
Chaos, Solitons and Fractals 160 (2022) 112182

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals
Nonlinear Science, and Nonequilibrium and Complex Phenomena

j ourna l homepage: www.e lsev ie r .com/ locate /chaos
Data-driven vector localized waves and parameters discovery for
Manakov system using deep learning approach
Jun-Cai Pu a, Yong Chen a,b,⁎
a School of Mathematical Sciences, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai 200241, China
b College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China
⁎ Corresponding author at: School of Mathematical Scie
of Pure Mathematics and Mathematical Practice, East Chin
200241, China.

E-mail address: ychen@sei.ecnu.edu.cn (Y. Chen).

https://doi.org/10.1016/j.chaos.2022.112182
0960-0779/© 2022 Elsevier Ltd.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 5 January 2022
Received in revised form 29 April 2022
Accepted 29 April 2022
Available online xxxx
An improved physics-informed neural network (IPINN) algorithm with four output functions and four physics
constraints, which possesses neuron-wise locally adaptive activation function and slope recovery term, is appro-
priately proposed to obtain the data-driven vector localizedwaves, including vector solitons, breathers and rogue
waves (RWs) for the Manakov system with initial and boundary conditions, as well as data-driven parameters
discovery for Manakov systemwith unknown parameters. The data-driven vector RWswhich also contain inter-
action waves of RWs and bright-dark solitons, interaction waves of RWs and breathers, as well as RWs evolved
from bright-dark solitons are learned to verify the capability of the IPINN algorithm in training complex localized
wave. In the process of parameter discovery, routine IPINN can not accurately train unknown parameters
whether using clean data or noisy data. Thus we introduce parameter regularization strategy with adjustable
weight coefficients into IPINN to effectively and accurately train prediction parameters, then find that once set-
ting the appropriate weight coefficients, the training effect is better as using noisy data. Numerical results show
that IPINN with parameter regularization shows superior noise immunity in parameters discovery problem.
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1. Introduction

Localized waves, containing soliton, breather and roguewave (RW),
have becomea significant researchdirection in thefield of nonlinear sci-
ence in recent decades [1–4]. Compared with the breathers which are
localized in space or time (Akhmediev or Ma breathers [2,3]), the RWs
are localized both in space and time with the heights of the RWs are
two or more times those of the surrounding waves, and RW is the
name given by oceanographers to isolated large amplitude waves
which appears suddenly and disappear without a trace [5]. In 1964,
Draper first observed the existence of RWs and called them “Freak
ocean waves” [6], and found RWs widely occur both in deep ocean
and in shallow water [7–9]. Hitherto, the research of RWs has gone far
beyond the oceanographic background, containing other spatial-
temporal continuous systems, such as water tank [10], ultra-cold bo-
sonic gases [11], microwave transport [12], capillary waves [13], atmo-
sphere [14] and plasma [15]. In any of these aforementioned disciplines,
newdiscoverieswhich indicate that RWsmay be rather universal enrich
their concept and lead to progress towards a comprehensive
nces, Shanghai Key Laboratory
a Normal University, Shanghai
understanding of a phenomenonwhich still remains largely unexplored
to obtain state-of-the-art theories on the subject.

The so-called Peregrine soliton provided a formal mathematical de-
scription of RWs, this solitarywave is the solution of the (1+1)-dimen-
sional scalar nonlinear Schrödinger equation (NLS),which is localized in
both coordinate systems and describes a unique RW event [16]. This so-
lution is also unique in themathematical sense, due to it is expressed in
terms of rational functions of coordinates, which is different from most
other known soliton solutions of the NLS, and the determinant repre-
sentation of the N-order RW of the NLS has been directly obtained di-
rectly by a series of row operations on matrices appeared in the N-fold
Darboux transformation [17]. In a variety of complex systems, such as
optical fibers [18], financial systems [19] and Bose-Einstein condensates
[20], several amplitudes rather than a single one need to be considered.
The resulting coupled systems can describe extreme waves more accu-
rately than the scalar NLS model [20,21]. Furthermore, for scalar sys-
tems, the velocity of the background field has no practical effect on
the mode structure of RWs, since the corresponding solutions can be
correlated by Galileo transform, but the relative velocity between differ-
ent component fields for the coupled systems has real physical effects,
and can not be eliminated by any simple transformation [22]. In recent
years, some important results have been obtained in the study of soli-
tons, breathers and RWs for local and nonlocal multicomponent
coupled nonlinear systems, such as the two-component derivative
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NLS [23], coupled fractional NLS [24], nonlocal M-component NLS [25],
(2 + 1)-dimensional generalized coupled NLS with the four-wave
mixing term [26] and nonautonomous (2 + 1)-dimensional coupled
NLS with partially nonlocal nonlinear effect and a linear potential [27],
but the research of exact and numerical solutions for local and nonlocal
multicomponent coupled nonlinear systems is relatively few compared
with scalar nonlinear systems in general. Therefore, the extended re-
searches on vector RWs for multi-component coupled systems are non-
trivial and meaningful.

With the revolution of hardware equipment and software technol-
ogy, the explosive growth of available data and the great improvement
of computer operation speed promote the application ofmachine learn-
ing and big data analysis technology in practice [28,29]. Furthermore,
the computational complexity of neural network (NN) was greatly re-
duced by introducing back-propagation NN algorithm and the gradient
vanishing problem was solved, deep learning was born and has
attracted extensive attention [30,31]. Since that, deep learning deto-
nated a large number of landing applications, such as face recognition
[32], medical imaging [33], video surveillance [34], speech recognition
[35], language understanding [36] and mathematical physics [37].
Among these applications mentioned above, a new physics-informed
neural network (PINN)which controlled bymathematical physical sys-
tems based on the deep learning patterns of multi-layer NNs, have been
proposed and proved to be particularly suitable for dealing with both
the forward problems and highly ill-posed inverse problems by
obtaining the approximate solutions of governing equations anddiscov-
ering parameters involved in the governing equation are inferred from
the training data, and numerical results found the PINN approach only
needs less data sets to complete high-dimensional network tasks well
[37]. Recently, PINN has played an important role in many physical ap-
plications [38]. Afterwards, Jagtap and collaborators proposed two dif-
ferent kinds of adaptive activation functions, namely global adaptive
activation functions and locally adaptive activation functions, to ap-
proximate smooth and discontinuous functions as well as solutions of
linear and nonlinear partial differential equations by introducing a scal-
able parameters in the activation function and adding a slope recovery
termbased on activation slope to the loss function of locally adaptive ac-
tivation functions, and demonstrated the locally adaptive activation
functions further improve the training speed, performance and speed
up the training process of NNs [39,40].

Recently, the data-drive forward and inverse problems of nonlinear
partial differential equations have attracted extensive attention and
sparked interest in their research by applying the PINN [37]. Due to
the abundant sample space and good properties of integrable systems,
it has become a research hotspots by applying PINN into the field of in-
tegrable systems, and significant numerical calculation results and some
interesting unknown phenomena will be found. Chen research group is
committed to the research of integrable deep learning algorithm, and
obtains a series of high-quality data-driven solutions for classical inte-
grable systems by using PINN and improved PINN (IPINN) algorithms.
Specifically, data-driven solutions with abundant dynamic behaviors
for some classical nonlinear evolution partial differential equations
have been obtained by utilizing the PINN framework [41]. Especially,
Pu et al. first recovered the solitons, breathers and roguewave solutions
of the NLS with the aid of the PINN model [42]. The data-driven rogue
periodic wave of nonlinear partial differential equation has been
learned by applying multi-layer PINN for the first time [43], and the
PINN is applied to high-dimensional system to solve the (N + 1)-di-
mensional initial boundary value problem with 2N + 1 hyperplane
boundaries [44]. It is worth mentioning that a two-stage PINN method
which is tailored to the nature of equations by introducing features of
physical systems into NNs, is used to simulate abundant localized
wave solutions of integrable equations [45]. Furthermore, a PINN ap-
proach with neuron-wise locally adaptive activation function was pre-
sented to derive rational soliton solutions and rogue wave solutions of
the derivative NLS in complex space, and numerical results
2

demonstrated the improved approach has faster convergence and bet-
ter simulation effect than classical PINN method [46,47]. In addition,
other scholars have also done importantworks on data-driven solutions
and parameter discovery of other nonlinear systems, such as higher-
order NLS and defocusing NLS with the time-dependent potential [48,
49]. However, these aforementioned works utilize various PINNs with
up to two outputs and two coupled physical constraints, but we need
the NNswith at least four outputs and four coupled physical constraints
to simulate their corresponding data-driven vector localized waves and
parameters discovery for multi-component coupled nonlinear systems,
this is also the difficulty we need to solve when we reconstruct a new
NN to solve the data-driven vector localized waves and parameters dis-
covery ofmulti-component coupled systems. To our best knowledge, al-
though two parallel PINN with two inputs and two outputs are
proposed to study the dynamic process and model parameters of the
vector optical solitons for the coupled NLS in birefringent fibers [50],
as well as a pre-fixed multi-stage training PINN algorithm, which can
improve the convergence rate and the approximation ability of the orig-
inal PINNmethod, is introduced to obtain data-driven vector soliton so-
lutions of coupled NLS [51], but the vector solitons, breathers and RWs
for the Manakov system which also be called two-component coupled
NLS have not been studied by applying the PINN with neuron-wise lo-
cally adaptive activation function, slope recovery term, four outputs
and four physical constraints [21]. Therefore, we design and propose
an improved PINN (IPINN)model with neuron-wise locally adaptive ac-
tivation function, slope recovery term, four outputs, four constraint
equations and parameter regularization strategy, then recover the vec-
tor localized waves and learn unknown parameters of Manakov system
with the corresponding initial boundary value conditions for the first
time in this paper.

Recently, we proposed PINN with two inputs and three outputs to
solve data-driven forward-inverse problems for Yajima-Oikawa system
by using parameter regularization strategy [52]. Next, we focus on the
following Manakov system with unknown parameters λ1 and λ2, the
expression is as follows

iq1t þ λ1q1xx þ λ2 q1j j2 þ q2j j2
� �

q1 ¼ 0, x ∈ L0, L1½ �, t ∈ T0, T1½ �,

iq2t þ λ1q2xx þ λ2 q1j j2 þ q2j j2
� �

q2 ¼ 0, x ∈ L0, L1½ �, t ∈ T0, T1½ �,
q1 x, T0ð Þ ¼ q01 xð Þ, q2 x, T0ð Þ ¼ q02 xð Þ, x ∈ L0, L1½ �,
q1 L0, tð Þ ¼ qlb1 tð Þ, q1 L1, tð Þ ¼ qub1 tð Þ, t ∈ T0, T1½ �,
q2 L0, tð Þ ¼ qlb2 tð Þ, q2 L1, tð Þ ¼ qub2 tð Þ, t ∈ T0, T1½ �,

8>>>>>>>>><>>>>>>>>>:
ð1Þ

where “i” satisfied i2 =− 1 is an imaginary number, the subscripts de-
note the partial derivatives of the complex fields q1(x,t) and q2(x, t)with
respect to the space x and time t, while the L0 and L1 represent the lower
and upper boundaries of x respectively. Similarly, T0 and T1 represent
the initial and final times of t respectively. Moreover, the q01(x) (q

0
2(x))

represents initial value of the q1(x, t) (q2(x, t)) at t = T0, the qlb1 (t) and
qub1 (t) (qlb2 (t) and qub2 (t)) are the lower and upper boundaries of the q1
(x, t) (q2(x, t)) corresponding to x = L0 and x = L1 respectively. Eq. (1)
applies to a Kerr medium with the electrostrictive mechanism of
nonlinearity [53], as well as to randomly birefringent fiber optic
transmission links [54].

