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Abstract The multiple patterns of internal solitary wave interactions (ISWI) are a complex oceanic

phenomenon. Satellite remote sensing techniques indirectly detect these ISWI, but do not provide

information on their detailed structure and dynamics. Recently, the authors considered a three-layer

fluid with shear flow and developed a (2+1) Kadomtsev-Petviashvili (KP) model that is capable of

describing five types of oceanic ISWI, including O-type, P-type, TO-type, TP-type, and Y-shaped.

Deep learning models, particularly physics-informed neural networks (PINN), are widely used in the

field of fluids and internal solitary waves. However, the authors find that the amplitude of internal

solitary waves is much smaller than the wavelength and the ISWI occur at relatively large spatial scales,

and these characteristics lead to an imbalance in the loss function of the PINN model. To solve this

problem, the authors introduce two weighted loss function methods, the fixed weighing and the adaptive

weighting methods, to improve the PINN model. This successfully simulated the detailed structure

and dynamics of ISWI, with simulation results corresponding to the satellite images. In particular, the

adaptive weighting method can automatically update the weights of different terms in the loss function

and outperforms the fixed weighting method in terms of generalization ability.
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1 Introduction

Internal solitary waves (ISW) are a special fluctuation phenomenon that occurs in the in-
terior of the ocean where the density is stably stratified[1–3]. The wavelengths of oceanic ISW
can reach hundreds or even thousands of meters, and their amplitudes usually range from a few
meters to tens of meters. Because of the important role that ISW play in marine ecosystems,
marine geology and coastal engineering, particular interest has been shown in the observation
of ISW in the oceans over the past few decades[4–6]. After ISW radiate outward from their place
of generation, a variety of factors, such as changes in the ocean background, cause two or more
ISW to interact with each other, and there are many types of such interactions[7–10]. In fact,
although internal solitary wave interactions (ISWI) occur within the ocean, they exhibit surface
features in the form of small modulations in surface roughness. Furthermore, these interactions
have a large horizontal scale and can propagate over long distances within the ocean while
maintaining their wave shapes unchanged. These characteristics allow these interactions to
be captured and recorded through satellite imagery. For instance, the RADARSAT-1 satellite
captured the Miles resonance along the coast of Washington State[11]; Astronaut photograph
(STS036-082-76) depicted the ordinary interaction in the South African Sea[12]; and the ERS-2
satellite equipped with SAR observed the asymmetric interaction in the Andaman Sea[13].

However, satellite images usually cannot provide the detailed structure and dynamical be-
havior of ISWI, so scholars have mostly relied on building mathematical models to more deeply
investigate ISW, such as KdV equation, BO equation, and NLS equation[14–16]. Recently, we
have considered the three-layer fluid with shear flow and continuous density distribution that
approximates ocean stratification, and developed the KP model, which is capable of describing
five different types of two-dimensional ISWI, including O-type, P-type, TO-type, TP-type, and
Y-shaped[17]. With the assistance of satellite imagery, we found the real-world correspondences
to these interactions. Although we have obtained precise solutions for these interactions, the
complexity of the solving methods and the typically limited data and information available in
real-world scenarios have prompted us to develop a method for simulating ISWI. This method
aims to accelerate the simulation process, reduce computational costs, and enable broader ap-
plications, particularly in addressing issues related to scarce data.

The physics-informed neural network (PINN) method is an important application of deep
learning in solving physics problems, which combines the powerful approximation ability of neu-
ral networks with mathematical models in physics problems[18–21]. The PINN method requires
only a small amount of initial and boundary value data to simulate the solution of physics equa-
tions with high accuracy[22–24]. In recent years, PINN methods have been widely used in the
field of fluids. Raissi, et al.[25] encoded the Navier-Stokes equations into the neural networks
to learn velocity and pressure fields from flow visualizations, Mao, et al.[26] investigated the
forward and inverse problems of the Euler equations describing high-speed aerodynamic flows,
and Cai, et al.[27] demonstrated the effectiveness of the PINN in dealing with three-dimensional
wake flows, supersonic flows, and biomedical flows.

