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Abstract The general soliton solutions and higher-
order soliton solutions for the nonlocal generalized
Sasa–Satsuma (SS) equation of reverse-space-time
type are explored. Firstly, a novel nonlocal general-
ized SS equation is derived, and the infinitely many
conserved quantities and conservation laws are consid-
ered. Secondly, some novel symmetry properties and
nonlocal constraints for eigenvalues, eigenvectors and
scattering data are obtained, which is quite different
from the local ones. Then, in the framework of the
Riemann–Hilbert problem and by the special nonlo-
cal properties, the N -soliton formula with determinant
and the higher-order soliton formulas are constructed
for the nonlocal generalizedSSequationby a limit tech-
nique. Thirdly, some new patterns and unusual dynami-
cal behaviors of the N -soliton and the higher-order soli-
ton solutions for the nonlocal generalized SS equation
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are exhibited and explored. The general single soliton
is always collapsing periodically whether the eigenval-
ues are pure imaginary or not, but when the absolute
value of the eigenvalue approaches to zero, the solu-
tion tends to be a standing solution, which does not
move with time. Besides, some novel interesting phys-
ical patterns for the two-soliton solution are obtained,
such as a singular wave in the periodical background
and two-soliton solution with two singular branches. It
is worth mentioning that the two-soliton solution does
not degenerate into a bounded breathing soliton instead
of a breathing singular wave when λ2 = −λ∗

1 . And the
higher-order soliton with one double zero is singular
and collapsing periodically while the soliton with triple
zero is nonsingularwhen the eigenvalue is purely imag-
inary. query Please check the edit made in the article
title.

Keywords Nonlocal generalized Sasa–Satsuma
equation · Reverse-space-time · Riemann–Hilbert
method · Solitons · Dynamic behavior

1 Introduction

PT symmetry was proposed by Bender [1] in 1998,
where they obtained that the energy spectrum of non-
Hermitian Hamilton operators with PT symmetric
potential are all real and positive. Then, PT symmetry
aroused wide applications in many areas [2–4], espe-
cially in optical physics. In 2015, Cham Jorge listed
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PT symmetry in optics as one of the ten physics dis-
coveries of the past decades [5]. And PT symmetry
was realized experimentally by Ruter et al. in 2015
[6], where the behaviour of a PT optical coupled sys-
tem that judiciously involves a complex index potential
was observed firstly. In addition, Zhang et al. [7] exper-
imentally proved a PT symmetric optical lattice with
controllable periodic gain and loss characteristics in a
four-level N type atomic system in 2016.PT symmetric
system possesses many new and intriguing properties
[8–12], which laid new foundations and a better under-
standing of the special physical properties of Hermitian
particles.

Muslimani et al. introduced PT symmetric poten-
tial into integrable nonlinear Schrödinger (NLS) equa-
tion in 2008, and they obtained a stable soliton solu-
tion under Scarf-II potential [4]. After that, Ablowitz et
al. introduced a new integrable nonlocal NLS equation
froma directPT symmetric reduction of theAKNS sys-
tem; the inverse scattering transformation (IST) for the
nonlocal system was developed [13,15]. Meanwhile,
Ablowitz et al. developed the IST problem via a left–
right RH problem for the nonlocal NLS equation with
zero boundary conditions [15]. After the nonlocal PT
symmetric integrable equation was proposed by a spe-
cial reduction of a general system [13], then in 2017,
new types of nonlocal nonlinear integrable equations
with reverse space-time and reverse time reduction
were introduced [14]. Subsequently, due to the vital
roles that nonlocal integrable equations played inmath-
ematics and physics, increasing number of nonlocal
integrable equationswere proposed and studied byDar-
boux transformation [16–21], Riemann–Hilbert(RH)
method [22–27], Hirota direct bilinear and KP reduc-
tion method [28,29].
The establishment of the IST associated with the spec-
tral problemsignified the formulation ofmuch informa-
tion such as the analytic properties, asymptotic proper-
ties and the symmetry of the eigenvalues, eigenvectors
and other scattering data. Zakharov and Shabat [30]
formulated a more general method to solve the spec-
tral problem of the integrable system, the RH method,
which is themodern version and an extension of the IST
method. Compared to the traditional IST with solving
the integral Gelfand–Levitan–Marchenko equation, in
the framework of the RH problem, the higher-order
spectral problems can also be solved [31–33]. Yang

[34] developed the RH formulation for the NLS equa-
tion and extended to the higher-order matrix spectral
problem. Then in 2018, the general solitons for nonlo-
cal NLS equations from the RH solutions of the 2 × 2
AKNS hierarchy were derived [43]. In the same year,
a nonlocal Manakov system, which corresponded to
the 3 × 3 linear problem corresponded, was proposed
[26], where they derived one- and two-solitons in the
framework ofRHproblem. Then, some general new N -
soliton solution for a generalized nonlocal NLS equa-
tion has been explored in [36] via RH approach with
a 2 × 2 scattering problem, where the symmetry rela-
tions of the scattering data which involve the reverse-
space, reverse-time and reverse-space-time reductions
were studied. The N -soliton solutions to the nonlo-
cal complex reverse-space-time-modified KdV hierar-
chies were obtained from the reflectionless transforms
by building the associatedRHproblems [24]. However,
there is not much research on nonlocal 3×3matrix RH
problem; we will investigate a nonlocal 3 × 3 spectral
problem in the framework of the RH problem. Based
on the RH formulation, the N -soliton solutions corre-
sponded to the case that all discrete spectra are sim-
ple. As for the RH problem with multiple poles, new
classes of higher-order soliton have been considered
[37,38]. Ling et al. obtained the general higher-order
soliton solutions in the framework of IST and by Dar-
boux transformation [39,40]. The multiple-pole soli-
tons by N -fold application of Darboux transformations
for the focusing NLS equation were obtained start-
ing from the zero background [41]. For the focusing
Ablowitz–Ladik equation, the double- and triple-pole
solutions were derived from its multi-soliton solutions
via some limit technique [40]. Zhang et al. obtained the
formulate of one higher-order pole solitons and multi-
ple higher-order poles solitons based on the ISTmethod
for NLS equation [42] with the decaying initial value
conditions. Later, we presented the higher-order soli-
tons with multiple poles for nonlocal NLS equation
[43] and Sasa–Satsuma (SS) equation [44]. But for the
higher-order soliton solution for the nonlocal integrable
equation, especially for the nonlocal integrable equa-
tion which is compatible with a 3 × 3 linear spectral
problem, there has not been a lot of research on it. This
work will focus on the following nonlocal generalized
SS equation of reverse-space-time type with decaying
initial-value condition
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qt(x, t) + qxxx(x, t)

+3αq(x, t) [Vx + 2q(−x,−t)qx(x, t)]

−6βq2(x, t)qx(x, t) + 3β∗q(−x,−t)Vx = 0 (1)

where V (x, t) = q(x, t)q(−x,−t), which meets the
symmetry property V (x, t) = V (−x,−t). q is a com-
plex function of (x, t). α is real and β is complex num-
ber with |α| �= |�(β)| . The general solitons of Eq. (1)
will be investigatedwith the following decaying initial-
value condition

q(x, 0) = q0(x), q0(x) ∈ S(R) (2)

where S(R) = {
s ∈ C∞(R), ‖s‖α,β = supx∈R∣∣xα∂βs(x)