In recent years, a variety of explicit vector solitons, breathers and
RWs of the Manakov system have been obtained. By utilizing the RHP
approach, Yang derived the exact determinant form of vector N-
soliton for Manakov system with 3 × 3 Lax pair in detail [55]. Priya
et al. presented explicit forms of general breather, Akhmediev breather,
Ma soliton, and RWs of the Manakov system by means of the Hirota bi-
linear method [56]. The exact RW solutions, breathers, and rogue-
bright-dark solutions for the Manakov system have been constructed
by the Darboux transformation [57]. A novel multiparametric vector
freak solutionswhich feature both exponential and rational dependence
on coordinates for the Manakov system has been analytically
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constructed and discussed, and the family of exact solutions includes
known vector Peregrine (rational) solutions has also been derived
[58]. Zhao and Liu obtained the dark RWs analytically for the first time
in the Manakov system, and found that two RWs can appear in the
temporal-spatial distribution [59]. According to the generalized
Darboux transformation, Ling et al. studied the dynamics of high-
order RWs in theManakov system, and pointed out that four fundamen-
tal RWs can emerge from second-order vector RWs in the coupled sys-
tem, in contrast to the high-order ones in single-component systems
[22].Wang et al. investigated the novel higher-order localizedwaves ac-
count for theManakov system are investigated by using the generalized
Darboux transformation, and exhibited that two dark-bright solitons to-
gether with a second-order RW of fundamental or triangular pattern as
well as two breathers together with a second-order RW of fundamental
or triangular pattern coexist in the second-order localized wave for the
coupled system [60]. Rao et al. employed theKadomtsev-Petviashvili hi-
erarchy reduction method for deriving the general vector RW of theM-
coupled NLS systems which contain the Manakov system in a compact
form [61]. From the previous references, we find out that the exact vec-
tor RWs of the Manakov system is mainly obtained via Darboux trans-
formation, so it is difficult to accurately solve the vector RWs of the
multi-component coupled nonlinear systems, and the means are ex-
tremely scarce, especially for some non integrable coupled nonlinear
systems. Therefore, we consider how to apply the deep learning NN ar-
chitecture to solvemulti-component coupled nonlinear systems, specif-
ically how to recover various vector licalized waves when only the
initial-boundary value conditions of themulti-component coupled non-
linear systems are known. In the following, we focus on the data-driven
vector localizedwaveswhich contain vector solitons, breather and RWs,
as well as parameters discovery for the Manakov system with initial-
boundary value conditions by utilizing IPINN pattern.

The rest of this paper is organized as follows. In Section 2, we in-
troduce briefly discussions of the IPINN method with locally adaptive
activation function for the Manakov system, where also discuss about
training data, loss function, optimization method and the training en-
vironment. Moreover, the algorithm flow schematic and algorithm
steps for the Manakov system based on IPINN model are exhibited
in detail. In Section 3, the data-driven solitons and breather with
vivid plots and dynamic behavior analyses of the Manakov system
have been exhibited via IPINN model. Section 4 provides the data-
driven vector RWs of the Manakov system by utilizing the IPINN ap-
proach, and related plots and dynamic analyses are revealed in detail.
Section 5 presents experimental results with different trade-off norm
penalty term coefficients during learning data-driven parameter dis-
covery of Manakov system. Conclusions and discussions are given
out in last section.

2. Methodology

In general, we consider the general (1 + 1)-dimensional coupled
nonlinear time-dependent systems with unknown parameters λ1 and
λ2 in complex space, its general form is as shown below

iq1t þN q1, q2;λ1,λ2½ � ¼ 0,
iq2t þN 0 q1, q2;λ1,λ2½ � ¼ 0,

ð2Þ

where q1 and q2 are complex-valued solutions of x and t to be deter-
mined later,N ⋅ , ⋅ ;λ1,λ2½ � andN 0 ⋅ , ⋅ ;λ1,λ2½ � are nonlinear differen-
tial operators in space. Due to the complexity of the structure of the
complex-valued solutions q1(x, t) and q2(x, t) in Eq. (2), we decompose
q1(x, t) (q2(x, t)) into the real part u(x, t) (m(x, t)) and the imaginary
part v(x, t) (n(x, t)) by employing real-valued functions u(x, t) and v
(x, t) (m(x, t) and n(x, t)), that is q1(x, t) = u(x, t) + iv(x, t) and q2(x, t)
= m(x, t) + in(x, t). After substituting it into Eq. (2), then letting the
real and imaginary parts be equal to 0, we have
3

� vt þN u u, v,m,n;λ1,λ2½ � ¼ 0, ut þN v u, v,m,n;λ1,λ2½ � ¼ 0,
� nt þN 0

m u, v,m,n;λ1,λ2½ � ¼ 0, mt þN 0
n u, v,m,n;λ1,λ2½ � ¼ 0,

ð3Þ

accordingly, theN u,N v,N 0
m andN 0

n are nonlinear differential operators
in space. Then the physics-informed neural networks fu(x, t), fv(x, t), fm
(x, t) and fn(x,t) can be defined as

f u ≔ � vt þN u u, v,m,n;λ1,λ2½ �, f v ≔ ut þN v u, v,m,n;λ1,λ2½ �,
f m ≔ � nt þN 0

m u, v,m,n;λ1,λ2½ �, f n ≔ mt þN 0
n u, v,m,n;λ1,λ2½ �:

ð4Þ

From Ref. [46], one can know about the classical PINNmethod could
not accurately reconstruct some solutions with complex forms in some
complicated nonlinear systems, while the PINN approach with neuron-
wise locally adaptive activation function and slope recovery term can
improve the convergence speed and stability of the loss function in
the training process, so the focus of this paper is no longer to explain
the advantages of this improved PINNmethod, thus it is no longer com-
paredwith the traditional PINN in this paper. Therefore, considering the
training accuracy, performance requirements and the structural com-
plexity of multi-component coupled nonlinear systems, based on the
aforementioned PINN method, we extend and propose an IPINN
model for investigating the data-driven vector localized waves and pa-
rameters discovery of the Manakov system effectively in this paper. It
changes the slope of the activation function adaptively, resulting in
non-vanishing gradients and faster training of the network.

We establish an IPINN of depth D corresponding to the NN with an
input layer, D − 1 hidden-layers and an output layer. In the dth
hidden-layer, Nd number of neurons are present. Each hidden-layer of
the IPINN receives an output xd−1 ∈ ℝNd−1 from the previous layer,
where an affine transformation can be written as follows form

ℒd xd−1
� �

≜Wdxd−1 þ bd
; ð5Þ

where the networkweightsWd ∈ℝNd×N
d−1 and bias term bd ∈ℝNd asso-

ciated with the dth layer. Specifically, we define such neuron-wise lo-
cally adaptive activation function as

σ nadi ℒd xd−1
� �� �

i

� �
; d ¼ 1;2;⋯;D−1; i ¼ 1;2;⋯;Nd;

where σ is the activation function, and n > 1 is a scaling factor and {adi }

are additional ∑
D � 1

d¼1
Nd parameters to be optimized. Note that, there is a

critical scaling factor nc, and the optimization algorithm will become
sensitive when n ⩾ nc in each problem set. The neuron activation
function acts as a vector activation function in each hidden layer, and
each neuron has its own slope of activation function.

The IPINNwith neuron-wise locally adaptive activation function can
be represented as

q x;Θ
� �

¼ ℒDð Þi0 ∘σ ∘naD−1
i ℒD−1ð Þi∘⋯∘σ ∘na1i ℒ1ð Þi

� �
xð Þ; i0

¼ 1;2;3;4; ð6Þ

where x and q x;Θ
� �

represent the two inputs and four outputs in the
IPINN, respectively. The set of trainable parameters Θ ∈ P consists

of Wdbd
n oD

d¼1
, unknown parameters (λ1 and λ2) to be learned and

adi
� �D � 1

d¼1 , ∀ i = 1, 2, ⋯, Nd, P is the parameter space. In this paper,
the initialization of scalable parameters are carried out in the case of
nadi = 1, ∀ n ⩾ 1.

The resulting optimization algorithm will attempt to find the opti-
mized parameters including the weights, biases and additional coeffi-
cients in the activation to minimize the new loss function defined as



J.-C. Pu and Y. Chen Chaos, Solitons and Fractals 160 (2022) 112182
ℒ Θ
� �

¼ Loss ¼ Lossq1 þ Lossq2 þ Loss f 1 þ Loss f 2 þ Lossa; ð7Þ

whereLossq1 , Lossq2 , Lossf1 and Lossf2 are defined as following

Lossq1 ¼ 1
Nq

∑
Nq

j¼1
bu xj, tj
� �

� uj
��� ���2 þ∑

Nq

j¼1
bv xj
�

, tjÞ � vj
��� ���2" #

,

Lossq2 ¼ 1
Nq

∑
Nq

j¼1
bm xj, tj
� �

� mj
��� ���2 þ∑

Nq

j¼1
bn xj
�

, tjÞ � nj
��� ���2" #

,

ð8Þ

and

Loss f 1 ¼ 1
Nf

∑
Nf

l¼1
f u xlf , t

l
f

� ���� ���2 þ∑
Nf

l¼1
f v xlf
�

, tlf Þ
��� ���2" #

,

Loss f 2 ¼ 1
Nf

∑
Nf

l¼1
f m xlf , t

l
f

� ���� ���2 þ∑
Nf

l¼1
f n xlf
�

, tlf Þ
��� ���2" #

,

ð9Þ

where {xj, tj,uj,vj,mj,nj}j=1
Nq denote the initial-boundary value inputs data

on Eqs. (3) and (4). Here bu xj, tj
� �

,bv xj, tj
� �

, bm xj, tj
� �

and bn xj, tj
� �

represent
the optimal training outputs data through the IPINN.

Furthermore, , xlf , t
l
f ,

n oNf

l¼1
represent the collocation points on networks

fu(x, t), fv(x, t), fm(x, t) and fn(x, t). The last slope recovery term Lossa in
the loss function (Eq. (7)) is defined as

Lossa ¼ 1

Na
D � 1 ∑

D � 1

d¼1
exp

∑
Nd

i¼1
adi

Nd

0B@
1CA

, ð10Þ

where 1/Na is hyper-parameter for slope recovery term Lossa, andwe all
take Na = 100 for dominating the loss function and ensuring that the
final loss value is not too large in this paper. Here, term Lossa forces
the NN to increase the activation slope value quickly, which ensures
the non-vanishing gradient of the loss function and improves the net-
work's training speed. Consequently, Lossq1 and Lossq2 correspond to
the loss on the initial and boundary data, the Lossf1 and Lossf2 penalize
the Manakov system not being satisfied on the collocation points, and
Fig. 1. Schematic of IPINN for theManakov systemwith unknown parameters λ1 and λ2. The lef
equation is the physics-informed network. The two NNs share hyper-parameters and they bot

4

the Lossa changes the topology of Loss function and improves the
convergence speed and network optimization ability. Moreover, in
order to better measure the training error, we introduce L2 norm
error, which is defined as follows

Error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

k¼1
qexact xkð Þ � qpredict xkð ;ΘÞ�� ��2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

k¼1
qexact xkð Þj j2

s ,

where qpredict xk;Θ
� �

and qexact(xk) represent the model training
prediction solution and exact analytical solution at point xk = (xk, tk),
respectively.