Despite the remarkable progress of the PINN method in the field of fluids, the application



PINN WITH TWO WEIGHTED LOSS FUNCTION METHODS 547

of PINN in the field of ISW, especially their interaction, is relatively few. The current research
mainly focuses on the introduction of deep learning methods for the identification or simula-
tion of ISW by using satellite images[28–31]. However, to obtain the detailed structures and
dynamical behaviors of ISWI, relying solely on satellite remote sensing techniques is not suffi-
cient to meet the demand. Therefore, the application of PINN methods incorporating physical
modeling is necessary. It is worth noting that the classical PINN method is not applicable to
all fields due to its own structure as well as stability issues[32, 33]. In order to make the PINN
algorithm more widely applicable, the classical PINN algorithm needs to be improved. For
example, fractional PINN for solving fractional equations[34], Bayesian PINN for positive and
inverse nonlinear problems described by noisy data[35], and Navier-Stokes flow nets, which were
developed by considering the velocity-pressure and vorticity-velocity formulations of the Navier-
Stokes equations[36]. In addition, Chen’s team proposed an integrable deep learning framework
that successfully incorporates special integrable structures and properties into PINN, such as
conservation laws, symmetries, and Miura transformations[37–39]. However, among the numer-
ous PINN methods, there is a lack of methods specially designed for oceanic ISWI. Therefore,
we aim to consider the properties of ISWI and develop a PINN method for simulating these
interactions based on their mathematical model.

The rest of the paper is organized as follows. In Section 2, we introduce mathematical
models describing five types of ISWI. In Section 3, combining the properties of the ISWI and
the experimental results, we analyze the reasons for the failure of the classical PINN method
and propose a scheme to solve the imbalance of the loss function. In Section 4, we design an
improved PINN algorithm applied to simulate two-dimensional oceanic ISWI by introducing
the fixed weighing and adaptive weighting methods into the loss function, and successfully
simulate the detailed structures and dynamical behaviors of five types of ISWI. The last section
is devoted to the conclusion and discussions.

2 Physics Background and Model of Internal Waves

Considering an inviscid, incompressible, stratified fluid. The fluid is bounded by a rigid
boundary z = −h as the lower boundary, a free surface z = ψ(x, y, t) as the upper boundary,
and an equilibrium position z = 0 at the upper boundary. Thus the basic governing equations
and boundary conditions describing the internal waves are
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W = 0 |Z=−h, P = 0 |Z=ψ(X,T,T ),

W =
∂ψ

∂T
+ U

∂ψ

∂X
+ V

∂ψ

∂Y
|Z=ψ(X,Y,T ),

where X , Y , and Z represent the spatial coordinates, while U , V , and W describe the fluid
velocities. ρ is the fluid density, P is the pressure, g is the gravitational acceleration, and
ψ(x, y, t) is the vertical displacement of the free surface. Figure 1(a) can be used as a schematic
illustration of the above description.

Figure 1 (Color online) Schematic diagrams: (a) The flow coordinate system; (b) The three-

layer fluid

Next, Equation (1) is simplified by the multiscale method. The slow variables x = ε(X −
cT ), y = ε2Y, t = ε3T are introduced, and the velocity field in the X-direction is decomposed
into the fundamental component U(k) and the perturbation component, while the lower-order
terms of the vertical displacement are separated into the variables u(x, y, t)Φ(k). The KP
equation describing the internal waves is finally obtained[17].

∂

∂x

(
∂u

∂t
+ a1u

∂u

∂x
+ a2

∂3u

∂x3

)
+ a3

∂2u

∂y2
= 0, (2)

where

a1 =
3

∫ 0

−h ρ0(k)(U(k) − c)2
(
dΦ
dk

)3
dk

2
∫ 0

−h ρ0(k)(c − U(k))
(
dΦ
dk

)2
dk

, a2 =

∫ 0

−h ρ0(k)(U(k) − c)2Φ2dk

2
∫ 0

−h ρ0(k)(c− U(k))
(
dΦ
dk

)2
dk
,

a3 =
− ∫ 0

−h
∫ k
0
ρ0(k)N(k)2Φdk′ dΦdk dk

2
∫ 0

−h ρ0(k)(c− U(k))
(
dΦ
dk

)2
dk
, N2(k) = − 1

σρ0(k)
dρ0(k)
dk

.