∣∣ < ∞, α, β ∈ Z+} is the Schwartz space.
Generalized SS equation was proposed by Geng et al.
[45] in 2016 and where the corresponding RH problem
with vanishing initial value was formulated. The equa-
tion can be reduced to complexmodifiedKdV equation
and SS equation with suitable parameter. It is natural
to investigate the combination of the nonlocal complex
modified KdV equation and the nonlocal SS equation,
i.e., the nonlocal generalized SS equation. It is inter-
esting to research the IST and soliton solutions for this
equation. Inspired by Ablowitz et al. [13,14], through
an apparently direct reduction, the nonlocal general-
ized SS equation is obtained, which will be described
in detail later in Sect. 2. The inverse scattering process
in the framework of the RH problem will be imposed
for the nonlocal generalized SS equation. The nonlocal
generalized SS Eq. (1) corresponded to a 3 × 3 linear
spectral problem. But for the 3×3 matrix RH problem
of the nonlocal generalized SS Eq. (1), these symmetry
relations are quite complex to derive. Novel symmetry
relationships for eigenvalues and eigenvectors will be
carried out. As a result, the new symmetry relations
of the scattering matrix and the scattering data will be
imposed. In the framework of theRHproblem, it is vital
to investigate the symmetry relations of the scattering
data. For a 2 × 2 matrix RH problem, the derivation is
relatively simple. But as for a 3 × 3 spectral problem,
the symmetry is hard to derive. For these motivations,
we will investigate general solitons in the framework
of the RH problem with simple and multiple poles for
the nonlocal generalized SS Eq. (1). Some new dynam-
ical behaviors of the general soliton solutions and the
higher-order soliton solutions will be explored. query
Please check the clarity of the sentence ‘It is natural that
... the nonlocal generalized SS equation’. The outline of
this paper is as follows: In Sect. 2, the nonlocal general-

ized SS equation is proposed and the compatibility con-
dition is given. In Sect. 3, the corresponding infinitely
many conserved quantities and conservation laws for
the nonlocal generalized SS Eq. (1) are exhibited. Sec-
tion 4 develops the inverse scattering theory and N soli-
ton solutions for the coupled generalized SS Eq. (5) via
RH problem formula. Besides, the symmetry relations
corresponding to the scattering data are concluded for
the coupled generalized SS Eq. (5). Section 5 focuses
on the nonlocal constraints of the eigenvectors and scat-
tering data for Eq. (1). Then, in Sect. 6, we study the
dynamic behaviors of the soliton solutions with simple
zeros and N multiple zeros. The exact expressions of
single- and two-soliton solutions, higher-order soliton
solutions with double and triple zero are given. Then,
the higher-order soliton solution of the corresponding
RH problem with multiple poles is derived for the non-
local generalized SS equation and studies the dynami-
cal behaviors of the higher-order soliton. The last sec-
tion is the conclusion.

2 The nonlocal generalized SS equation and the
compatibility condition

First of all, we consider the following 3 × 3 spectral
problem

Yx = UY = (iλ� + Q)Y, (3)

where Y (x, t; λ) = (y1(λ; x, t), y2(λ; x, t),
y3(λ; x, t))T is a vector of three components and

Q =
⎛

⎝
0 0 q
0 0 r

αr + βq αq + β∗r 0

⎞

⎠ ,

� =
⎛

⎝
1 0 0
0 1 0
0 0 −1

⎞

⎠ ,

with λ is the spectral parameter and q, r are complex
functions of (x, t). Define the time part of the Lax pair

Yt = VY = (
4iλ3� + Q̃

)
Y, (4)

with Q̃ = 4λ2Q +2iλ
(
Q2 + Qx

)
�+ Qx Q − Q Qx −

Qxx + 2Q3. As a consequence of the compatible con-
dition of (3) and (4), one can observe that the potential
functions q(x, t) and r(x, t) yield the following cou-
pled generalized SS equations
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qt + qxxx − 3αq [(qr)x + 2rqx ]

−6βq2qx − 3β∗r(qr)x = 0,

rt + rxxx − 3αr [(qr)x + 2qrx ]

−6β∗r 2rx − 3βq(qr)x = 0.

(5)

Successively, imposing the nonlocal reverse-space-
time potential reduction [14]

r(x, t) = −q(−x,−t) (6)

on the coupled system (5), thus the nonlocal general-
ized SS Eq. (1) can be ontained. It is natural that the
corresponding Lax pair of Eq. (1) is:

Yx = iλ�Y + QY =
⎛

⎝
iλ 0 q(x, t),
0 iλ −q(x,−t)

βq(x, t) − αq(−x,−t) αq(x, t) − β∗q(−x,−t) −iλ

⎞

⎠ ,

Yt = 4iλ3�Y + Q̃Y.

with

Q =
⎛

⎝
0 0 q
0 0 −q(x, −t)

−αq(x, −t) + βq αq − β∗q(x, −t) 0

⎞

⎠ .

Thus, the integrability of the nonlocal generalized SS
Eq. (1) can be guaranteed. The generalized SS equa-
tion in [45] can be derived when r = q∗ in (5). The
nonlocal generalized SS Eq. (1) of reverse-space-time
type is a combination of the nonlocal complexmodified
KdV equation and nonlocal SS equation. When α = 0
and β = −1, Eq. (1) reduces to the nonlocal complex
modified KdV equation

qt(x, t) + qxxx(x, t) + 3(q(x, t)q(−x,−t))x q(−x,−t)
−6q(x, t)

2
qx(x, t) = 0.

Besides, the nonlocal SS equation can be obtained with
α = −1 and β = 0:

qt(x, t) + qxxx(x, t) − 3(q(x, t)q(−x,−t))x q(x, t)
−6q(x, t)qx(x, t)q(−x,−t) = 0.

It is necessary to illustrate that the other nonlocal gen-
eralized SS equation can also be obtained by impos-
ing the corresponding reverse-space and reverse-space-
time reductions. Here we list some other nonlocal gen-
eralized SS equations. The complex reverse-space-time
nonlocal generalized SS equation

qt(x, t) + qxxx(x, t) + 6q(x, t)qx(x, t)[
βq(x, t) − αq∗(−x,−t)

]

+3
[
q(x, t)q∗(−x,−t)

]
x[

αq(x, t) − β∗q∗(−x,−t)
] = 0.

The real shifted reverse-space-time nonlocal general-
ized SS equation

qt(x, t) + qxxx(x, t) + 6q(x, t)qx(x, t)
[βq(x, t) − αq(x0 − x, t0 − t)]

+3 [q(x, t)q(x0 − x, t0 − t)]x

[αq(x, t) − β∗q(x0 − x, t0 − t)] = 0.

All the integrability of the above nonlocal equations can
be proved for the corresponding compatibility condi-
tions, which can be obtained with a reduction from the
Lax pair (3) and (4).

3 Infinitely many conserved quantities and
conservation laws

The nonlocal generalized SS Eq. (1) possesses many
important properties such as reverse-space-time sym-
metry and gauge invariant. Besides, due to the inte-
grability of the nonlocal Eq. (1), the corresponding
infinitely many conserved quantities and conservation
laws can be gotten. Wadati et al. [46] proposed an effi-
cient algebraic method to generalize the higher quan-
tities. This section will focus on the method to develop
the infinite number of conserved quantities for the non-
local Eq. (1). Consider the solution Y = (y1, y2, y3)T of
the Lax pair (11). Introduce two new functions defined
as

μ1 = y1
y3

, μ2 = y2
y3

. (7)

Then, substituting Eq. (7) into (11), the following equa-
tions can be gotten:

(ln y3)x = (αr + βq)μ1 + (αq + β∗r)μ2 − iλ,

(ln y3)t = [−βqxx − αrxx + 2iλ(αrx + βqx)

+2(βq2 + 2αrq + β∗r 2 + 2λ2)(αr + βq)
]
μ1

+ [−αqxx − β∗rxx + 2iλ(αqx + β∗rx)

+2(βq2 + 2αrq + β∗r 2 + 2λ2)(αq + β∗r)
]
μ2

−2i(βq2 + 2αrq + β∗r 2)λ − 4iλ3. (8)
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Cross-differentiating these two equations with respect
to t and x , respectively, we have
[
(αr + βq)μ1 + (αq + β∗r)μ2

]
t

= [[−βqxx − αrxx + 2iλ(αrx + βqx)

+2(βq2 + 2αrq + β∗r 2 + 2λ2)(αr + βq)
]
μ1

−2i(βq2 + 2αrq + β∗r 2)λ

+ [−αqxx − β∗rxx + 2iλ(αqx + β∗rx)

+2(βq2 + 2αrq + β∗r 2 + 2λ2)(αq + β∗r)
]]

x ,

then expand μ1 and μ2 into the following series

μk(x, t, λ) =
∞∑

n=1

μ
(n)

k (x, t, λ)

(2iλ)n
, k = 1, 2. (9)

Equating the same powers of λ, the density of the
infinitely conservation law is (αr + βq)μn

1 + (αq +
β∗r)μn

2. Furthermore, the infinitely conserved quanti-
ties can also be concluded that:

In =
∫ ∞

−∞

[
(αr + βq)μ

(n)

1 + (αq + β∗r)μ
(n)

2

]
dx,

n = 1, 2, . . . .