In order to understand the IPINN approach more clearly, the
IPINN algorithm flow chart of the Manakov system is shown in follow-
ing Fig. 1, where one can see the NN along with the supplementary
physics-informed part, and the loss function is evaluated using the con-
tribution from the NN part as well as the residual from the governing
equation given by the physics-informedpart. Then, one can seek the op-
timal values of weights W, biases b, parameters λ1 and λ2 as well as
scalable parameter aid in order to minimize the loss function below cer-
tain tolerance ε until a prescribedmaximum number of iterations. From
Fig. 1, since the Manakov system contains two components q1(x, t) and
q2(x, t), one can see that the “NN” part has four output functions
{u,v,m,n}, and there are four nonlinear equation constraints in the
“PDE” part, that is, in terms of the nonlinear coupled system with
more components, the number of output functions and nonlinear
equation constraints of the IPINN will increase multiply. Furthermore,
in order to further understand the IPINN, we also showcase the corre-
spondingprocedure steps of the IPINNwith adaptive activation function
and slope recovery term in the following table.

Algorithm: IPINN algorithmwith adaptive activation function and slope recovery term.
Step 1: Specification of training set in computational domain:
Training data: {xj,tj,uj,vj,mj,nj}j=1

Nq , Residual training points: {xfl, tfl}l=1
Nf .

Step 2: Construct NN q x;Θ
� �

with random initialization of parameters Θ.

Step 3: Construct the residual NN {fu, fv, fm, fq} by substituting surrogate q x;Θ
� �

into the

governing equations using automatic differentiation and other arithmetic operations.
t NN is the universal approximation networkwhile the right one induced by the governing
h contribute to the loss function.
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Step 4: Specification of the loss function LðΘÞ that includes the slope recovery term.

Step 5: Find the best parameters Θ
∗
using a suitable optimization method for

minimizing the loss function ℒðΘÞ as
Θ

� ¼ arg min
Θ∈P

ℒðΘÞ.

In this method, all loss functions are simply optimized by employing
theAdamand L-BFGS algorithm, inwhichAdamoptimization algorithm
is a variant of the traditional stochastic gradient descent, whereas L-
BFGS optimization algorithm is a full-batch gradient descent optimiza-
tion algorithm based on a quasi-Newton method. [62,63]. Especially,
the scalable parameters in the adaptive activation function are initial-
ized generally as n = 10, adi = 0.1, unless otherwise specified. In
addition, we select relatively simple multi-layer perceptrons
(i.e., feedforward NNs) with the Xavier initialization and the hyperbolic
tangent (tanh) as activation function. All the codes in this article is
based on Python 3.7 and Tensorflow 1.15, and all numerical experi-
ments reported here are run on a DELL Precision 7920 Tower computer
with 2.10 GHz 8-core Xeon Silver 4110 processor, 64 GB memory and
11 GB NVIDIA GeForce GTX 1080 Ti video card.

3. Data-driven vector solitons and breathers of the Manakov system

In this section, we will focus on the data-driven vector solitons and
breather for the Manakov system with λ1 = 1 and λ2 = 2 by means of
9 hidden layers deep IPINN with 40 neurons per layer, thus the
physics-informed parts Eq. (4) of the IPINN for Manakov sysem (1) be-
come the following formula

f u ≔ � vt þ uxx þ 2u u2 þ v2 þm2 þ n2� �
,

f v ≔ ut þ vxx þ 2v u2 þ v2 þm2 þ n2� �
,

f m ≔ � nt þmxx þ 2m u2 þ v2 þm2 þ n2� �
,

f n ≔ mt þ nxx þ 2n u2 þ v2 þm2 þ n2� �
:

ð11Þ

The vectorN-soliton and breather of theManakov systemwith λ1=
1 and λ2 = 2 have been derived by the Riemann-Hilbert method [55],
the general vector form of N-soliton solution can be expressed as

q1 x, tð Þ
q2 x, tð Þ

264
375 ¼ 2i ∑

N

j, k¼1

αj

βj

0B@
1CAeθj � θ∗k M � 1

� �
jk
, ð12Þ

where θl = − iζlx − 2iζl2t, and αl, βl and ζl are arbitrary constants in
complex space (l = 1,2,⋯,N). The symbol “ ∗ ” represents complex
conjugate, and M is N × N matrix whose elements are given by

Mjk ¼
1

ζ ∗
j � ζ k

e � θ∗jþθkð Þ þ α∗
jαk þ β∗

jβk

� �
eθ

∗
jþθk

h i
: ð13Þ

Next, we will exhibit the vector one-soliton, two-soliton and
breather for the Manakov system in more detail.

• Vector one-solitons

In order to get the vector one-soliton solution, we set N = 1 in the
above formulae (12), and take α1 = 1/4, β1 = 1/4 and ζ1 = 1 + 2i,
then the vector one-soliton solution in the Manakov system can be re-
written as

q1,os ¼
16e2i 6t � xð Þ

8e � 4x � 16t þ e4xþ16t ,

q2,os ¼
16e2i 6t � xð Þ

8e � 4x � 16t þ e4xþ16t :

ð14Þ
5

• Vector two-solitons

When N=2 and Reζ1 ≠ Re ζ2, solution (12) describe the collision of
two one-soliton, to illustrate, we take ζ1= 0.1+0.7i, ζ2=− 0.1+ 0.4i,
α1 = α2 = 1, β1 = 1/4, β2 = 0 and the corresponding solution are
derived as

q1,ts ¼
Ω

3584 cos
33
25

t � 2
5
x


 �
� 2000e � 22

25t � 3
5x � 333e

6
25tþ11

5 x � 208e � 6
25t � 11

5 x � 2125e
22
25þ3

5x
,

q2,ts ¼
Δ

3584 cos
33
25

t � 2
5
x


 �
� 2000e � 22

25t � 3
5x � 333e

6
25tþ11

5 x � 208e � 6
25t � 11

5 x � 2125e
22
25þ3

5x
,

ð15Þ

with

Ω ¼ 8
5
i


1036ie

48
25it−

1
5ix−

8
25tþ4

5x þ 1036ie
48
25it−

1
5ixþ 8

25t−
4
5x

− 464ie
3
5itþ1

5ix−
14
25t−

7
5x− 339ie

3
5itþ1

5ixþ14
25tþ7

5x

− 448e
48
25it−

1
5ixþ 8

25t−
4
5x þ 448e

3
5itþ1

5ix−
14
25t−

7
5x þ 448e

48
25it−

1
5ix−

8
25tþ4

5x

− 448e
3
5itþ1

5ixþ14
25tþ7

5xÞ;
Δ ¼ 56

5
ið125ie48

25it−
1
5ix−

8
25tþ4

5x þ 37ie
48
25it−

1
5ixþ 8

25t−
4
5x − 88ie

3
5itþ1

5ixþ14
25tþ7

5x−

16e
48
25it−

1
5ixþ 8

25t−
4
5x−16e

3
5itþ1

5ixþ14
25tþ7

5xÞ:

• Vector breathers

Specially, if N = 2 and Reζ1 = Re ζ2, one can obtain the vector
breather solution for the Manakov system, by substituting ζ1 = 0.7i,
ζ2 = 0.4i, α1 = α2 = 1, β1 = 1/4, β2 = 0 into Eq. (12), we have

q1,bs ¼
88
5

84e49
25itþ4

5x þ 84e49
25it � 4

5x � 48e � 7
5xþ16

25it � 37e7
5xþ16

25it

� 3584 cos
33
25

t

 �

þ 1936e � 3
5x þ 265e11

5 x þ 144e � 11
5 x þ 2057e3

5x
,

q2,bs ¼
616
5

11e49
25itþ4

5x þ 3e49
25it � 4

5x � 8e7
5xþ16

25it

� 3584 cos
33
25

t

 �

þ 1936e � 3
5x þ 265e11

5 x þ 144e � 11
5 x þ 2057e3

5x
:

ð16Þ

Furthermore, we can also obtain higher-order vector solitons and
breathers by taking different N from Eq. (12). Accordingly, the form
and dynamic behavior of higher-order vector solitons and breathers
are more complex, with more parameters and stronger adjustability.
In this paper, we only consider data-driven vector one-soliton, two-
soliton and breather, and the higher-order case is similar.

3.1. Data-driven vector one-solitons

In this subsection, we will focus on the data-driven vector one-
solitons with the initial conditionsq0r xð Þ and Dirichlet boundary condi-
tions qlbr tð Þ and qubr tð Þ, r = 1, 2. Here one can take [L0,L1] and [T0,T1] in
Eq. (1) as [−3.0,3.0] and [−0.2,0.2], respectively. Then, we obtain the
corresponding initial conditions as shown below

q0r xð Þ ¼ qr,os x, � 0:2ð Þ, x ∈ � 3:0, 3:0½ �, ð17Þ

and the Dirichlet boundary conditions

qlbr tð Þ ¼ qr,os � 3:0, tð Þ, qubr tð Þ ¼ qr,os 3:0, tð Þ, t ∈ � 0:2, 0:2½ �, r ¼ 1, 2:

ð18Þ

We employ the traditional finite difference scheme on even grids in
Matlab to simulate vector one-solitons which contains the initial datas
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(17) and boundary datas (18) to acquire the original training data.More
specifically, we divide spatial region [−3.0,3.0] into 2500 points and
temporal region [−0.2,0.2] into 1000 points, the vector one-solitons
(14) is discretized into 1000 snapshots accordingly. We generate a
smaller training dataset containing initial-boundary data by randomly
extracting Nq = 2500 from original dataset and Nf = 40000
collocation points which are generated by the Latin Hypercube
Sampling method (LHS) [64]. After giving a dataset of initial and
boundary points, the latent vector one-solitons qr(x, t)(r = 1,2) have
been successfully learned by tuning all learnable parameters of the 9
layers IPINNwith 40 neurons per layer and regulating the loss function,
in which we utilize the 50,000 steps Adam firstly and subsequently use
15,134 steps L-BFGS optimizations for minimizing the loss function (7).
The relative L2 errors of the IPINN model are 3.813803e−2 for q1(x, t)
and 3.754237e−2 for q2(x,t), the total number of iterations is 65,134.

Figs. 2–4 display the deep learning results of vector one-solitons
based on the IPINN related to the initial boundary value problem (17)
and (18) of the Manakov system (1). Specifically, the density plots
with the corresponding peak scale for diverse dynamics which contain
exact dynamics, learned dynamics and error dynamics have been exhib-
ited in detail, and the sectional drawings of one soliton solutions qr(x, t)
(r = 1,2) at different moments arising from the IPINN are displayed in
Fig. 2. From the bottom panels of Fig. 2(a) and (b), one can indicate vec-
tor one-solitons propagate from right to left along the x-axis, and show
that the amplitudes of solitons are constant with the development of
time t. Fig. 3 exhibit the three-dimensional plots and corresponding
contour maps of the predicted vector one-soliton solutions qr(x, t)
stemmed from the IPINN. The loss function curve figures account for
the vector one-solitons qr(x, t) have been given out in Fig. 4, the left
panel (a) of Fig. 4 demonstrates that Adam is an optimizer with
oscillatory loss function curves, the left panel (b) in Fig. 4 illustrates L-
BFGS is an optimization algorithm with linear loss function curves.
Due to the Lossa possesses unique topology structure (10), the Lossa
curves decrease slowly around 0.001 and have a strong stability in
Fig. 2.The vector one-solitons qr(x,t) (r=1,2) resulted from the IPINNwith the randomly chose
× ” in learned dynamics, andNf=40000 collocation points in the corresponding spatiotempor
(x,t) with five distinct training moments t =− 0.13,− 0.07, 0.00, 0.07 and 0.13 (darkturquois
one-solitons qr(x,t) at the aforementioned five distinctmoments: (a) The density plots and sect
the one-soliton q2(x,t). (For interpretation of the references to color in this figure legend, the r
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Fig. 4. From Fig. 4 (a), we will find that the loss function curves of
Lossq1

, Lossq2
, Lossf 1 and Lossf 2 overlap, which is caused by the

consistency of the initial-boundary value conditions of q1(x, t) and q2
(x, t). By the way, according to Eqs. (12)–(14), one can observe that
we can take unequal values of α1 and β1 in Eq. (12) to adjust the
amplitude and initial boundary value conditions for the vector one-
solitons. Of course, for simplicity, we take the case of equal amplitude
in this subsection.