(3)

Here, Φ can be obtained by solving the following eigenvalue problem

d
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k=0

, Φ = 0|k=−h . (4)

Consider a three-layer configuration similar to stratification in the ocean, as shown in
Figure 1(b). The depth of the upper layer is H − d − D, the depth of the middle layer
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is d, and the depth of the lower layer is D. Densities ρ3 and ρ1 of the upper and lower
layers are constant, while, the density of the middle layer is a depth-dependent function
ρ2(k) = ρ3e

1
d ln

ρ1
ρ3

(D+d)e−
1
d ln

ρ1
ρ3
k, and ρ1 > ρ2(k) > ρ3. From the density distribution, the

buoyancy frequency of both the upper and lower layers is zero, i.e., N3 = N1 = 0, and the
buoyancy frequency of the middle layer is N2. Furthermore, assume that each fluid layer has a
constant flow rate Ui (where i = 1, 2, 3) and satisfies U1 < U2 < U3. Using these information
from this configuration one can solve Equation (4) and further determine the expressions for
the coefficients of the KP equation.

The detailed derivation of Equation (2) is given in [17]. It is noteworthy that we also
succeeded in obtaining five different types of ISWI (O-type, P-type, Y-shaped, TO-type, and
TP-type) described by Equation (2), and relied on high-resolution satellite imagery to provide
evidence of the real existence of these interactions in the oceans. The exact solutions of these
interactions are employed to evaluate the performance of PINN method simulations.

3 The Classical PINN Method in Two-Dimensional Space

PINN is a method that combines deep learning techniques with the laws of physics, and is
mainly used to solve the forward and inverse solution problems of partial differential equations
(PDE). It is unique in that it embeds physical information into the loss function, making it
possible to learn the physical field from a small number of data points. In this section, in order
to simulate the five types of two-dimensional ISWI described by Equation (2), we introduce the
basic framework of the classical PINN method in two-dimensional space. Then, we analyze the
limitation of the classical PINN method in simulating two-dimensional ISWI by incorporating
the properties of ISWI. It is worth mentioning that we find this limitation is caused by the
imbalanced loss function.

3.1 The Basic Framework

We construct a deep neural network with the number of layers L, and the number of nodes
in the ith layer is Mi. Layer 0 is the input layer with three nodes (M0 = 3), which is responsible
for inputting temporal and spatial data into the network. The output layer L has one node
(ML = 1) and is designed to output the learned ISWI. The other intermediate layers are called
hidden layers tasked with feature extraction and better linear partitioning of different types of
data. The input of each node is equal to the output of the previous node after the nonlinear
transformation

V (i) = L
(
W (i)V (i−1) + b(i)

)
, i = 1, 2, · · · , L, (5)

where V (i), W (i) and b(i) are the state vector, the weight matrix and the bias vector of the
network at the layer i, respectively. L is the nonlinear activation function, which is chosen as
the hyperbolic function tanh. Initialization plays an important role in model training for deep
learning, and an unreasonable initialization can easily cause the model to fail to converge. We
initialize the bias term as a zero tensor, and apply the Xavier initialization to initialize the
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weight term

W (i) ∼ N
(
0, σ2

i

)
, σ2

i =
2

Mi +Mi+1
, i = 1, 2, · · · , L, (6)

where N
(
0, σ2

i

)
denotes a Gaussian distribution, such that the initialization of the weights

keeps the variance of the inputs and outputs unchanged.
In order to provide a small amount of sample data for the neural network, we consider the

Dirichlet boundary conditions of Equation (2):