From the space part of Lax pair (11), after eliminating
yk, k = 1, 2, 3, we can also get that μ1 and μ2 satisfy
the following Riccati equations
{

μ1,x + (βq + αr)μ2
1 + (αq + β∗r)μ1μ2 = 2iλμ1 + q,

μ2,x + (αq + β∗r)μ2
2 + (βq + αr)μ1μ2 = 2iλμ2 + r.

(10)

Similarly, after making the asymptotic expansions of
μk as in (9) and collecting the same powers of λ, we
can get the expansions of μn

k , k = 1, 2, n = 1, 2, . . .

μ
(1)
1 = q, μ

(1)
2 = r,

μ
(2)
1 = qx , μ

(2)
2 = rx ,

μ
(3)
1 = qxx + (βq + αr)q2 + (αq + β∗r)qr,

μ
(3)
2 = rxx + (αq + β∗r)r 2 + (βq + αr)qr,

...

μ
(n)

1 = μ
(n−1)
1,x + (βq + αr)

k+ j=n−1∑

k, j=1..(n−2)

μ
(k)

1 μ
( j)
1

+(αq + β∗r)

k+ j=n−1∑

k, j=1..(n−2)

μ
(k)

1 μ
( j)
2 ,

μ
(n)

2 = μ
(n−1)
2,x + (αq + β∗r)

k+ j=n−1∑

k, j=1..(n−2)

μ
(k)

2 μ
( j)
2

+(βq + αr)

k+ j=n−1∑

k, j=1..(n−2)

μ
(k)

1 μ
( j)
2 ,

...

Under the reverse-space-time reduction r(x, t) =
−q(−x,−t), the first three conserved quantities of the
nonlocal Eq. (1) are:

I1 = ∫ ∞
−∞ [(βq(x, t) − αq(−x,−t))q(x, t)

−(αq(x, t) − β∗q(−x,−t))q(−x,−t)
]

dx,

I2 = ∫ ∞
−∞ [(βq(x, t) − αq(−x,−t))qx (x, t)

−(αq(x, t) − β∗q(−x,−t))qx (x,−t)
]

dx,

I3 = ∫ ∞
−∞

[[
qxx(x, t) + (βq(x, t) − αq(−x,−t))q(x, t)2

−(αq(x, t) − β∗q(−x,−t))q(x, t)q(−x,−t)
]

(βq(x, t) − αq(−x,−t)) − (αq(x, t)
−β∗q(−x,−t)) [−qxx(x, −t) + (αq(x, t)
−β∗q(−x,−t))q(−x,−t)2

−(βq(x, t) − αq(−x,−t))q(x, t)q(−x,−t)]] dx .

The other higher-order conserved quantities can also be
obtained by continuous iteration. In addition, starting
from the temporal part of Lax pair (11) and repeat-
ing similar steps of the spatial part, the expansions of
μn

k , k = 1, 2, n = 1, 2, . . . and conserved quantities
which are associated with t can be present.

4 Inverse scattering theory and N soliton solutions

To establish the inverse scattering theory for the initial
problem of the nonlocal Eq. (1) in the framework of the
RH problem, it is required to construct the inverse scat-
tering theory and analyze the properties of the eigen-
vectors and scattering data.

4.1 The framework of the Riemann–Hilbert problem

Review the generic process framework of the RH
method.We start from the following linearmatrix equa-
tions
⎧
⎨

⎩

Yx = iλ�Y + QY,

Yt = 4iλ3�Y + (4λ2Q + 2iλ(Q2 + Qx)�

−[Q, Qx ] − Qxx + 2Q3)Y,

(11)

where [Q, Qx ] = Qx Q − Q Qx with

Q =
⎛

⎝
0 0 q
0 0 r

βq + αr αq + β∗r 0

⎞

⎠ .

By the initial value condition (2), the potential func-
tion decays rapidly to zero at infinity. Thus, the asymp-
totic properties of the solution of the Lax pair are
Y ∝ eiλ�(x+4λ2 t), x → ∞. In what follows, we intro-
duce the matrix spectral function transform:

Y = Je−iλ�(x+4λ2 t). (12)
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where J = J (x, t; λ), so J satisfies the asymptotic
properties

J → I, x → ∞ or t → ∞ (13)

and by Lax pair (11), and the transformation (12) J
satisfies the following linear equations
⎧
⎨

⎩

Jx = iλ[�, J ] + Q J,

Tt = 4iλ3[�, J ] + (4λ2Q + 2iλ(Q2 + Qx)�

−[Q, Qx ] − Qxx + 2Q3)J.

(14)

with [�, J ] = �J − J�. It is obvious that the Lax
pair (14) is equivalent to the Lax pair (11) through a
transformation. Besides, on account of tr(Q) = 0 and
tr(Q̃) = 0, by Liouville’s formula and the asymptotic
properties (13), we have det (J ) = 1. In order to study
the solution of (1) with the help of RH problem, we
treat the Lax pair (14) as the scattering problem with
time t fixed. Thus, we consider the RH problem of the
following scattering equation:

Jx(x; λ) = iλ[�, J (x; λ)] + Q(x)J (x; λ) (15)

We introduce the adjoint problem of the scattering
problem (15):

J̃x(x, λ) = iλ[�, J̃ ] − J̃ Q. (16)

We introduce J1,2 as the Jost solutions of Eq. (15)

J1 → I, x → −∞, J2 → I, x → +∞ (17)

and sign

J1E = � = (φ1, φ2, φ3),

J2E = 	 = (ψ1, ψ2, ψ3) (18)

with E = eiλ�x . It is easy to verify that J
−1

solves
Eq. (16). So J̃1 = J

−1

1 and J̃2 = J
−1

2 solve Eq. (15).
Since � and 	 are solutions of the linear ordinary dif-
ferential Eq. (11), there should be a matrix S(λ) =
(si j)3×3, which is independent of x that satisfies

� = 	S(λ), λ ∈ R. (19)

Furthermore, we can get J1 = J2E SE
−1

, J̃1 =
E SE

−1
J̃2, by the Abel’s identity and tr(Q) = 0, we

have det(�) = det(	) = 1, then

det S(λ) = 1, λ ∈ R.

Imposing the boundary conditions (17) and by (11),
J1,2 can be resigned as Volterra-type integral equations

J1 = I − ∫ x

−∞ eiλ�(x−y) Q(y)J1(y, λ)e−iλ�(x−y)dy,

J2 = I + ∫ +∞
x

eiλ�(x−y) Q(y)J2(y, λ)e−iλ�(x−y)dy.
(20)

Then, expressions (20) imply the analytical properties

of J1,2, J1 =
[

J
−
1,1, J

−
1,2, J +

1,3

]
, J2 =

[
J +
2,1, J +

2,2, J
−
2,3

]
,

where the superscript “±” represents that the functions
can be analytically extended to on the upper half or
lower half complex λ-plane, respectively. Notice that
J

−1

j ( j = 1, 2) satisfy Eq. (16) and the analytical prop-
erties

J
−1

1 = E�̂ = Ĵ1 = ( Ĵ +
1,1, Ĵ +

1,2, Ĵ
−
1,3)

T ,

J
−1

2 = E	̂ = Ĵ2 = ( Ĵ 2,2
−
, Ĵ

−
2,2, Ĵ +

2,3)
T .

Introducing matrix H1 = diag(1, 1, 0) and H2 =
diag(0, 0, 1), we denote

P+ = [
J +
2,1, J +

2,2, J +
1,3

] = J1H2 + J2H1,

P
−1

− =
[

Ĵ
−
1,3, Ĵ

−
2,2, Ĵ

−
2,2

]T = H2 J
−1

1 + H1 J
−1

2 .
(21)

So P+ can be analytically extended to λ ∈ C+ and P
−1

−
and can be analytically extended to λ ∈ C−. The large
λ-asymptotic behavior

P+(x, λ) → I, λ ∈ C+ → ∞,

P
−1

− → I, λ ∈ C− → ∞. (22)

Implementing the direct calculation on (21), we take
the notation S

−1
(λ) = (ŝi j)3×3, and we have

det(P+) = ŝ33, det(P
−1

− ) = s33.