3.2. Data-driven vector two-solitons

Inwhat follows,wewill consider the initial-boundary value problem
of the Manakov system for obtaining the data-driven vector two-
solitons by applying the multilayer IPINN. Similarly, taking [L0,L1] and
[T0,T1] in Eq. (1) as [−6.0,6.0] and [−3.0,3.0] respectively, we derive
the corresponding initial condition q0r xð Þ and Dirichlet boundary
conditions qlbr tð Þ and qubr tð Þ, r=1, 2 as shown in the following formulas

q0r xð Þ ¼ qr,ts x, � 3:0ð Þ, x ∈ � 6:0, 6:0½ �, ð19Þ

and

qlbr tð Þ ¼ qr,ts � 6:0, tð Þ, qubr tð Þ ¼ qr,ts 6:0, tð Þ, t ∈ � 3:0, 3:0½ �, r ¼ 1, 2:ð20Þ

Bymeans of Matlab, we discretize the Eq. (15) by utilizing the tradi-
tional finite difference scheme on even grids, and obtain the original
training data which only contains initial data (19) and boundary data
(20) by dividing the spatial region [−6.0,6.0] into 2000 points and the
temporal region [−3.0,3.0] into 1500 points, the remaining data will
be used to obtain training errors by comparing with predicted vector
two-solitons. After that, we generate a smaller training dataset contain-
ing initial-boundary data by randomly extracting Nq = 2000 from
original training dataset and Nf = 30000 collocation points produced
via LHS in the corresponding spatiotemporal region. Then, the latent
n initial and boundarypointsNq=2500which have been shownbyusingmediumorchid “
al region. The exact, learned and error dynamics density plots for the vector one-solitons qr
e dashed lines), and the sectional drawings which contain the learned and explicit vector
ional drawings for the one-soliton q1(x,t); (b) The density plots and sectional drawings for
eader is referred to the web version of this article.)



Fig. 3. The three-dimensional plotswith contourmap on three planes of the predicted vector one-solitons qr(x,t) (r=1,2) based on the IPINN: (Left side panel) The 3Dplot for the q1(x,t);
(Right side panel) The 3D plot for the q2(x,t).
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vector two-solitons qr(x, t) (r = 1,2) have been successfully learned by
imposing a 9-hidden-layer IPINNwith 40 neurons per layer, and the re-
lated loss functions are optimized through 20,000 Adam iterations and
26,239 L-BFGS iterations. The relative L2 errors of the IPINN model are
2.678111e−2 for q1(x, t) and 2.356420e−2 for q2(x, t), the total number
of iterations is 46,239.

Figs. 5–7 display the training results of the vector two-solitons qr
(x, t) (r = 1,2) based on the IPINN related to the initial-boundary
value problem (19) and (20) of the Manakov system (1). Fig. 5 depicts
various dynamic density plots and sectional drawing at different mo-
ments, in which the panel (a) corresponds to two-soliton solution q1
(x, t) and panel (b) corresponds to two-soliton solution q2(x, t) for the
Manakov system (1). As we can see from the bottom panels in Fig. 5
(a) and (b), the q1(x, t) soliton before collision has two components,
but the q2(x, t) soliton before collision has only a component.
However, after collision its another component of the q2(x, t) soliton
appears when this soliton has re-emerged on the right side by combin-
ing learned dynamics density plot in Fig. 5 and 3D plots in Fig. 6, it also
means that the two-soliton solution q2(x, t) satisfies a soliton fission
process. Of course, the total energy of each component soliton is
conserved before and after collision. Fig. 6 exhibits the three-
dimensional plots with projected contours on three planes for the
Fig. 4. The loss function curve figures of the vector one-solitons qr(x,t) (r= 1,2) arising from t
function curve for the 50,000 Adam optimization iterations; (b) The loss function curve for the
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learning vector two-solitons qr(x, t), which corresponds to the two
density plots of learned dynamics in Fig. 5. Fig. 7 showcases curve
plots of the loss function after 20,000 Adam optimization iterations
and 26,239 L-BFGS optimization iterations in IPINN framework. Differ-
ent from the vector one-soliton solutions in Section 3.1, the loss function
curves of Adam optimization for the vector two-soliton solutions are
more hierarchical, which is caused by the different initial-boundary
value conditions of q1(x, t) and q2(x, t). Obviously, from the bottom
panels (a) and (b) of Fig. 5, one can find that the amplitude of q1(x, t)
is always greater than that of q2(x, t) at a fixed moment, this also
causes the loss function values Lossq1 and Lossf1 to be greater than
Lossq2 and Lossf2 respectively during the Adam optimization iteration.
On the other hand, the loss function curves Lossq1 and Lossq2 of L-BFGS
optimization are missing after a certain number of iterations, that is be-
cause the loss function value in this part is less than 1e−6, which is be-
yond the statistical range of “ % f” in Python 3.7.

3.3. Data-driven vector breathers

It iswell known that the breather solution is a special two-soliton so-
lution, so it is also called the soliton bound state solution. Next, we will
consider the data-driven vector breather solutions for the Manakov
he IPINN with the 50,000 steps Adam and 15,134 steps L-BFGS optimizations: (a) The loss
15,134 L-BFGS optimization iterations.



Fig. 5. The vector two-solitons qr(x,t) (r=1,2) resulted from the IPINNwith the randomly chosen initial and boundary pointsNq=2000which have been shown by usingmediumorchid
“× ” in learned dynamics, andNf=30000 collocation points in the corresponding spatiotemporal region. The exact, learned and error dynamics density plots for the vector two-solitons qr
(x,t) with five distinct training moments t =− 2.00,− 1.00, 0.00, 1.00 and 2.00 (darkturquoise dashed lines), and the sectional drawings which contain the learned and explicit vector
two-solitons qr(x,t) at the aforementioned five distinctmoments: (a) The density plots and sectional drawings for the two-soliton q1(x,t); (b) The density plots and sectional drawings for
the two-soliton q2(x,t). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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system by utilizing the initial-boundary value conditions and the 9-
layer IPINN with 40 neurons per layer. Similarly, considering the initial
conditions q0r xð Þ (r = 1,2) and Dirichlet boundary conditions qlbr tð Þ
and qubr tð Þ of Eq. (1) arising from the exact breathers Eq. (16), we take
[L0,L1] and [T0,T1] in Eq. (1) as [−6.0,6.0] and [−3.0,3.0], respectively.
Therefore, the corresponding initial conditions can be written as
bellows

q0r xð Þ ¼ qr,bs x, � 3:0ð Þ, x ∈ � 6:0, 6:0½ �, ð21Þ
and the Dirichlet boundary conditions become

qlbr tð Þ ¼ qr,bs � 6:0, tð Þ, qubr tð Þ ¼ qr,bs 6:0, tð Þ, t ∈ � 3:0, 3:0½ �, r ¼ 1, 2:

ð22Þ
Fig. 6. The three-dimensional plots with contourmap on three planes of the predicted vector tw
(Right side panel) The 3D plot for the q2(x,t).
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Similarly, discretizing Eq. (16) with the aid of the traditional finite
difference scheme on even grids in Matlab, and we obtain the original
training data which contain initial data (21) and boundary data (22)
by dividing the spatial region [−6.0,6.0] into 2000 points and the tem-
poral region [−3.0,3.0] into 1000 points. Then, one can generate a
smaller training dataset that containing initial-boundary data by ran-
domly extracting Nq = 2000 from original dataset and Nf = 30000
collocation points which are produced by the LHS. After that, the
latent vector breathers qr(x, t) have been successfully learned by
tuning all learnable parameters of the IPINN and regulating the
loss function. The model of IPINN achieved relative L2 error of
1.631581e−2 for the breather solution q1(x, t) and relative L2 error of
1.442727e−2 for the breather solution q2(x, t), and the total number of
o-solitons qr(x,t) (r=1,2) based on the IPINN: (Left side panel) The 3Dplot for the q1(x,t);



Fig. 7. The loss function curve figures of the vector two-solitons qr(x,t) (r= 1,2) arising from the IPINN with the 20,000 steps Adam and 26,239 steps L-BFGS optimizations: (a) The loss
function curve for the 20,000 Adam optimization iterations; (b) The loss function curve for the 26,239 L-BFGS optimization iterations.
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iterationswhich contain 20,000 Adamoptimizations and 22,374 L-BFGS
optimizations is 42,374.

Figs. 8–10 display the deep learning results of the vector breathers qr
(x, t) (r= 1,2) based on the IPINN related to the initial-boundary value
problem (21) and (22) of the Manakov system (1). The dynamics be-
haviors which contain exact, learned, error dynamics of the vector
breathers are shown in Fig. 8. Compared with the dynamics behaviors
of vector two-solitons in the bottom panels of Fig. 5, one can notice
that the shapes of the vector breathers are the same at t = − 1 (t =
− 2) and t=1 (t=2) in the bottompanels of Fig. 8, which are different
from the vector two solitons. From the learned dynamics density plots
Fig. 8. The vector breathers qr(x,t) (r=1,2) resulted from the IPINNwith the randomly chosen
” in learned dynamics, and Nf =30000 collocation points in the corresponding spatiotemporal
with five distinct training moments t = − 2.00, − 1.00, 0.00, 1.00 and 2.00 (darkturquoise
breathers qr(x,t) at the aforementioned five distinct moments: (a) The density plots and sect
the breather q2(x,t). (For interpretation of the references to color in this figure legend, the rea
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in Fig. 8, it can be seen that this is a localized periodic oscillation solu-
tion, whose shape is similar to respiratory fluctuation, so it is also called
“breather”. Fig. 9 exhibits three-dimensional plots of the predicted vec-
tor breathers qr(x, t) for the Eq. (1) result from the IPINN. The graph in
Fig. 10(a) is similar to that the case of vector two-solitons in Fig. 7(a),
and there are more missing parts of the Lossq1 and Lossq2 in Fig. 10(b),
which also indicate that the optimization for the vector breathers is
better than the vector two-solitons arising from the L-BFGS optimiza-
tion iterations.

In this section, based on the initial-boundary value problem of the
Manakov system, we discuss the data-driven vector one-solitons, two-
initial and boundary pointsNq=2000which have been shown by usingmediumorchid “×
region. The exact, learned and error dynamics density plots for the vector breathers qr(x,t)
dashed lines), and the sectional drawings which contain the learned and explicit vector
ional drawings for the breather q1(x,t); (b) The density plots and sectional drawings for
der is referred to the web version of this article.)