⎧⎨
⎩

u(x, y,−t1) = u0(x, y,−t1), ∀(x, y) ∈ G,

u(x, y, t) = u0(x, y, t), ∀(x, y) ∈ ∂G, t ∈ [−t1, t1],
(7)

where G = [x1, x2] × [y1, y2] is a closed rectangle.
In difference to the case of one-dimensional space, the small amount of data required for

the neural network in the two-dimensional space comes from the five planes (four boundary
planes and one initial value plane) of the rectangular cube G× [−t1, t1], as shown in Figure 2.
We construct three types of discrete data points, which play a crucial role in the training and
optimization process of the network. By dividing the spatial domain [x1, x2] and [y1, y2] into
nx and ny equal parts, and the temporal domain [−t1, t1] into nt equal parts, we obtain a
three-dimensional grid. The e-type points consist of ne = (nx + 1)(ny + 1)(nt + 1) points. The
b-type points are the intersections of the e-type points with four boundary surfaces and one
initial value surface, and the number of b-type points is defined as nb. The Latin hypercube
sampling (LHS) method is used to randomly select nf points in G × [−τ1, τ1] to form f -type
points. The b-type, e-type, and f -type points are defined as
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Figure 2 (Color online) A schematic representation of the boundary surfaces and initial

surface

The loss function consists of constraints from the boundary and physical equation (2),

Loss(θ) = LossKP (θ) + Lossb(θ), (8)
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where

LossKP (θ) =
1
nf
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(9)

Here, θ =
{
WR(i), b(i)

}L
i=1

denotes the parameter space. Ã is the output of the neural network
and f is derived from the left hand side of Equation (2). Finally, the e-type points are used to
evaluate the generalization ability of PINN models,

Errorg =

√∑ne

i=1 |ũ (xie, yie, tie, θ∗) − u0 (xie, yie, tie)|2√∑ne

i=1 |u0 (xie, yie, tie)|2
, (10)

where θ∗ represents the optimal parameter.

3.2 Analysis of Simulation Failures

Within the framework mentioned above, we conduct simulations of five distinct oceanic
ISWI, unfortunately, all such simulations encounter challenges. In this subsection, we take
O-type interactions as a case to investigate why the classical PINN method struggles in cap-
turing the structure and dynamics of ISW. Furthermore, we propose strategies to enhance the
performance of the classical PINN method.

The results obtained using the classical PINN method for simulating ISWI are presented
in Figure 3. It is evident that the learned results at different time points converge to a zero
plane, suggesting that the amplitude of the interactions is neglected during the learning process.
Figure 4 provides a comparison between the exact density map and the learned density map,
revealing a significant disparity between them. This further emphasizes the difficulty of the
classical PINN approach in simulating ISWI.

Figure 3 (Color online) The simulation results of the classical PINN
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Figure 4 (Color online) The learned density map of classical PINN and the exact density map

What causes the result of learning to approximate a zero plane? In fact, it stems from
the properties of ISW themselves. First, Oceanic ISW typically exhibit wavelengths ranging
from hundreds to thousands of meters, while their amplitudes usually fall within the range of
a few meters to tens of meters. Consequently, the amplitude of these waves is significantly
smaller than their wavelength. As depicted in Figure 5(a), the xy-plane possesses dimensions
of 100 × 60, while the maximum amplitude of the interaction is approximately 0.03. This
illustrates that the range of amplitude variations is quite limited. Consequently, in numerical
simulations, the amplitude may be neglected. This leads to the convergence of the classical
PINN method towards a zero plane. Secondly, ISWI occur on relatively large spatial scales.
As shown in Figure 5(b), in order to obtain a complete view of these interactions in the real
ocean environment, the horizontal dimensions probed by satellites are 80 km × 84 km. This
implies that most of the entire spatial region is free of fluctuations (can be considered as the
zero plane), with only a small portion exhibiting interactions of ISW. Therefore, in simulations,
wave amplitudes may be averaged or canceled out, resulting in a lack of discernible amplitude
variations in the simulation results.