By (18) and the analytical properties of J1,2 and com-
bined with Eq. (19), the analytical properties of the
scattering matrix can be obtained as:

S = �
−1

	 =

⎛

⎜⎜
⎝

s+
11 s+

12 s13

s+
21 s+

22 s23

s31 s32 s
−
33

⎞

⎟⎟
⎠ ,

S
−1 = 	

−1
� =

⎛

⎜⎜
⎝

ŝ
−
11 ŝ

−
12 ŝ13

ŝ
−
21 ŝ

−
22 ŝ23

ŝ31 ŝ32 ŝ
+
33

⎞

⎟⎟
⎠ ,

(23)

where the absence of a superscript means that the func-
tion cannot be analytically extended to the upper or
lower half complex plane.

4.2 Symmetry relations of scattering data

To investigate the symmetry relation of the eigenval-
ues and scattering data for the coupled generalized SS
Eq. (5) of q and r , the symmetry of the potential matrix

Q =
⎛

⎝
0 0 q
0 0 r

βq + αr αq + β∗r 0

⎞

⎠
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can be given. For the potential matrix Q, we have

Q = −B
−1

0 QT B0, (24)

where

B0 =
⎛

⎝
β α 0
α β∗ 0
0 0 −1

⎞

⎠ .

The establishment of Eq. (24) can be checked by direct
matrix calculation. This special symmetry constraints
(24) of Q will add new constraints for the eigenvectors,
eigenvalues and scattering data.

Proposition 1 For the coupled generalized SS Eq. (5),
if J is a solution of scattering Eq. (15), then B−1

0 J T B0

is also a solution of the adjoint scattering Eq. (16)when
λ̄ = −λ. The Jost function J , the scattering matrix S
and the Jost solution P satisfy the following relation:

J −1(−λ) = B−1
0 J T (−λ)B0, (25)

S−1(λ) = −B−1
0 ST (−λ)B0, (26)

P−1
− (−λ) = B−1

0 P+
T (λ)B0. (27)

Proof For the scattering Eq. (15),

Jx(x; λ) = iλ�J (x; λ) − iλJ (x; λ)� + Q(x)J (x; λ).

Taking transpose firstly and then multiplying B−1
0 from

the left side on the above equation, we have

B−1
0 J T

x (x; λ)B0 = iλB−1
0 J T (x; λ)�B0

−iλB−1
0 �J T (x; λ)B0

+B−1
0 J T (x; λ)QT (x)B0.

By the symmetry relation (24), we can get that the fol-
lowing equation

B−1
0 J T

x (x; λ)B0 = iλB−1
0 J T (x; λ)�B0

−iλB−1
0 �J T (x; λ)B0

−B−1
0 J T (x; λ)B0Q.

i.e.,

B−1
0 J T

x (x; λ)B0 = −iλ[�, B−1
0 J T (x; λ)B0]

+B−1
0 J T (x; λ)B0Q.

So if J (x; λ) is a solution of scattering Eq. (15), then
B−1

0 J T (x; λ)B0 is also a solution of the adjoint scatter-
ing Eq. (16) when λ̄ = −λ. Due to the asymptotic
behaviors (17) with symmetry relation of Jost function
J ,

J −1(−λ) = B−1
0 J T (−λ)B0. (28)

Moreover, by Eq. (19) and Proposition 1, the symme-
try property of the scattering matrix S and the relation
between P−1

− and P+ can also be obtained. Then,we can
conclude the following proposition. The details of the
proof are omitted here. By Eq. (19) and the notations
of (18), we have

J1(x, λ)E = J2(x, λ)E S(λ) (29)

Taking transpose on the above equation and then mul-
tiplying B−1

0 from left side and B0 from right side, we
have

B−1
0 E J T

1 (x, λ)B0 = B−1
0 ST (λ)E J T

2 (x, λ)B0.

Applying Eq. (25) to the above equation, the following
equation can be gotten:

E J −1
1 (x,−λ) = B−1

0 ST (λ)B0E J −1
2 (x,−λ).

For Eq. (29), taking the inverse of the matrix equation
and making some deformations, then

E J
−1

1 (x,−λ) = S
−1

(−λ)E J
−1

2 (x,−λ)

So S
−1

(−λ) = B−1
0 ST (λ)B0. Besides, by the definition

of P−1
− and P+ and Eq. (25), the symmetry relation can

be obtained. 
�
Lemma 1 For the couple generalized SS Eq. (5), if
λ j ∈ C+ is a eigenvalue of the spectral Eq. (15), the
λ̄ j = −λ j ∈ C− is eigenvalue of the adjoint spectral
Eq. (16). And the scattering eigenvectors satisfy: v̄k0 =
vT

k0
B−1

0 , and the scattering data are connected by the
relations

āk = bkα − akβ
∗

α2 − |β|2 , b̄k = akα − bkβ

α2 − |β|2 , c̄k = −ck .

Proof By Eq. (26) in Proposition 1, it is natural that
the symmetry relations of the elements for S and S−1

can be concluded.

ŝ31(λ) = −as23(−λ) − bs13(−λ),

ŝ32(λ) = −as13(−λ) − b∗s23(−λ),

ŝ33(λ) = s33(−λ).

(30)

Recall the determinant of P+, P−1
−

det(P+) = ŝ33, det(P−1
− ) = s33,

so by (30), if λk ∈ C
+ is the zero of ŝ33, then −λk is the

zero of s33, i.e., the zero of det(P−1
− ).

P+(λk)vk = 0, v̄k P−(λ̄k) = 0 (31)

The eigenvector solutions of the (31) can be expressed
as vk = eiλkσ xvk0 = eiλkσ x(ak, bk, ck)

T and v̄k =
(āk, b̄k, c̄k)

T ei λ̄kσ x = v̄k0e−i λ̄kσ x .
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Take transpose on the equation P+(λk)vk = 0, and by
symmetry constraints (27), then

vT
k B−1

0 P−(−λk) = 0.

Obviously, vT
k B−1

0 is the eigenvector of P−, i.e., v̄k =
vT

k B−1
0 . We expand the matrix and the symmetry rela-

tions of the scattering data

āk = bkα − akβ
∗

α2 − |β|2 , b̄k = akα − bkβ

α2 − |β|2 , c̄k = −ck .

This completes the proof of the lemma. 
�

4.3 Riemann–Hilbert problem and the N -soliton
solutions

We take the real axis as the closed contour which pass
through the infinity, and the matrix function P± ana-
lytical inside and outside of the contour, respectively.
Thus, the RH problem of the spectral problem (15) can
be constructed as follows. Riemann–Hilbert Problem 1
For (x, t) ∈ R2, solving a 3 × 3 matrix-value function
P(x, t, λ) in the complex λ−plane such that

• The matrix function P± is analytic in C±.
• Thecanonical normalization condition is P+, P−1

− →
I as λ → ∞.

• The RH problem is well defined on the real line

P−1
− (x, λ)P+(x, λ) = G(x, λ), λ ∈ R (32)

with the jump matrix

G(x, λ) = E

⎡

⎣
1 0 s13
0 1 s23

ŝ31 ŝ32 1

⎤

⎦ E−1.

Expand P+, P
−1

− at λ = ∞, then substitute P+ = I +
λ

−1
P [1]

+ + O(λ
−2

), P
−1

− = I + λ
−1

P [1]
− + O(λ

−2
) into

(15) and (16), respectively, and collect the same power
of λ, we can get Q = −i[�, P [1]

+ ], Q = i[�, P [1]
− ].

So the potentials can be recovered

u = −2i(P [1]
+ )13, v = −2i(P [1]

+ )23. (33)

4.4 N -soliton formulas with N simple zeros

In most cases, the RH problem 1 is nonregular, i.e.,
det(P+) and det(P

−1

− ) have zeros in λ-plane. Here we
begin with the case of simple zeros. If det(P+) and
det(P

−1

− ) only have simple zeros in complex λ-plane.