Fig. 9. The three-dimensional plots with contourmap on three planes of the predicted breather solutions qr(x,t) (r=1,2) based on the IPINN: (Left side panel) The 3D plot for the q1(x,t);
(Right side panel) The 3D plot for the q2(x,t).
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solitons and breathers via the IPINN model. However, for more data-
driven vector N-solitons and N-breathers, such as the vector two-
breathers which derived from the vector four-solitons, we can also re-
cover them through the IPINN framework. Of course, it will require us
to take more initial-boundary value data points and residual configura-
tion points, establish deeper and wider NNs, and demand stronger CPU
and GPU of computer. Table 1 exhibits relative L2 norm errors of three
different types of localized waves by means of IPINN.
4. Data-driven vector rogue waves of the Manakov system

In various complex systems, the research of vector RWs has more
important physical significance, and the multi-component model has
more appropriate practical significance. In this section, we will focus
on the data-driven vector RWs of the Manakov system (1) with λ1 =
1 and λ2 = 2 based on the IPINN. That is the physics-informed parts
are consistentwith Eq. (11) in Section 3. The abundant interaction solu-
tions between RWs and various other types of waves and N-order RWs
with parameter adjustment have been obtained by means of Darboux
transformation. Next, in order to compare the errors of vector RWs
learned by using the IPINN, we give out the exact solution expressions
of several common vector RWs.
Fig. 10. The loss function curve figures of the vector breathers qr(x,t) (r = 1,2) arising from th
function curve for the 20,000 Adam optimization iterations; (b) The loss function curve for the
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• Vector Rogue Waves I

One can obtain the explicit vector RWs of the Manakov systemwith
λ1 = 1 and λ2 = 2 as following

q1,rw1 x, tð Þ ¼ � 3
10

⋅
Ω1

900t
ffiffiffi
3

p
þ 1500

ffiffiffi
3

p
x � 972t2 � 810tx � 675x2 � 3125

,

q2,rw1 x, tð Þ ¼ 3
10

⋅
Ω2

900t
ffiffiffi
3

p
þ 1500

ffiffiffi
3

p
x � 972t2 � 810tx � 675x2 � 3125

,

Ω1 ¼ ð972i
ffiffiffi
3

p
t2 þ 810i

ffiffiffi
3

p
txþ 675i

ffiffiffi
3

p
x2 � 4050it � 3375ixþ 450t

ffiffiffi
3

p
�

2625
ffiffiffi
3

p
xþ 972t2 þ 810txþ 675x2 þ 5000Þe36

25it ,

Ω2 ¼ ð972i
ffiffiffi
3

p
t2 þ 810i

ffiffiffi
3

p
txþ 675i

ffiffiffi
3

p
x2 � 3375ixþ 3600t

ffiffiffi
3

p
þ 2625

ffiffiffi
3

p
x �

972t2 � 810tx � 675x2 � 5000Þe 3
25i � 5xþ9tð Þ,

ð23Þ

the vector RWs of the Manakov system have been derived by Guo and
Ling [57], this kind of RW solutions are similar to the first-order RW so-
lutions for the NLS [8].

• Vector Rogue Waves II
e IPINN with the 20,000 steps Adam and 22,374 steps L-BFGS optimizations: (a) The loss
22,374 L-BFGS optimization iterations.



Table 1
Relative L2 errors of three different localized waves types in IPINN model.

Component Wave types

Vector one-solitons Vector two-solitons Vector breathers

Component q1 3.813803e−02 2.678111e−02 1.631581e−02
Component q2 3.754237e−02 2.356420e−02 1.442727e−02
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Furthermore, in addition to the above vector RWs I, Guo and Ling
also obtained amore complex vector RWs II [57], the form of the explicit
vector RWs II is as follows

q1,rw2 x, tð Þ ¼ � 3
10

Δ1

Ξ
,

q2,rw2 x, tð Þ ¼ 3
10

Δ2

Ξ
,

ð24Þ

where

Δ1 ¼ ð−3125000þ 524880i
ffiffiffi
3

p
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ffiffiffi
3

p
t2x2 þ 364500i

ffiffiffi
3

p
tx3 þ 5062500it

ffiffiffi
3

p
xþ

6682500t2−2187000
ffiffiffi
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p
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p
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p
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ffiffiffi
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The vector RWs II are different behaviors to RWs of NLS [8], and dif-
ferent form Ref. [19] by a symmetry analysis, which is nothing but the
RWs of NLS an different altitude.

• Vector Rogue Waves III

In order to obtain the interaction solutions between dark-bright sol-
itons and RWs, authors also derived this interesting solutions by
Darboux transformation method in Ref. [57], as shown below

q1,rw3 x, tð Þ ¼ Λ
Π

,

q2,rw3 x, tð Þ ¼ 4 ix � 1 � iþ 4t � xð Þe � 2
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ð25Þ
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This kind of solutions behaves like the nonlinear superposition for
the RWs and dark-bright soliton. This vector RWs (25) reveal themech-
anism and dynamic behavior of RWs produced in dark-bright soliton.

• Vector Rogue Waves IV

For the vector RWs IV, we will exhibit the dark-bright solitons to-
gether with single Peregrine solitons, which have been arrived at by
means of the Darboux transformation theory [60], it can be expressed
by the following formula
11
q1,rw4 x, tð Þ ¼ e2it 1600it � 1600t2 � 400x2 þ e � 2x þ 300
� �

1600t2 þ 400x2 þ e � 2x þ 100
,

q2,rw4 x, tð Þ ¼ 20 � 20ið Þ 2xþ 4it þ 1ð Þe � xþ3it

1600t2 þ 400x2 þ e � 2x þ 100
:

ð26Þ

Baronio obtained this solution by employing the Darboux dressing
technique for the first time [58]. Later, Wang et al. also obtained this so-
lution through the generalized Darboux transformation [60]. These re-
sults provide evidence of an attractive interaction between the dark-
bright waves and RWs, and the observed behavior may also be
interpreted as a mechanism of generation of one RW out of a slowly
moving boomeronic soliton.

• Vector Rogue Waves V

Moreover, once the vector RWs IV are obtained, the vector RWsV are
also derived correspondingly, as shown below
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This is an interaction solutions obtained by the nonlinear superposi-
tion of breathers and RWs, which are more complex than the vector
RWs IV [58,60]. Furthermore, due to the introduction of periodic oscilla-
tory breather, the study of this solution plays an important role in the
stability analysis of optical fiber transmission.

4.1. Data-driven vector rogue waves I

In this section, in order to recover the data-driven vector RWs I of the
Manakov systemwithλ1=1 andλ2=2,wewill commit to introducing
the initial boundary value conditions of the Manakov system to the 9-
layer IPINN with 40 neurons per layer. Selecting [L0,L1] and [T0,T1] in
Eq. (1) as [−3.0,6.0] and [−2.0,2.0] respectively, we can write the
corresponding initial value conditions as follows

q0r xð Þ ¼ qr,rw1 x, � 2:0ð Þ, x ∈ � 3:0, 6:0½ �, ð28Þ

and the Dirichlet boundary conditions become

qlbr tð Þ ¼ qr,rw1 � 3:0, tð Þ, qubr tð Þ ¼ qr,rw1 6:0, tð Þ, t ∈ � 2:0, 2:0½ �, r ¼ 1, 2:

ð29Þ

In order to obtain the original training data set of the above initial
boundary value conditions (28) and (29), we discretize the exact vector
RWs I (23) based on the finite differencemethod by dividing the spatial
region [−3.0,6.0] into 2000 points and the temporal region [−2.0,2.0]
into 1000 points in Matlab. Furthermore, in addition to the data set
composed of the aforementioned initial boundary value conditions,
the residual data set is used to calculate theL2 norm error by comparing
with the predicted vector RWs I. After that, a smaller training dataset
that containing initial-boundary data will be generated by randomly
extracting Nq = 2000 from original dataset and Nf = 30000
collocation points which are produced by the LHS. According to
20,000 Adam iterations and 25,117 L-BFGS iterations, the latent vector



Fig. 11.The vector RWs I qr(x,t) (r=1,2) resulted from the IPINNwith the randomly chosen initial and boundary pointsNq=2000whichhave been shownbyusingmediumorchid “× ” in
learned dynamics, andNf=30000 collocation points in the corresponding spatiotemporal region. The exact, learned and error dynamics density plots for the vector RWs I q1(x,t)with five
distinct training moments t=− 1.34,− 0.67, 0.00, 0.67 and 1.34 (darkturquoise dashed lines), and the sectional drawings which contain the learned and explicit vector RWs I qr(x,t) at
the aforementioned five distinct moments: (a) The density plots and sectional drawings for the RW I q1(x,t); (b) The density plots and sectional drawings for the RW I q2(x,t). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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RWs I qr(x, t) have been successfully learned by employing the IPINN,
and the network achieved relative L2 error of 7.505391e−3 for the RW
q1(x, t) and relative L2 error of 7.988676e−3 for the RW q2(x, t), and
the total number of iterations is 45,117.

Figs. 11–13 present the deep learning results of the vector RWs I qr
(x, t) (r = 1,2) based on the IPINN for the Manakov system with
the initial-boundary value problem (28) and (29). Fig. 11 displays
the exact, learned and error dynamics of the vector RWs I, and exhibits
the sectional drawings which contain the learned and explicit RWs
at five different moments. From the density plots of learned dynamics
and profiles which reveal amplitude and error of exact and prediction
RWs in Fig. 11, we can observe that the shapes are similar and ampli-
tudes are identical for the vector RWs q1(x, t) and q2(x, t), but
Fig. 12.The three-dimensional plotswith contourmapon threeplanes of thepredictedvector RW
side panel) The 3D plot for the q2(x,t).
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the positions and orientations of the two-component RWs are different.
The 3D plots of the predicted vector RWs I qr(x, t) have been
shown through the IPINN in Fig. 12. Since the predicted vector RWs
I qr(x, t) are similar in shape, the loss function curves of Lossq1 and
Lossq2 (Lossf1 and Lossf2) are overlapped in Fig. 13(a). Due to the
loss functions of Lossq1 and Lossq2 are small enough, some parts of the
loss function curves are missing. However, when the number of
iterations is 15,000 to 20,000 in Fig. 13(b), the loss function curve
appears frequently from the missing state, which indicates that
there are many oscillations in the loss function optimization at this
stage by utilizing the L-BFGS optimizer, benefit from the introduction
of loss function Lossa, so that the total loss function Loss decreases
smoothly.
s I qr(x,t) (r=1,2) based on the IPINN: (Left sidepanel) The3Dplot for the q1(x,t); (Right



Fig. 13. The loss function curve figures of the vector RWs I qr(x,t) (r=1,2) arising from the IPINNwith the 20,000 steps Adamand 25,117 steps L-BFGS optimizations: (a) The loss function
curve for the 20,000 Adam optimization iterations; (b) The loss function curve for the 25,117 L-BFGS optimization iterations.
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4.2. Data-driven vector rogue waves II

For recovering the data-driven vector RWs II of theManakov system
with λ1 = 1 and λ2 = 2 in the 9-layer IPINNwith 40 neurons per layer,
we consider the initial value conditions

q0r xð Þ ¼ qr,rw2 x, � 1:0ð Þ, x ∈ � 5:0, 10:0½ �, ð30Þ

with the Dirichlet boundary conditions

qlbr tð Þ ¼ qr,rw2 � 5:0, tð Þ, qubr tð Þ ¼ qr,rw2 10:0, tð Þ, t ∈ � 1:0, 1:0½ �, r ¼ 1, 2:

ð31Þ
Fig. 14. The vector RWs II qr(x,t) (r=1,2) resulted from the IPINNwith the randomly chosen in
in learned dynamics, andNf=30000 collocation points in the corresponding spatiotemporal re
five distinct trainingmoments t=− 0.67,− 0.33, 0.00, 0.33 and 0.67 (darkturquoise dashed lin
at the aforementioned five distinct moments: (a) The density plots and sectional drawings for
interpretation of the references to color in this figure legend, the reader is referred to the web
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With the aid of Matlab, the sampling points are selected bymeans of
the finite differencemethodwith spatial-temporal region [−5.0,10.0] ×
[−1.0,1.0], and the vector RWs (24) are discretized into [2000 × 1000]
data points which contain initial-boundary value condition (30) and
(31). Then, one can obtain the training dataset by randomly extracting
Nq = 2000 from original initial-boundary value condition dataset and
Nf = 30000 collocation points produced via the LHS in spatial-
temporal region. Through 20,000 Adam iterations and 23,068 L-BFGS it-

erations to optimize loss function L Θ
� �

, the latent vector RWs II qr(x, t)

have been successfully recovered by using the IPINN, and the network
achieved relative L2 error of 3.575306e−3 for the RW q1(x, t) and
itial and boundary pointsNq=2000which have been shown by usingmediumorchid “× ”
gion. The exact, learned and error dynamics density plots for the vector RWs II qr(x,t) with
es), and the sectional drawingswhich contain the learned and explicit vector RWs II qr(x,t)
the RW II q1(x,t); (b) The density plots and sectional drawings for the RW II q2(x,t). (For
version of this article.)



