ-
dimensional solution, if we fix a finite time point tc in

(17), this rational solution could behave like a (1þ 1)-dimen-

sional soliton-type solution in the spatial plane. However,

if [Reðf1Þ�2 � 0:25, the fundamental rational solution (17)

becomes singular at critical time.

To describe the interaction between n individual funda-

mental rogue waves, we normally need the multi-rogue

waves. For the nonlocal DSI equation, its multi rogue-wave

FIG. 2. A two-rogue waves in the

reverse-time nonlocal DS-I equation.
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solution consists of n separate line rogue waves in the far

field of the spatial plane. However, in the near field, the

wavefronts of the rogue wave solution are no longer lines,

and there would be some interesting curvy wave patterns.

For instance, a two-rogue-wave solution is shown in Fig. 2

with parameters given as c ¼ 1; r ¼ 1; k1 ¼ 1; k2 ¼ 2; f1

¼ 0:05; and f2 ¼ �0:01.

These two line rogue waves, arising from the constant

background, possess higher amplitude in the intersection

region at t¼ – 1. Afterwards, these higher amplitudes in the

intersection region fade, then in the far field, two line rogue

solutions rise to higher amplitude at t¼ 0. Afterwards, the

solution goes back to the constant background again at larger

times (see the t¼ 10 panel). During this process, the maxi-

mum value of solution jqj does not exceed 4 for all times.

However, if we choose the value of real parameter r1 not

to be one. For example, if we set k1 ¼ 1=2; k2 ¼ 2; f1

¼ 0:05; and f2 ¼ �0:01, the maximum value of jqj becomes

higher and exceeds the value of 4, which is different from

the previous pattern.

However, when c¼ i, we find some exploding rogue-

wave solutions for the reverse-time nonlocal DSII equation.

These exploding rogue-wave solutions go to a constant back-

ground 1 as t! �1, then blow up to infinity in a finite time

interval at isolated spatial locations under certain parameter

conditions. Moreover, One can see that the maximum ampli-

tude for this rogue wave solution becomes extremely high

near the collapsing point.

The higher-order rogue-wave solutions can be reduced

from the higher-order rational solutions. To demonstrate the

evolution behaviour of solutions, we consider the second

order rogue-wave solution with parameters given as c¼ 1,

r¼ 1, k1 ¼ 1, and f1 ¼ 0:05.

An interesting behaviour for this solution can be observed

in Fig. 3, these higher-order rogue waves do not uniformly

approach the constant background as t! 61. Instead, only

parts of their wave structures approaches background as

t! 61. However, when jtj � 1, this solution becomes a

localized lump sitting on the constant background 1 (see the

t¼6 6 panels). And this lump disappears as t! 0. At the

same time, a parabola-shaped rogue wave generates from the

background. Moreover, when t¼ 0, this parabola is approxi-

mately located at the curve xþ y2 þ yþ 1
2
¼ 0 in the spatial

plane.

Visually, the solution displayed in Fig. 3 can be

described as an incoming lump being reflected back by the

appearance of a parabola-shaped rogue wave. This interesting

pattern is first obtained in the local DSI equation.22 It is

indeed surprising that a similar pattern can be produced in

this reverse-time nonlocal DSI equation, although the expres-

sion for this solution is different. However, when c2¼ –1, we

only derive some higher-order rational solutions with almost

full-time singularities for the reverse-time nonlocal DS-II

equation.

IV. SUMMARY AND DISCUSSION

In this article, rogue-wave solution have been derived for

the reverse-time nonlocal NLS equation (2) and the reverse-

time nonlocal DSI and DSII equations (3) and (4) using

Darboux transformation method under certain reductions. New

dynamics patterns in these rogue-wave solutions are further

analysed. It is shown that the (1þ 1)-dimensional fundamental

rogue waves can be bounded for all x and t or have finite-time

collapse. The (2þ 1)-dimensional fundamental line rogue

waves are shown to be globally bounded or develop finite-time

singularities. The multi- and higher-order rogue waves exhibit

richer structures. For example, the (1þ 1)-dimensional higher-

order rogue waves exhibit the hybrid of collapsing and non-

collapsing peaks, arranged in triangular, pentagon, circular,

FIG. 3. The second order rogue waves

in reverse-time nonlocal DS-I equation.
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and other exotic patterns. The multi-line rogue waves describe

the interactions between several fundamental line rogue waves,

and some curvy wave patterns with higher amplitudes appear

due to the interaction.

Interestingly, for the (2þ 1)-dimensional higher-order

rogue waves, only part of the wave structure rises from

the constant background and then retreats back to it,

which possesses the parabola-like shapes. The other part

of the wave structure comes from far distance as a local-

ized lump, which interacts with the rogue waves in the

near field and then reflects back to the large distance

again. The above results reveal more abundant dynamic

patterns for rogue-wave solutions in the reverse-time inte-

grable nonlinear equations and further generalize the con-

cept of rogue waves from the local integrable equation

into the nonlocal satiation.
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