By the symmetry relations of the scattering data in
Lemma 1, suppose the simple zeros are (λk,−λk)(k =
1, 2, . . . , N ), respectively. Thus, for each pair of the
eigenvalues (λk,−λk), there exist only one pair lin-
early independent eigenvectors (vk, v̄

T

k ). By Lemma 1,
the eigenvectors are

vk = eiθ(λk )�(ak, bk, ck)
T ,

v̄
T

k =
(

bkα − akβ
∗

α2 − |β|2 ,
akα − bkβ

α2 − |β|2 ,−ck

)
eiθ(λk )�

(34)

Then, when G = I and the RH problem is reflection-
less, similar to the process in [45], the N -soliton for-
mulas can be derived in the following theorem.

Theorem 1 The N-soliton formulas for the nonlocal
generalized SS Eq. (1) can be represented as

q(x, t) = 2i

∣∣∣∣
M Y3

Ȳ T
1 0

∣∣∣∣

|M | , r(x, t) = 2i

∣∣∣∣
M Y3

Ȳ T
2 0

∣∣∣∣

|M | (35)

where Y = [v1, . . . , vN ], Ȳ = [v̄1, . . . , v̄N ] and Yk

Ȳk are the k-th row of the matrix Y , Ȳ with vectors
(v j , v̄ j) are given in (34) and M = (m jk)N×N with

m jk = v̄T
j vk

λ̄ j − λk

, 1 ≤ j, k ≤ N .

Remark Compared to [45], it is obvious that the differ-
ent symmetry relations of scattering data lead to quite
different forms of the solution.

5 The nonlocal constraints of the nonlocal
generalized SS Eq. (1)

This section will focus on the nonlocal constraints of
the eigenvectors and scattering data for Eq. (1). The
symmetry relations for Eq. (1), after a lot of compli-
cated calculations and analysis, the symmetry relations
for Eq. (1) cannot be obtained directly. The symmetry
constraints for the coupled generalized SS Eq. (5) and
the corresponding symmetry relations for the eigenvec-
tors and scattering data have been imposed in the last
section. Based on the previous solution for Eq. (5), let
r(x, t) = −q(−x,−t), and then, the corresponding
nonlocal constraints for Eq. (1) can be obtained.

Theorem 2 For the nonlocal generalized SS Eq. (1), if
λk ∈ C+ is a discrete eigenvalue, then the parameters
of the corresponding eigenvectors are linearly depen-
dent with each other. The parameters in the single- and
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two-soliton solutions (35) meet the following relation-
ships. For the eigenvalues λk ∈ C+, the corresponding
eigenvector satisfies the following constraints

bk = (α + β∗) ak

α + β
,

ck =
√
2α + β + β∗ ak

α + β
, k = 1, 2. (36)

or

bk = − (α − β∗) ak

α − β
,

ck =
√
2α − β − β∗ ak

α − β
, k = 1, 2. (37)

Proof The nonlocal Eq. (1) is reduced from the coupled
Eq. (5); the eigenvalues for Eq. (5) in C+ and C− are
exhibited in pairs (λk,−λk), so the eigenvalues for the
nonlocal Eq. (1) are also in pairs.And according toThe-
orem 1, the corresponding eigenvectors are connected
in v̄ = vT B−1

0 . However, the nonlocal Eq. (1) possess
more symmetry relations due to the nonlocal reduction,
which cannot be obtained directly. Next, we will con-
sider how to get the special nonlocal constraints for the
soliton solutions of the nonlocal Eq. (1).We begin from
the single soliton solution. When N = 1 in (35), for
the eigenvalues λ1 ∈ C+, the single soliton solution for
the coupled Eq. (5) can be obtained as:
[

q
r

]
=
[

αb1 − β∗a1

αa1 − βb1

]

4ic1λ1

(−α2c2
1 + |β|2c2

1) e
−2iλ1(4tλ21+x)

+(2αa1b1 − βb2
1 − β∗a2

1) e
2iλ1(4tλ21+x)

(38)

Replacing (x, t) with (−x,−t) in q and taking the
opposite sign in (38), by the reduction r(x, t) =
−q(−x,−t), then the nonlocal constraints for the
single-soliton solution of the nonlocal Eq. (1) are

bk = (α + β∗)
α + β

ak, ck = ±
√−2α + β + β∗

α + β
ak,

or

bk = − (α − β∗)
α − β

ak, ck = ±
√−2α − β − β∗

α − β
ak .

When N = 2, for the eigenvalues λ1, λ2 ∈ C+, we
introduce the notations θ1 = 2iλ1(4tλ2

1 + x), θ2 =
2iλ2(4tλ2

2 + x ); the two-soliton solutions for the cou-

pled Eq. (5) can be written as:

q =
4i(λ1 + λ2)

2
[
A1,1eθ1 + A1,2eθ2

] − [
c1λ2(αb2−

β∗b2)e−θ1 − c2λ1(αb1 − β∗a1)e−θ2
]
A0[

c2
2(βb2

1 + β∗a2
1 − 2αa1b1)eθ1−θ2 + c2

1(βb2
2 + β∗a2

2

−2αa2b2)eθ2−θ1
]
B0 + B1eθ1+θ2 + B2e−θ1−θ2 + C0

r =
4i(λ1 + λ2)

2
[
A1,1eθ1 + A1,2eθ2

]

− [
c1λ2(αa2 − βb2)e−θ1 − c2λ1(αa1 − βb1)e−θ2

]
A0[

c2
2(βb2

1 + β∗a2
1 − 2αa1b1)eθ1−θ2 + c2

1(βb2
2 + β∗a2

2

−2αa2b2)eθ2−θ1
]
B0 + B1eθ1+θ2 + B2e−θ1−θ2 + C0

(39)

with

A0 = 4ic1c2(λ1 + λ2)(λ1 − λ2)
(|β|2 − α2

)
,

B0 = (|β|2 − α2
)
(λ1 + λ2)

2

B1 = (
2αa2b2 − βb2

2 − β∗a2
2
) (
2αa1b1 − βb1

2 − β∗a1
2
)
λ1

2

−2
[(
2a1

2b2
2 + 2a2

2b1
2
)
α2

−2 (a1b2 + a2b1) (βb1b2 + a1a2β
∗) α

+β∗2a1
2a2

2 − β
(
a1

2b2
2 − 4a1a2b1b2 + a2

2b1
2
)
β∗

+β2b1
2b2

2
]
λ2λ1

+λ2
2
(
2αa2b2 − βb2

2 − β∗a2
2
)(
2αa1b1 − βb1

2 − β∗a1
2
)
,

B2 = −(|β|2 − α2
)2

c2
1c

2
2

(
λ1 − λ2

)2
,

C0 = 8
(|β|2 − α2

)
λ1

(
αa1b2 + αa2b1 − βb1b2 − a1a2β

∗)λ2c1c2,

A1,1 = c2λ2

[( − β∗2a1
2a2 + ((

a1
2b2 + 2a1a2b1

)
α − 2βa1b1b2

+βa2b1
2
)
β∗ + αb1

2
( − 2αa2 + βb2

))
λ1

−λ2

(
αb2 − β∗a2

)( − 2αa1b1 + βb1
2 + β∗a1

2
)]

,

A1,2 = −c1λ1

[(
αb1 − β∗a1

)( − 2αa2b2 + βb2
2 + β∗a2

2
)
λ1

−( − β∗2a1a2
2 + ((

2a1a2b2 + a2
2b1

)
α

+βb2

(
a1b2 − 2a2b1

))
β∗ + αb2

2
( − 2αa1 + βb1

))
λ2

]
,

A2,1 = c2λ2

[−2b1

((
b2

(
λ2 − λ1

)
α + β∗a2λ1

)
β − λ2α

2a2

)
a1

+βb1
2
(
λ2 − λ1

)( − αa2 + βb2

)
(
β∗b2

(
λ1 + λ2

)
β − α

(
2αb2λ1 + β∗a2

(
λ2 − λ1

)))
a1

2
]
,

A2,2 = c1λ1

[−(
β2b1b2

2 + (
2β∗a1a2b2 − β∗a2

2b1

−(
a1b2

2 + 2a2b1b2

)
α
)
β + 2α2a2

2b1 − αβ∗a1a2
2
)
λ2( − αa1 + βb1

)( − 2αa2b2 + βb2
2 + β∗a2

2
)
λ1

]
.