Fig. 15. The three-dimensional plots with contour map on three planes of the predicted vector RWs II qr(x,t) (r = 1,2) based on the IPINN: (Left side panel) The 3D plot for the q1(x,t);
(Right side panel) The 3D plot for the q2(x,t).
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relative L2 error of 3.321024e−3 for the RW q2(x, t), and the total
number of iterations is 43,068.

Figs. 14–16 exhibit the corresponding training results stemmed
from the IPINN for the vector RWs II qr(x, t) (r = 1,2) of the Manakov
system with the initial boundary value problem (30) and (31).
In Fig. 14, the exact, learned and error dynamics density plots
with corresponding amplitude scale size on the right side have been
given out, it is worth mentioning that the Nq = 2000 training data
points involved in the initial-boundary condition are marked by
mediumorchid symbol “ × ” in the learned density graphs both in
(a) and (b) of Fig. 14. Meanwhile, the sectional drawings which include
the learned and exact vector RWs II qr(x, t) have been shown at the five
distinct moments pointed out in the exact, learned and error dynamics
density plots by using darkturquoise dashed lines in the bottompanel of
Fig. 14. Similar to the predicted vector RWs I, from the density plots of
learning dynamics and section diagrams in Fig. 14, one can see that
the two predicted component solutions qr(x, t) are mirror symmetrical
about the central axis of panels (a) and (b) of Fig. 14. Fig. 15 displays
the three-dimensional plots with contour map on three planes of the
predicted vector RWs II qr(x, t) based on the IPINN. Fig. 16 exhibits the
loss function curve figures of the vector RWs II qr(x, t) arising from the
IPINN with the 20,000 steps Adam and 23,068 steps L-BFGS optimiza-

tions on the loss function L Θ
� �

.

Fig. 16. The loss function curvefigures of the vector RWs II qr(x,t) (r=1,2) arising from the IPIN
curve for the 20,000 Adam optimization iterations; (b) The loss function curve for the 23,068
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4.3. Data-driven vector rogue waves III

In order to obtain the data-driven vector RWs III of theManakov sys-
temwith λ1= 1 and λ2= 2 by using the 9-layer IPINNwith 40 neurons
per layer, we are committed to studying the initial value conditions

q0r xð Þ ¼ qr,rw3 x, � 0:5ð Þ, x ∈ � 8:0, 8:0½ �, ð32Þ

and the Dirichlet boundary conditions

qlbr tð Þ ¼ qr,rw3 � 8:0, tð Þ, qubr tð Þ ¼ qr,rw3 8:0, tð Þ, t ∈ � 0:5, 0:5½ �, r ¼ 1, 2:

ð33Þ

We employ the traditional finite difference scheme on even grids in
Matalb to simulate Eq. (25) which contains the initial data (32) and
boundary data (33) to obtain the original training data. Specifically, di-
vide spatial region [−8.0,8.0] into 2000 points and temporal region
[−0.5,0.5] into 1000 points, the vector RWs III are discretized into
1000 snapshots accordingly. We generate a smaller training dataset
containing initial-boundary data by randomly extracting Nq = 2000
from original dataset and Nf = 30000 collocation points which are
generated in corresponding spatial-temporal region by utilizing the
LHS method. After that, introducing the dataset of initial and boundary
Nwith the 20,000 steps Adam and 23,068 steps L-BFGS optimizations: (a) The loss function
L-BFGS optimization iterations.



Fig. 17. The vector RWs III qr(x,t) (r=1,2) resulted from the IPINNwith the randomly chosen initial and boundary pointsNq=2000which have been shownby usingmediumorchid “× ”
in learned dynamics, andNf=30000 collocation points in the corresponding spatiotemporal region. The exact, learned and error dynamics density plots for the the RWs III qr(x,t)withfive
distinct trainingmoments t=− 0.33,− 0.17, 0.00, 0.17 and 0.33 (darkturquoise dashed lines), and the sectional drawingswhich contain the learned and explicit the RWs III qr(x,t) at the
aforementioned five distinct moments: (a) The density plots and sectional drawings for the RW III q1(x,t); (b) The density plots and sectional drawings for the RW III q2(x,t). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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points into the IPINN, and taking 20,000 Adam iterations and 26,037 L-

BFGS iterations to optimize loss function L Θ
� �

, the latent vector RWs II

qr(x, t) have been successfully learned by tuning all learnable
parameters of the IPINN, and the network achieved relative L2 error of
2.197789e−3 for the RW q1(x, t) and relative L2 error of 3.661877e−3

for the RW q2(x,t), and the total number of iterations is 46,037.
Figs. 17–19provide the training results arising from the IPINN for the

vector RWs III qr(x, t) (r = 1,2) of the Manakov system with the initial
boundary value problem (32) and (33). In Fig. 17, the exact, learned
and error dynamics density plots with corresponding amplitude scale
size on the right side have been exhibited, it is worth mentioning that
the Nq = 2000 training data points involved in the initial-boundary
Fig. 18. The three-dimensional plots with contour map on three planes of the predicted vector
(Right side panel) The 3D plot for the q2(x,t).
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condition aremarked bymediumorchid symbol “× ” in the learned den-
sity plots both in (a) and (b) of Fig. 17. Meanwhile, the sectional draw-
ings which include the learned and exact vector RWs III qr(x, t) have
been shown at the five distinct moments pointed out in the exact,
learned and error dynamics density plots by using darkturquoise
dashed lines in the bottom panel of Fig. 17. Fig. 18 displays the three-
dimensional plots with contour map on three planes of the predicted
vector RWs III qr(x, t) based on the IPINN. From Figs. 17 and 18, with
the development of time, one can observe that the first component q1
(x, t) of vector RWs III qr(x, t) is an interaction solution that dark
soliton gradually generates a RW on the side of the dark soliton, while
the second component q2(x, t) is an interaction solution that the bright
soliton is gradually emerges a RW on the wave crest of bright soliton.
RWs III qr(x,t) (r= 1,2) based on the IPINN: (Left side panel) The 3D plot for the q1(x,t);



Fig. 19. The loss function curve figures of the vector RWs III qr(x,t) (r = 1,2) arising from the IPINN with the 20,000 steps Adam and 26,037 steps L-BFGS optimizations: (a) The loss
function curve for the 20,000 Adam optimization iterations; (b) The loss function curve for the 26,037 L-BFGS optimization iterations.
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Fig. 19 exhibits the loss function curve figures of the vector RWs III qr
(x, t) arising from the IPINN with the 20,000 steps Adam and 26,037

steps L-BFGS optimizations on the loss function L Θ
� �

. In particular,

from the (a) of Fig. 19, these loss functions present an unstable iteration
curve in the first 2500 iterations of Adam optimizer, and the values of
the loss functions have an upward trend at this time.

4.4. Data-driven vector rogue waves IV

Similarly, considering the initial condition and Dirichlet boundary
condition of the Manakov system with λ1 = 1 and λ2 = 2 to obtain
Fig. 20. The vector RWs IV qr(x,t) (r=1,2) resulted from the IPINNwith the randomly chosen in
in learned dynamics, andNf=30000 collocation points in the corresponding spatiotemporal re
fivedistinct trainingmoments t=− 0.33,− 0.17, 0.00, 0.17 and 0.33 (darkturquoise dashed lin
at the aforementioned five distinct moments: (a) The density plots and sectional drawings for
interpretation of the references to color in this figure legend, the reader is referred to the web
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the data-driven vector RWs 4 by using the 9-layer IPINN with 40 neu-
rons per layer, the [L0,L1] and [T0,T1] in Eq. (1) are taken as
[−10.0,5.0] and [−0.5,0.5], respectively. We immediately obtain the
initial value conditions

q0r xð Þ ¼ qr,rw4 x, � 0:5ð Þ, x ∈ � 10:0, 5:0½ �, ð34Þ

and the Dirichlet boundary conditions

qlbr tð Þ ¼ qr,rw4 � 10:0, tð Þ, qubr tð Þ ¼ qr,rw4 5:0, tð Þ, t ∈ � 0:5, 0:5½ �, r ¼ 1, 2:

ð35Þ
itial and boundary pointsNq=2000which have been shownby usingmediumorchid “× ”
gion. The exact, learned and error dynamics density plots for the vector RWs IV qr(x,t) with
es), and the sectional drawingswhich contain the learned and explicit vector RWs IV qr(x,t)
the RW IV q1(x,t); (b) The density plots and sectional drawings for the RW IV q2(x,t). (For
version of this article.)
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Similarly, discretizing Eq. (26) with the aid of the traditional finite
difference scheme on even grids, and we obtain the original training
data which contain initial data (34) and boundary data (35) by dividing
separately the spatial region [−10.0,5.0] into 2000 points and the tem-
poral region [−0.5,0.5] into 1000 points. Then, one can generate a
smaller training dataset that contains partial initial-boundary data by
randomly extracting Nq = 2000 from original dataset and Nf = 30000
collocation points which are produced by the LHS. After that, the
latent vector RWs IV qr(x, t) have been successfully learned by tuning
all learnable parameters of the IPINN, and the network achieved relative
L2 error of 1.637892e−3 for the RW q1(x, t) and relative L2 error of
1.784348e−3 for the RW q2(x, t), and the total number of iterations is
51,110.

Figs. 20–22provide the training results arising from the IPINN for the
vector RWs IV qr(x, t) (r = 1,2) of the Manakov system with the initial
boundary value problem (34) and (35). In Fig. 20, the exact, learned
and error dynamics density plots with corresponding amplitude scale
size on the right side have been exhibited, it is worth mentioning that
theNq=2000 training data points involved in the initial-boundary con-
dition are marked bymediumorchid symbol “× ” in the learned density
plots both in (a) and (b) of Fig. 20. Meanwhile, the sectional drawings
which include the learned and exact vector RWs IV qr(x, t) have been
shown at the five distinct moments pointed out in the exact, learned
and error dynamics density plots by using darkturquoise dashed lines
in the bottom panel of Fig. 20. Fig. 21 displays the three-dimensional
plots with contour map on three planes of the predicted vector RWs
IV qr(x, t) based on the IPINN. From Figs. 20 and 21, with the
development of time, one can observe that the first component q1(x, t)
of vector RWs IV qr(x, t) is the interaction solution composed of dark
soliton and RW, while the second component q2(x, t) is the interaction
solution composed of bright soliton and RW whose the amplitude is
much lower than that of bright soliton. Different from the case where
the RW in the second component of vector RW III emerges on the
wave crest, RWs of this part both appear on one side of the bright-
dark soliton. Fig. 22 exhibits the loss function curve figures of the vector
RWs IV qr(x, t) arising from the IPINN with the 20,000 steps Adam and

31,110 steps L-BFGS optimizations on the loss function L Θ
� �

.