Replacing (x, t) with (−x,−t) of q in Eq. (39), then
we have

q(−x,−t)

=
4i
(
λ1 + λ2

)2 [
A1,1e−θ1 + A1,2e−θ2

]

− [
c1λ2

(
αb2 − β∗b2

)
eθ1 − c2λ1

(
αb1 − β∗a1

)
eθ2

]
A0[

c2
2

(
βb2

1 + β∗a2
1 − 2αa1b1

)
eθ2−θ1 + c2

1

(
βb2

2 + β∗a2
2

−2αa2b2

)
eθ1−θ2

]
B0 + B1e−θ1−θ2 + B2eθ1+θ2 + C0

when r(x, t) = −q(−x,−t), i.e., r(x, t)+ q(−x,−t)
= 0, one can conclude two sets of nonzero solution:

bk = (α + β∗) ak

α + β
, ck =

√
2α + β + β∗ ak

α + β
, k = 1, 2,

or

bk = − (α − β∗) ak

α − β
, ck =

√
2α − β − β∗ ak

α − β
, k = 1, 2.
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6 Dynamic behaviors of the solutions with simple
zeros and N multiple zeros

In this section, we will study the dynamic behaviors of
the soliton solutions with simple zeros and N multiple
zeros. Firstly, we will derive the exact expressions for
single- and two-soliton solutions and the higher-order
soliton solutions with double and triple zero for the
nonlocal Eq. (1).

6.1 Single-soliton solutions

Rewrite β = κ1 + iκ2 and λk = ξk + iηk with κ1, κ2 are
real number and k is a positive integer. When N = 1 in
Eq. (35), by Theorem 2 and Eq. (36), the single-soliton
solutions for the nonlocal Eq. (1) can be obtained.

q1 = 2iλ1√
2α − 2κ1 cos

(
8tλ3

1 + 2λ1x
) (40)

or by (37), the single-soliton solutions are

q1 = 2λ1√
2α + 2κ1 sin

(
8λ3

1t + 2λ1x
) . (41)

The two different expressions (40) and (41) are similar
in properties with the parameter condition |α| �= |κ1|;
we will only analyze the dynamic behaviors of (40).
The expression of single soliton (40) contains four real
parametersα, κ1, ξ1 andη1. Fromexpression (40),α and
κ1 only influence the amplitude of the general single-
soliton solution. With different values of α and κ1, the
amplitude of soliton changes. It is shown in Fig. 1ewith
different α. In order to investigate the influence of ξ1
and η1 and illustrate easily, α = 1, β = 1

2 is adopted
in the following analysis of this section.

(1) When λ1 is not purely imaginary, the solution is a
singular soliton that collapses periodically which is
shown in Fig. 1a, b, where the real part of λ1 and
the imaginarypart change theperiodof collapse and
the direction of propagation. Figure 1a shows the
collapsed general single-soliton solution with λ1 =
1
3 + i

2 . And when ξ1 increases to 1
3 , the propagation

direction of the single soliton closes to t = 0. But
the soliton stays singular with different λ1.

(2) When λ1 is purely imaginary, i.e., ξ1 = 0, the solu-
tion does not behave as the fundamental general
single-soliton solution because the denominator of
the general single-soliton solution is a trigonomet-
ric function which zeros are periodically appear

in x-axis. Here we give two examples, which are
shown in Fig. 1c, d, where η1 = 2 × 10−2i in (c)
and when η1 → 0 , the collapse periodic of the sin-
gularities tends to infinity. When η1 = 2× 10−3i in
(d), the general soliton solution behaves like a fun-
damental soliton due to its big collapse periodic.

6.2 General two-soliton solutions

By Theorem 2, the general two-soliton solution can be
obtained from Eq. (39) when we implement the nonlo-
cal constraints (36) in Theorem 2; then, cumbersome
expression is reduced to the following equation.

q = 4
(λ1

2 − λ2
2)
[
λ1 sin(8λ2

3t + 2λ2x) − λ2 sin(8λ1
3t + 2λ1x)

]

√
2α+β+β∗[(λ1+λ2)

2 cos(�2)−(λ1−λ2)
2 cos(�1)−4λ2λ1

] ,

(42)

with

�1 = 2(λ1 + λ2)
[
4(λ1

2 − λ2λ1 + λ2
2)t + x

]
,

�2 = 2(λ1 − λ2)
[
4(λ1

2 + λ2λ1 + λ2
2)t + x

]
.

Under the nonlocal constraints (36), the general two-
soliton solution (42) is an equation with only four
parameters α, β, λ1 and λ2. Next, we will analyze the
influence of these four parameters. By Eq. (42), we can
find that α and β are independent of the singularities
of the general two-soliton solution. We will analyze
the dynamical behaviors for different eigenvalue pat-
terns for λ1, λ2 ∈ C+. (1) When λ1 and λ2 are both
pure imaginary, both of the branches of the two-soliton
solution are singular, through simple comparison of the
corresponding single soliton with λ1 = i and λ1 = 1

3 i;
we find that in this case, the general two-soliton solu-
tion is a nonlinear superposition of two single soli-
ton with puerly imaginary eigenvalues. An example of
λ1 = i, λ2 = 1

3 i is plotted in Fig. 2a. (2) When λ1 is
pure imaginary and �(λ2) �= 0, it is worth mentioning
that one of the branches of the two-soliton solution is
no longer singular and stays bounded, which is quite
different from the above case. It is obvious that in this
case, the two-soliton solution is not a nonlinear super-
position of two single soliton with a purely imaginary
eigenvalue and an eigenvalue �(λ2) �= 0. This is an
interesting situation. Here we take λ1 = i, λ2 = 1

4 + 1
3 i

to illustrate in Fig. 2b. (3) When �(λ1)�(λ2) �= 0,
under normal parameter values, the two-soliton solu-
tion behaves as a wave, which is composed by two
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Fig. 1 (Color online) a–d are the plots of general solutions
for Eq. (1) with the same parameters α = 1, β = 1

2 except
for a λ1 = 1

4 + 1
3 i; b λ1 = 3

4 + 1
3 i; c λ1 = 2 × 10−2i; d

λ1 = 2 × 10−3i; e is the 2D plot of general single-soliton solu-
tion for Eq. (1) with same β = 1

2 , λ1 = 1
4 + 1

3 i and different α ,[
α = 1

20 , α = 1
2 , α = 20

]
=[“Blue”, “Red”, “Green” ]

periodically singular single soliton with different prop-
agation directions. But whenwe let�(λ1) = �(λ2) and
�(λ1) = �(λ2), the two singular branches began to par-
allel to each other. We take λ1 = 1 + 1

2 i, λ2 = 1 + 1
3 i

to illustrate in Fig. 2c. In this case, a singular solution
in periodic background can also be obtained. In fact,
in order to consider the influence of the imaginary part
of the eigenvalues, we take �(λ1) = 10−3 and other
parameters are all 1; then, we found that the solution
behaves as a singular soliton in a periodic background,
and the plot is shown in Fig. 2d. The singular points
emerge in pairs except when x = t = 0. Except for
this case, we found that the value of the �(λk) does
not influence the dynamic behaviors in some range. It
is natural that how about the real part of the eigenval-
ues. Taking �(λ1) = 10−3, we also find that one of the
branches is not singular any more, which can be seen
in Fig. 2e. The case is similar to the case of Fig. 2b, but
where �(λ1) = 0. So the dynamic feature exists in a
small range of�(λ1) = 0. For the nonlocal equation, in
most cases, the singular soliton will be bounded when
λ1 = −λ∗

2 . We also try to select such spectral param-
eters in this way in order to get a bounded solution,
but it does not turn out as expected. No matter how the
parameters change, when λ1 = −λ∗

2 , the two branches
of the soliton solution are twisted together and remain
singular over time. In Fig. 2e, we take λ1 = 1 + 1

3 i to
illustrate. Consequently, the two-soliton solution com-
posed with two collapsed general single-soliton solu-
tions can be easily gotten with two complex spectral
parameters. But this periodic collapse phenomenon of
the two-soliton solutions with two impure imaginary
complex spectral parameters is not all the case. In some
special cases, the singularity of one of the branches will
disappear and the two-soliton solution becomes a wave

which is composed by a general singular soliton and a
nonsingular one. Besides, an interesting phenomenon
is also discovered, i.e., when one of imaginary parts
of the parameter is 10−3, the solution behaves as a sin-
gular wave in the periodical background. It is worth
mentioning that when λ2 = −λ∗

1 , the two-soliton solu-
tion did not degenerate into a bound state breathing
soliton instead of a breathing singular wave.

6.3 Higher-order soliton solutions for Eq. (1) with N
multiple zeros

If det(P+) and det(P
−1

− ) have N multiple zeros in
complex λ-plane, respectively. By the symmetry rela-
tions of spectral parameters in Lemma 1, suppose
(ζk,−ζk)(k = 1, 2, . . . , N ) are N pairs of multiple
zeros of det(P+) and det(P

−1

− ) , where the geometric
dimensions of the multiple zeros are nk , respectively.
In this case, the normal case that P+ and P

−1

− possess
the same number of zeros will be considered; then, the
determinants of matrix can be rewritten as:

det(P+) =
N∏

k=1

(λ − ζk)
nk τ+, det

(
P

−1

−
)

=
N∏

k=1

(λ + ζk)
nk τ−,

where τ+(ζk)τ−(−ζk) �= 0, k = 1, 2, . . . , N and∑N
k=1 nk = N0. In order to convert the multiple zeros

into the limit of the simple zeros, implement a pertur-
bational modification on the scattering data
{
λk, j , ak, j , bk, j , ck, j

} �→
{
λk, j(εk, j), ak, j(εk, j−1),

bk, j(εk, j−1), ck, j(εk, j−1)
}
,

where λk, j(εk, j) = ζk + εk, j−1 k = 1, 2, · · · , N , j =
1, 2, · · · , nk with λk,1 = ζk and εk,0 = 0(k =
1, 2, . . . , N ). Recall the symmetryproperties inLemma
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Fig. 2 (Color online) a–f are the plots of general single-soliton
solutions for Eq. (1) by choosing the same parameters α =
2, β = −4 except for [�(λ1),�(λ1),�(λ2),�(λ2)] take the fol-

lowing values: a
[
0, 1, 0, 1

3

]
; b

[
0, 1, 1

4 , 1
3

]
; c

[
1, 10−3, 1, 1

]
; d[

1, 1
2 , 1, 1

3

]
; e

[
1, 1

3 , 10−3, 1
3

]
; f

[
1, 1

3 ,−1, 1
3

]

1 and the nonlocal constraints in Theorem 2, the sym-
metry relations of perturbed scattering data for the non-
local generalized SS Eq. (1) can be obtained.

Lemma 2 For a pair of perturbed eigenvalues[
λk, j(εk, j),−λk, j(εk, j)

]
of the reverse-space-time non-

local generalized SS Eq. (1), where λk, j (εk, j) ∈ C+. The
perturbed eigenvectors vk(εk, j−1) and v̄T

k (ε̄k, j−1) with

vk(εk, j−1) = eiθ(ζk+εk, j−1)�

[ ∞∑

j=0

ak, jε
k, j−1,

∞∑

j=0

bk, jε
j ,

∞∑

j=0

ck, jε
k, j−1

]T

(43)

and

v̄
T

k (ε̄k, j−1) = [
ā1, b̄1, c̄1

]
eiθ(ζk−ε̄k, j−1)� (44)

with

ā1 = 1

α + β
e

∞∑
l=0

ak, j (−ε̄k, j−1)l

, b̄1 = 1

α + β
e

∞∑
l=0

ak, j (−ε̄k, j−1)l

,

c̄1 = −
√
2 α + β + β∗

α + β
e

∞∑
l=0

ak, j (−ε̄k, j−1)l

, (45)

where ε̄k, j = −εk, j(k = 1, 2, . . . , N , j = 1, 2, . . . , nk)

and ak,l, bk,l, ck,l (l = 0, 1, 2, · · · ) are arbitrary com-
plex numbers.

Proof If λk, j(εk, j) = ζk + εk, j−1 is the spectral param-
eter in C+, by Lemma 1, then the corresponding
spectral parameter in C− is −λk, j(εk, j) = −ζk −
εk, j−1 = −ζk + ε̄k, j−1, so ε̄k, j−1 = −εk, j−1. Then,
for a pair of zeros

[
λk, j ,−λk, j

]
, the correspond-

ing perturbation parameters are
[
εk, j ,−εk, j

]
. So by

Lemma 1, the perturbed scattering data v̄k0, j(−εk, j) =
vk0, j(εk, j)

T B0 with the elements of vk0, j(εk, j), are
taken with the following expansions ak(εk, j−1) =∑∞

j=0 ak, jε
k, j−1, bk(εk, j−1) = ∑∞

j=0 bk, jε
j , ck(εk, j−1) =∑∞

j=0 ck, jε
k, j−1 with ak,l, bk,l, ck,l (l = 0, 1, 2, · · · ) are
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arbitrary complex numbers. By the N -soliton formula
in Theorem 1 and the nonlocal constraints in Theroem
2,we implement a limiting process and a series of deter-
minant transformation; the higher-order soliton solu-
tions for the nonlocal generalized SS Eq. (1) can be
obtained. 
�

Theorem 3 For the nonlocal generalized SS Eq. (1),
the higher-order soliton formula can be represented as
the following forms

q(x, t) = 2i
det(τ 13)

det(τ )
(46)

where

τk j =
[

τ yj

ȳ
T

k 0

]
,

τ = (
Mh1,h2

)
1≤h1,h2≤N

, Mh1,h2

= (m
[l1,l2]
k,l )0≤l1≤nh1

−1, 0≤l2≤nh2
−1

with yk and ȳ j are j th-row and kth-row of y and ȳ,
respectively. The perturbed eigenvalues are

y = [
v

(0)

1 , v
(1)

1 , . . . , v
(n1−1)

1 , . . . , v
(0)

N , v
(1)

N , . . . , vN
(nN −1)]

3×N0
,

ȳ = [
v̄

(0)

1 , v̄
(1)

1 , . . . , v̄
(n1−1)
1 , . . . , v̄

(0)

N , v̄
(0)

N , . . . , v̄
(nN −1)

N

]
3×N0

,

(47)

with

v
(l)

k = lim
εk, j−1→0

∂lvk (εk, j−1)

l! ∂εl
k, j−1

, v̄
(l)

k = lim
ε̄k, j−1→0

∂l v̄T
k (ε̄k, j−1)

l! ε̄l
k, j−1

,

m
[l1,l2]
k,l = lim

ε̄k, j1−1,εl, j2−1→0

1
(l1−1)!(l2−1)!

∂l1+l2−2

∂ε̄
l1−1
k, j1−1∂ε

l2−1
l, j2−1[

v̄T
k (ε̄k, j1−1)vl (εl, j2−1)

ζ̄k−ζl+ε̄k, j1−1−εl, j2−1

]
.

(48)

Remark The similar higher-order soliton formulas
have been explored in [37,40], where the formula has
been proofed fromdifferent perspectives. Later, in [43],
the higher-order soliton formula for the nonlocal NLS
equations was given. But both of the corresponding
spectral problems are 2×2. Here the higher-order soli-
ton formula for a 3 × 3 matrix problem is given; the
details of the proof can be seen in [40,43]. The higher-
order solitons with one multiple pole can be obtained
for N = 1 in Eq. (46). When n1 = 2 and n1 = 3, the
soliton-like solution with double zeros and triple zeros
will be imposed. Here we will analyze the correspond-
ing dynamic behaviors in detail. Taking N = 1 and
nN = 2 in Eq. (46), the higher-order soliton solution

with double zeros of Eq. (1) is

q =
4λ1

[
(−24tλ3

1 − 2xλ1 + i)e−2iλ1(4λ21 t+x)

−(24tλ3
1 + 2xλ1 + i)e2iλ1(4λ21 t+x)

]

√
2
√

κ1 − α[1152t 2λ6
1 + 192λ4

1t + 8λ2
1x

2

+ cos(16tλ3
1 + 4xλ1) − 1]

. (49)