4.5. Data-driven vector rogue waves V

Next, considering the initial conditions q0r xð Þ and Dirichlet boundary
conditions qlbr tð Þ and qubr tð Þ of Eq. (1) arising from the vector RWs V
Eq. (27) for obtaining the data-driven vector RWs 5 by using the 9-
layer IPINN with 40 neurons per layer, we set [L0,L1] and [T0,T1] in
Fig. 21. The three-dimensional plots with contour map on three planes of the predicted vector
(Right side panel) The 3D plot for the q2(x,t).
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Eq. (1) as [−8.0,6.0] and [−0.25,0.25], respectively. After that, the
corresponding initial conditions can be written as belows

q0r xð Þ ¼ qr,rw5 x, � 0:25ð Þ, x ∈ � 8:0, 6:0½ �, ð36Þ

and the Dirichlet boundary conditions

qlbr tð Þ ¼ qr,rw5 � 8:0, tð Þ, qubr tð Þ ¼ qr,rw5 6:0, tð Þ, t ∈ � 0:25, 0:25½ �, r ¼ 1, 2:

ð37Þ

Here, employing the same data discretizationmethod in Section 4.1,
and producing the training data which consists of initial data (36) and
boundary data (37) by dividing the spatial region [−8.0,6.0] into 2000
points and the temporal region [−0.25,0.25] into 1000 points. We gen-
erate a smaller training dataset that containing initial-boundary data by
randomly extracting Nq = 2000 from original dataset and Nf = 30000
collocation points which are generated by the LHS method. After giving
the dataset of initial and boundary points, the latent data-driven vector
RWs 5 have been successfully learned by tuning all learnable parame-
ters of the IPINN and utilizing 20,000 Adam iterations and 14,602 L-
BFGS iterations to regulate the loss function (7), and the network
achieved relative L2 error of 6.325696e−3 for the RW q1(x, t) and
relative L2 error of 7.654479e−3 for the RW q2(x, t), and the total
number of iterations is 34,602.

Figs. 23–25 display the deep learning results come from the IPINN
for the vector RWs V qr(x,t) (r = 1,2) of the Manakov system with the
initial-boundary value problem (36) and (37). In Fig. 23, the exact,
learned and error dynamics density plotswith corresponding amplitude
scale size on the right side have been exhibited, it is worth mentioning
that theNq=2000 training data points involved in the initial-boundary
condition aremarked bymediumorchid symbol “× ” in the learned den-
sity plots both in (a) and (b) of Fig. 23. Meanwhile, the sectional draw-
ings which include the predictive and exact vector RWs V qr(x, t) have
been shown at the five distinct moments pointed out in the exact,
learned and error dynamics density plots by using darkturquoise
dashed lines in the bottom panel of Fig. 23. Fig. 24 displays the three-
dimensional plots with contour map on three planes of the predicted
vector RWs V qr(x, t) based on the IPINN. Fig. 25 exhibits the loss
function curve figures of the vector RWs V qr(x, t) arising from the
IPINN with the 20,000 steps Adam and 14,602 steps L-BFGS optimiza-

tions on the loss function L Θ
� �

.

In this section, we construct a variety of vector RWs of the Manakov
system with λ1 = 1 and λ2 = 2 by using the IPINN, in which contain
simple vector RWs in Subsection 4.1 and complex vector RWs in
Subsections 4.2–4.5. Although we can accurately simulate both simple
RWs IV qr(x,t) (r = 1,2) based on the IPINN: (Left side panel) The 3D plot for the q1(x,t);



Fig. 22. The loss function curve figures of the vector RWs IV qr(x,t) (r = 1,2) arising from the IPINN with the 20,000 steps Adam and 31,110 steps L-BFGS optimizations: (a) The loss
function curve for the 20,000 Adam optimization iterations; (b) The loss function curve for the 31,110 L-BFGS optimization iterations.
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and complex vector RWs, we can only restore their dynamic behavior
for complex vector RWs in a short time interval, and a large number
of training experiments show that the IPINNhas poor dynamic behavior
training effect in a long time region. For example, for the vector RWs V
formed by the interaction between breathers and RWs, we know that
the periodic oscillation can be better displayed in the long-time region.
Due to the dynamic structures and initial boundary value condition of
complex vector RWs, so we can only capture accurate numerical results
in a short time interval. Through a large number of numerical experi-
ments, we are committed to observing the local effect of complex vector
RWs more clearly in a long time interval, but we can't get ideal numer-
ical results, so the local effect of complex vector RWs is not obvious. The
Fig. 23. The vector RWs V qr(x,t) (r=1,2) resulted from the IPINNwith the randomly chosen in
in learned dynamics, andNf=30000 collocation points in the corresponding spatiotemporal re
five distinct trainingmoments t=− 0.17,− 0.08, 0.00, 0.08 and 0.17 (darkturquoise dashed lin
at the aforementioned five distinct moments: (a) The density plots and sectional drawings for
interpretation of the references to color in this figure legend, the reader is referred to the web
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main reasons may be as follows: the performance of numerical experi-
mental equipment is insufficient, thus the training intensity of complex
systems and their solutions cannot be achieved; the structure of the
simulation object itself is complex, we all know that the complex vector
RWs changes rapidly with time, unlike the soliton, which does not
change with time, so it is difficult to realize the numerical simulation
of complex vector RWs in a long time interval; the PINN method itself
needs further research to meet the training requirements of complex
systems and their numerical solutions. Therefore, how to make the
IPINN algorithm train localized waves with good results in the long-
time region is an unsolved problem. Finally, we provide a summary of
all the aforementioned training results in following Table 2.
itial and boundary pointsNq=2000which have been shown by usingmediumorchid “× ”
gion. The exact, learned and error dynamics density plots for the vector RWs V qr(x,t) with
es), and the sectional drawingswhich contain the learned and explicit vector RWV qr(x,t)
the RW V q1(x,t); (b) The density plots and sectional drawings for the RW V q2(x,t). (For
version of this article.)



Fig. 24. The three-dimensional plots with contour map on three planes of the predicted vector RWs V qr(x,t) (r = 1,2) based on the IPINN: (Left side panel) The 3D plot for the q1(x,t);
(Right side panel) The 3D plot for the q2(x,t).
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5. Data-driven parameters discovery of Manakov system

In this section, we focus on the data-driven parameters discovery of
Manakov system with unknown parameters (1) by using IPINN model.
At this time, the physics-informed part becomes the following form

f u ≔ � vt þ λ1uxx þ λ2u u2 þ v2 þm2 þ n2� �
,

f v ≔ ut þ λ1vxx þ λ2v u2 þ v2 þm2 þ n2� �
,

f m ≔ � nt þ λ1mxx þ λ2m u2 þ v2 þm2 þ n2� �
,

f n ≔ mt þ λ1nxx þ λ2n u2 þ v2 þm2 þ n2� �
,

ð38Þ

in which λ1 and λ2 are parameters to be learned. The unknown
parameters λ1 and λ2 are initialized to λ1 = λ2 = 0 in IPINN. Then we
define the relative error of unknown parameters is

RE ¼ ∣bλα � λα ∣
λα

� 100%,α ¼ 1, 2, ð39Þ

where the bλα and λα represent predicted value and true value,
respectively. All noise interference in this section is added to the
randomly chosen small data set, the specific form is as follows
Fig. 25. The loss function curvefigures of the vector RWsV qr(x,t) (r=1,2) arising from the IPIN
curve for the 20,000 Adam optimization iterations; (b) The loss function curve for the 14,602
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Data � train ¼ Data � trainþ noise∗np:std Data � trainð Þ∗np:random:

randn Data � train:shape 0½ �,Data � train:shape 1½ �ð Þ,
ð40Þ

where noise and Data−train indicate the noise intensity and a small
randomly chosen training data set, respectively. The np. std(⋅) returns
the standard deviation of an array element, and np. random. randn(⋅, ⋅)
returns a set of samples with a standard normal distribution.

For learning the parameters λ1 and λ2 in Eq. (1) with the aid of the
IPINN with neuron-wise locally adaptive activation function, and con-
sidering the initial conditions and Dirichlet boundary conditions of
Eq. (1) arising from the vector RWs I (23) by using the 9-layer IPINN
with 40 neurons per layer, we set the spatiotemporal region (x, t) ∈
[−3,6] × [−0.5,0.5]. Thus the corresponding initial conditions can be
written as following

q0r xð Þ ¼ qr,rw1 x, � 0:5ð Þ, x ∈ � 3:0, 6:0½ �, ð41Þ

and the Dirichlet boundary conditions become

qlbr tð Þ ¼ qr,rw1 � 3:0, tð Þ, qubr tð Þ ¼ qr,rw1 6:0, tð Þ, t ∈ � 0:5, 0:5½ �, r ¼ 1, 2:

ð42Þ
Nwith the 20,000 steps Adam and14,602 steps L-BFGS optimizations: (a) The loss function
L-BFGS optimization iterations.



Table 2
Relative L2 errors of three different RWs in IPINN model.

Component RW Types

Vector RWs I Vector RWs II Vector RWs III Vector RWs IV Vector RWs V

Component q1 7.505391e−03 3.575306e−03 2.197789e−03 1.637892e−03 6.325696e−03
Component q2 7.988676e−03 3.321024e−03 3.661877e−03 1.784348e−03 7.654479e−03
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Then we use the same data discretization method in Section 4, and
generate the original data set by dividing the spatial region [−3.0,6.0]
into 2000 points and temporal region [−0.5,0.5] into 1500 points. We
obtain a smaller training dataset that containing initial-boundary data
(41) and (42) by randomly extracting Nq = 3000 from original
dataset and Nf = 30000 collocation points which are yielded by the
LHS method. After that, the latent data-driven unknown parameters
λ1 and λ2 have been successfully learned by tuning all learnable
parameters of the IPINN and utilizing Adam iterations and L-BFGS iter-
ations to regulate the loss function ℒðΘÞ.

Fig. 26 displays the training results of unknown parameters under
the above initial boundary value conditions by using the IPINN with
20,000 Adam iterations and diverse number of L-BFGS iterations.
Fig. 26(a)–(b) exhibit the variation curves of unknown coefficients
Fig. 26. The training results of parameter discover by means of the IPINN with 20,000 Adam ite
coefficients λ1 and λ2 with different noise intensity; (c) the variation curve of loss function wit
different interference noise.
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λ1 and λ2 with different noise intensity. The panel (c) of Fig. 26 shows
the variation curve of loss function with different noise intensity.
While the error variation plots of unknown coefficients λ1 and λ2

under different interference noise are revealed in Fig. 26(d). However,
we find that the learning effect of unknown parameters is not ideal,
from training result by using clean initial-boundary data (noise=0%)
in IPINN, the relative error of λ1 reaches about 15%, while the relative
error of λ2 exceeds 30% from Fig. 26. Once the noise intensity is
increased, the relative error also increases in direct proportion from
Fig. 26(d). Thus we urgently need to find IPINN algorithmwhich can ac-
curately and effectively learn unknown parameters. Fortunately, we
find that the PINN with with neuron-wise locally adaptive activation
function and L2 norm parameter regularization shows amazing
effect in studying the inverse problem of Yajima-Oikawa system
rations and various number of L-BFGS iterations: (a)–(b) the variation curves of unknown
h different noise intensity; (d) unknown coefficients λ1 and λ2 error variation plots under
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[52]. Therefore, we introduce L2 norm parameter regularization into
IPINN to study the parameter discovery problem of Manakov system.