When n1 = 3 in Eq. (46), the higher-order soliton solu-
tion with triple zeros of Eq. (1) is

q =
6λ1

√
2
√

α − κ1(α
2 − κ2

1 ) f41e−4iλ1(4λ21 t+x) − 6λ1√
2
√

α − κ1κ
2
2 f42e4iλ1(4λ21 t+x) − 4λ1

√
2κ2

√
α + κ1(α − κ1) f0

iκ2(α
2 − κ2

1 ) f21e
−2iλ1(4λ21 t+x) + iκ2

2

√
α2 − κ2

1 f22
e2iλ1(4λ21 t+x) + i(α2 − κ2

1 )
3/2e−6iλ1(4λ21 t+x) + iκ3

2 e
6iλ1(4λ21 t+x)

(50)

with

f21 = C2,1 + C2,2, f22 = C2,1 − C2,2,

f41 = C1,1 + C1,2, f42 = C1,1 − C1,2,

C1,2 = −384t 2λ6
1 − 64λ4

1xt + 1 − 8

3
λ2
1x

2,

C1,1 = 4iλ1(20λ
2
1t + x),

C2,1 = 1327104t 4λ12
1 + 442368t 3xλ10

1 + 55296t 2x2λ8
1

+3072t x3λ6
1 − 25344t 2λ6

1 + 64x4λ4
1

−1920t xλ4
1 − 48x2λ2

1 + 3,

C2,2 = −64iλ3
1(36tλ2

1 + x)(12tλ2
1 + x)2,

f0 = 663552t 4λ12
1 + 221184t 3xλ10

1

+27648t 2x2λ8
1 + 1536t x3λ6

1 − 2304t 2λ6
1

+32x4λ4
1 − 768t xλ4

1 − 16x2λ2
1 − 3.

The plots for the higher-order solitons with one dou-
ble zero (49) are exhibited in Fig. 3a, b and c. Similar
to the regulations of N -soliton, for λ1 purely imagi-
nary, the higher-order solitons are not common solu-
tions without singularities. When λ1 is a purely imagi-
nary complex number, each branch of the higher-order
solitons collapsed periodically along the directions of
propagations. Figure 3b is the plot of λ1 = 1

10 i, where
we can see that the two branches have a displacement
at the intersection. And when λ1 = 1

103
i, one of the

branches becomes a normal one without singular, the
corresponding plot is shown in Fig. 3a. Another case
is that the eigenvalue λ1 is not purely imaginary, where
the higher-order soliton is a collapsed periodically one
without displacement at the intersection. It can be seen
in Fig. 3c.As for the higher-order solitonwith one triple
zero (50), we show three cases in the plots Fig. 3d, e
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Fig. 3 (Color online) The higher-order solitons with one double zero and triple zero for Eq. (1) by choosing the same parameters
α = −1, β = 2 + i

2 except for λ1: a 10−3i; b 10−1i; c 1
10 + 1

5 i; d 10−1i; e 1 + 1
2 i; f 1 + 10−3i

and f. Different from the higher-order solitons with one
double zeros, when the eigenvalue λ1 is purely imag-
inary, the soliton is bounded all the time and without
singularities. Figure 3d is an example when λ1 = 1

10 i.
And when eigenvalue λ1 is not purely imaginary, the
soliton with three branches collapsed periodically, and
Fig. 3d is a singular higher-order soliton with triple
zero when λ1 = 1+ 1

2 i. Finally, we show a special case
which is a wave with a periodical background when
λ1 = 1+ 1

103
i. The corresponding figures are shown in

Fig. 3f. In general, for the higher-order soliton, different
from the higher-order solitons with one double zeros,
when the eigenvalue is purely imaginary, the soliton
with one triple zero is bounded all the time and without
singularities. But for the local ones, the higher-order
solitons with purely imaginary eigenvalues are always
nonsingular.

7 Conclusions and discussions

The novel integrable nonlocal generalized SS Eq. (1),
which can be reduced to the nonlocal SS equation and
nonlocal modified KdV equation is proposed, is the
compatibility condition of a 3 × 3 spectral problem.
Due to the integrability of the nonlocal generalized SS
Eq. (1), the corresponding infinitely many conserved
quantities and conservation laws are developed. Then,
the framework of the IST based on the RH problem
for the coupled generalized SS Eq. (5) is established.
Due to the distinctive structure of the 3 × 3 potential
matrix, a special symmetry property of the potential
matrix is found. Moreover, the symmetry properties of
the scatteringmatrix, eigenvalues, and eigenvectors are
obtained. If λ j is the eigenvalue of the original spectral
problem, then the eigenvalue of the adjoint equation is
−λ j . The relation between the corresponding eigenvec-
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tors is v̄0k = v0
T
k B−1

0 . Furthermore, due to the reverse-
space-time reduction, the symmetry relations cannot
be obtained directly, and the nonlocal constraints are
obtained by implementing a series of complex com-
putations. The symmetry relations of the scattering
data are more complicated than the local ones, which
leads to the difference of the formulation for the soliton
solutions. The exact expressions for the single-soliton,
two-soliton and higher-order soliton with double and
triple zero and the corresponding dynamical behaviors
were obtained. Some new and interesting properties
were gotten. The N -soliton solutions for the coupled
generalized SS Eq. (5) have been exhibited by solv-
ing the reflectionless RH problem with simple zeros.
Then, combining the nonlocal constraints in Theorem
2, the single- and two-soliton solutions are obtained.
Some new dynamical behaviors of the general single
and two-solitons for the nonlocal generalizedSSEq. (1)
were explored. For the dynamical behaviors for the gen-
eral single-soliton and two-soliton solutions. Firstly,
for the single soliton, the spectral configurations did
not influence the singularity of the soliton. The single
soliton is not a fundamental soliton solution without
singularity; the soliton collapses periodically nomatter
whether the eigenvalue is purely imaginary or not. Dif-
ferent from the dynamics of two-soliton solutions of
the reverse-space-time nonlocal equation in [36] and
[35], the two-soliton is a nonlinear superposition of
two general single soliton when two spectral parame-
ters are both purely imaginary. In some special cases,
such as the plots shown in Fig. 2b, d, the singularity of
one of the branches will disappear and the two-soliton
solution becomes a wave which is composed of a gen-
eral singular soliton and a nonsingular one. Besides, an
interesting phenomenon is also discovered; when one
of imaginary parts of the parameter tends to zero, the
solution behaves as a singular wave in the periodical
background and the plot is shown in Fig. 2d. The peri-
odic collapse phenomenon of the two-soliton solutions
with two impure imaginary complex spectral parame-
ters is all the case evenwhen λ2 = −λ∗

1 , this singularity
did not disappear and the two-soliton solution become
a twisted wave and remain singular over time in Fig. 2f.
By the symmetry relations of spectral parameters in
Lemma 1 and the nonlocal constraints in Theorem
2, the symmetry relations of perturbed scattering data
for the nonlocal generalized SS Eq. (1) are obtained.
After implementing a limiting process and a series
of determinant transformation, the higher-order soli-

ton formula for the nonlocal generalized SS Eq. (1) is
obtained. Compared to the exploration of the higher-
order soliton for the local equations in [37,40], the for-
mula has been proofed from different perspectives and
the symmetry relations of perturbed scattering data are
quite different. The higher-order soliton formula for
the nonlocal NLS equations [43] was given. But both
of the corresponding spectral problems are 2 × 2. It is
the first time to study the high-order solitons of nonlo-
cal equations related to the 3× 3 matrix spectral prob-
lem. Under different spectral configurations, the singu-
lar and nonsingular higher-order soliton were obtained
with the zeros double and triple, respectively. It is men-
tioned that for the eigenvalue that is purely imaginary,
the higher-order solitons with double zero are not com-
mon solutions without singularities; it is a singular one
which is shown in Fig. 3a and b, but the soliton with
one triple zero is bounded all the time and without sin-
gularities. When the eigenvalue is a not purely imagi-
nary complex number, each branch of the higher-order
solitons collapsed periodically along the directions of
propagations in Fig. 3c, e.
However, for system (5) with complex reverse-space-
time reduction, through we have implemented many
attempts, the symmetry properties of scattering data
have not been solved. Besides, the shifted nonlocal
reduction was proposed [47], and it will be interesting
to construct the solutions and inverse scattering trans-
forms for the shifted nonlocal generalized SS equation.
Thirdly, as for the nonlocal equation which is asso-
ciated with the 3 × 3 spectral problem with nonzero
boundary conditions, the nonlocal integrable equation
corresponding to the 3× 3 Lax pair will be considered
continuously in the future.
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