FromRef. [52], we construct a new loss functionL
~

Θ
� �

with L2 norm

weight decay, as following

~ℒ Θ
� �

¼ LossPR ¼ ℒ Θ
� �

þ β
2
∥W∥22; ð43Þ

where L Θ
� �

and W have been defined in Eq. (7) and Eq. (5).
Next, we utilize the same initial-boundary value data points as IPINN

without parametric regularization, after 20,000 Adam iterations and
various number of L-BFGS iterations, then corresponding numerical re-
sults are exhibited in Fig. 27 by using IPINN with β = 0.0001 weight
decay. Fig. 27(a) and (b) display the variation curves of unknown coef-
ficients λ1 and λ2 with different noise intensity, Fig. 27(c) depicts the
variation curve of loss function with different noise intensity, and the
noise intensity and relative error plots are shown in Fig. 27(d). The
specific numerical results show that λ1 obtains the minimum relative
error of 2.263904% as the noise intensity is 0%, and maximum relative
error 11.419546% as the noise intensity is 1%, whereas λ2 obtains the
minimum relative error of 0.225925% as the noise intensity is 0%, and
maximum relative error 13.228714% as the noise intensity is 1%.
Compared with the numerical results obtained by IPINN without pa-
rameter regularization in Fig. 26, the relative error of parameters
learned by IPINN with L2 norm parameter regularization is small as a
whole, especially when the noise intensity is 0%, the parameters
Fig. 27. The training results of parameter discover bymeans of the IPINNwithβ=0.0001weigh
intensity; (c) the variation curve of loss function with different noise intensity; (d) unknown c
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training effect is the best. In other words, the training effect has been
very good in the case of clean data. However, when using the data
with noise interference for training, the relative error of the prediction
parameters is larger than that of the training results of clean data. There-
fore, we need to reset theweight decay coefficient to improve the train-
ing effect of using the data with noise interference.

Nowwe attempt to increase theweight decay coefficient by an order
of magnitude to further obtain a better training effect in the case of
noise data, so we set β=0.001 in IPINNwith L2 norm penalty, and em-
ploy same initial-boundary value data points as IPINNwithout paramet-
ric regularization, then corresponding training results are depicted in
Fig. 28 by using 20,000 Adam iterations and various number of L-BFGS
iterations in IPINN with parametric regularization. From Fig. 28, one
can find that the training effectwith data of various noise ismuch better
than that with clean data, except that the training effect is poor when
the noise intensity is 1%. Although the training effect is not ideal when
using individual noise intensity data, the generalization training
shows that IPINNwith coefficient β=0.001 of weight decay has excel-
lent noise resistance. Of course, we can also adjust coefficient of the
weight decay to adapt to the various problems at hand.

So to summarise, in this section, the parameter discovery problem of
Manakov system is studiedfirstly through IPINN, and it is found that the
training effect is not good when using clean data and noisy data. There-
fore, we introduce the parameter regularization strategy into IPINN, and
study the parameters discovery problem of Manakov system by means
of IPINN with two different parameter regularization coefficients.
t decay: (a)–(b) the variation curves of unknown coefficientsλ1 and λ2with different noise
oefficients λ1 and λ2 error variation plots under different interference noise.



Fig. 28. The training results of parameter discover bymeans of the IPINNwith β=0.001weight decay: (a)–(b) the variation curves of unknown coefficients λ1 and λ2 with different noise
intensity; (c) the variation curve of loss function with different noise intensity; (d) unknown coefficients λ1 and λ2 error variation plots under different interference noise.
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Specifically, we find that when theweight decay coefficientβ=0.0001,
The training effect is excellent when using clean data, while the numer-
ical results are not good when using noisy data. However, when the
weight decay coefficient β = 0.001, not only the training effect using
noisy data is better than that using clean data, but also the relative
error of parameters is small as a whole. Finally, we provide a summary
of all the aforementioned training results in following Table 3.

6. Conclusions and discussions

In this paper, we propose an IPINN framework with neuron-wise lo-
cally adaptive activation function and slope recovery term for solving
data-driven localized waves and recovering unknown parameters of
Manakov system for the first time,whichprovides a very important the-
oretical basis and training experience for investigating data-driven lo-
calized waves and parameters discover of other two-component or
even multi-component coupled nonlinear systems. Since the Manakov
system possesses two component solutions qr(x, t) (r = 1,2), the
number of initial-boundary value conditions is twice that of the (1 +
1) dimensional single NLS [42], thus the IPINN framework yield four
outputs and four nonlinear equation constraints instead of two outputs
and two nonlinear equation constraints of the (1+ 1) dimensional sin-
gleNLS, sowe extended and improved PINN algorithmby increasing the
number of output components and physics constraints. Then we are
committed to study the data-driven vector localized waves, which con-
tain vector solitons, vector breathers and various vector RWs, as well as
parameters discovery for the Manakov system by employing the IPINN
22
approach with small sample data set. The abundant numerical results
show that the IPINN model can effectively and accurately recover the
different dynamical behaviors of localized waves for Manakov system
fairly. However, we firstly study the parameters discover of Manakov
system with unknown parameters by means of the IPINN, and find
that the training effect is very poor whether using clean data or noisy
data. Therefore, in order to train the parametersmore accurately, we in-
troduce the L2 norm parameter regularization with adjustable weight
coefficients β into the routine IPINN, and find that once using the appro-
priate weight coefficients, the unknown parameters can be recovered
accurately and effectively whether using clean data or noise data.

Compared with classical PINN [42], the PINN method with adaptive
activation function and slope recovery term loss function has better
training effect and better convergence speed for training derivative
NLS by means of a large number of training experiments and vivid
plots [46,47]. Therefore, starting from the aforementioned PINN ap-
proach,we establish an IPINN for investigating data-driven vector local-
izedwaves and parameters discovery ofManakov system. Furthermore,
in the original PINNmodel, we only employ the L-BFGS optimization al-
gorithm to optimize the loss function, butwe utilize not only the L-BFGS
optimizer, but also the Adam optimizer to optimize the loss function in
the novel IPINN framework. Moreover, we believe that we can easily
construct the IPINN of more component coupled nonlinear systems to
obtain vector localized waves, and we can also build corresponding
IPINN of thehigh-dimensionalmulti-component coupled nonlinear sys-
tems for studying high-dimensional vector localized waves. These are
also the contents that we will further study in the future.



Table 3
Comparison of correct Manakov system and identified Manakov system obtained by means of the IPINN with different noise intensities and weight hyper-parameters β.

Manakov system Hyper-parameters

β = 0 β = 0.0001 β = 0.001

Correct Manakov system iq1t + q1xx + 2(|q1|2 + |q2|2)q1 = 0
iq2t + q2xx + 2(|q1|2 + |q2|2)q2 = 0

λ1 error: 0%
λ2 error: 0%

iq1t + q1xx + 2(|q1|2 + |q2|2)q1 = 0
iq2t + q2xx + 2(|q1|2 + |q2|2)q2 = 0

λ1 error: 0%
λ2 error: 0%

iq1t + q1xx + 2(|q1|2 + |q2|2)q1 = 0
iq2t + q2xx + 2(|q1|2 + |q2|2)q2 = 0

λ1 error: 0%
λ2 error: 0%

Identified Manakov system
(clean data)

iq1t + 0.709768q1xx + 1.376634(|q1|2 + |q2|2)q1 = 0
iq2t + 0.709768q2xx + 1.376634(|q1|2 + |q2|2)q2 = 0

λ1 error: 29.023170%
λ2 error: 31.168324%

iq1t + 1.022639q1xx + 2.004519(|
q1|2 + |q2|2)q1 = 0

iq2t + 1.022639q2xx + 2.004519(|
q1|2 + |q2|2)q2 = 0
λ1 error: 2.263904%
λ2 error: 0.225925%

iq1t + 0.986093q1xx + 1.942293(|
q1|2 + |q2|2)q1 = 0

iq2t + 0.986093q2xx + 1.942293(|
q1|2 + |q2|2)q2 = 0
λ1 error: 1.390725%
λ2 error: 2.885365%

Identified Manakov system
(1% noise)

iq1t + 0.511133q1xx + 1.018215(|q1|2 + |q2|2)q1 = 0iq2t +
0.511133q2xx + 1.018215(|q1|2 + |q2|2)q2 = 0

λ1 error: 48.886692%
λ2 error: 49.089260%

iq1t + 0.885805q1xx + 1.735426(|
q1|2 + |q2|2)q1 = 0

iq2t + 0.885805q2xx + 1.735426(|
q1|2 + |q2|2)q2 = 0

λ1 error: 11.419546%
λ2 error: 13.228714%

iq1t + 0.902120q1xx + 1.744415(|
q1|2 + |q2|2)q1 = 0

iq2t + 0.902120q2xx + 1.744415(|
q1|2 + |q2|2)q2 = 0
λ1 error: 9.788042%
λ2 error: 12.779254%

Identified Manakov system
(2% noise)

iq1t + 0.461134q1xx + 0.906474(|q1|2 + |q2|2)q1 = 0
iq2t + 0.461134q2xx + 0.906474(|q1|2 + |q2|2)q2 = 0

λ1 error: 53.886570%
λ2 error: 54.676281%

iq1t + 0.938114q1xx + 1.830483(|
q1|2 + |q2|2)q1 = 0

iq2t + 0.938114q2xx + 1.830483(|
q1|2 + |q2|2)q2 = 0
λ1 error: 6.188589%
λ2 error: 8.475840%

iq1t + 1.002510q1xx + 1.959728(|
q1|2 + |q2|2)q1 = 0

iq2t + 1.002510q2xx + 1.959728(|
q1|2 + |q2|2)q2 = 0
λ1 error: 0.251031%
λ2 error: 2.013606%

Identified Manakov system
(3% noise)

iq1t + 0.367840q1xx + 0.756801(|q1|2 + |q2|2)q1 = 0
iq2t + 0.367840q2xx + 0.756801(|q1|2 + |q2|2)q2 = 0

λ1 error: 63.216011%
λ2 error: 62.159954%

iq1t + 0.960615q1xx + 1.869262(|
q1|2 + |q2|2)q1 = 0

iq2t + 0.960615q2xx + 1.869262(|
q1|2 + |q2|2)q2 = 0
λ1 error: 3.938526%
λ2 error: 6.536925%

iq1t + 0.998383q1xx + 1.936382(|
q1|2 + |q2|2)q1 = 0

iq2t + 0.998383q2xx + 1.936382(|
q1|2 + |q2|2)q2 = 0
λ1 error: 0.161713%
λ2 error: 3.180903%
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The IPINN method showcases a series of results of various interest-
ing problems in the interdisciplinary field of applied mathematics and
computational science, and opens a new path for using NN to recover
unknown solutions and correspondingly discover the unknown para-
metric equations in mathematical physics and deep learning. This also
provides an significant theoretical basis and experimental reference
for solving some previously unsolvable big data spatial-temporal prob-
lems and high-dimensional science. Furthermore, the problem of solv-
ing multi-component coupled nonlinear systems occupies an
important position in many scientific fields, this paper also provides a
very powerful deep learning NN framework for these disciplines to
make more professional research. In future research, we will focus on
finding and proposing more efficient NN algorithms to study a variety
of nonlinear systems, in which how to improve PINN model with inte-
grable system theory is a significant problem that needs further re-
search.
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