Figure 5 (Color online) The internal solitary wave interaction at small amplitude and

large spatial scale: (a) The exact solution; (b) The satellite imagery (Astronaut

photograph (STS036-082-76) acquired on 1 March 1990 at 1254 UTC), from [40]

Further analysis reveals that these characteristics of ISW lead to an imbalance in the loss
function of the PINN model. As shown in Figure 6, the change in the loss function during the
training process, it can be observed that the value of LossKP remains around 10−9 to 10−10,
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while the value of Lossb ranges from 10−4 to 10−5, indicating a significant discrepancy between
them. This suggests that during training, the PINN model tends to optimize the residuals
of the partial differential equations while neglecting the constraints of boundary and initial
conditions. This also explains why the model’s output results approximate a zero solution since
the zero solution satisfies the physical equations.

Figure 6 (Color online) The imbalance phenomenon in the loss function

There are various ways to deal with the imbalance of the loss function, such as hyperpa-
rameter tuning, adding data and data resampling[41]. In view of the aforementioned problem
and analysis, our proposed strategy is to introduce weighted loss function methods in the PINN
model to enhance the constraint tendency of the model to optimize the boundary conditions
and initial value conditions.

4 Data-Driven Internal Solitary Wave Interactions

In this section, based on the PINN method in two-dimensional space, we introduce the
fixed weighing and the adaptive weighting methods to simulate the structural and dynamical
behavior of oceanic ISWI.

4.1 The Weighted Loss Function Methods

The fixed weighing method is a simple but effective strategy that directly multiplies con-
stants on the different terms of the loss function and adjusts the size of the different constants
by analyzing the results. The form of the method is as follows

Loss(θ) = c1 LossKP (θ) + c2 Lossb(θ), (11)

where c1 and c2 are constants. According to the analysis in Subsection 3.2, we need to make
sure that c2 is larger than c1. Therefore, in our experiments, we adjust the ratio of c1 to c2 by
setting it to 1:500.

Despite the coding simplicity and effectiveness of the fixed weighing method, the weights
need to be constantly adjusted manually in order to obtain excellent simulation results, es-
pecially when the terms in the loss function are increased, which makes this adjustment even
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more cumbersome. Therefore, we introduce an adaptive weighting method based on Gaussian
probabilistic models[41], which enables the PINN model to automatically update the learning
weights during the training process

Loss(θ) =
1

2β2
1

LossKP (θ) +
1

2β2
2

Lossb(θ) + log β1β2, (12)

where β1 and β2 describe the adaptive weights of loss terms. 1
2β2

1
and 1

2β2
1

describe the total
weights of loss terms. We utilize the L-BFGS-B algorithm to optimize loss functions, and the
goal is to find the best weights.

The form of Equation (12) is obtained by the following derivation. Constructe a Gaussian
probability model with output u

p(u | û(x, y, t; θ), β2) =
1√

2πβ2
e−

(u−û)2

2β2 , (13)

where β represents the weights. From the minimization objective, we have

− log p =
1
2

log(2πβ2) +
(u − û)2

2β2
∝ 1

2β2
‖u− û(x, t; θ)‖2 + log β. (14)

The framework diagram for the PINN with weighted loss function methods is provided in
Figure 7. The overall environment for our code is Python 3.7, tensorflow 1.15, and a DELL
Precision 7920 vertical computer equipped with a 2.10 GHz 8-core Xeon Silver 4110 processor.

Figure 7 (Color online) A schematic diagram of the basic framework of the PINN with

the weighted loss function method

4.2 Data-Driven O-Type Interactions

In simulating all types of ISWI, we let Mi = 40 (i = 1, 2, · · · , L − 1), ξ1 = θ1 = −60,
ξ2 = θ2 = 60, τ1 = 2, nx = ny = 65, and nt = 33. In fact, since not all b-type points are needed
in the training process, only 6000 b-type points (nb = 6000) are randomly selected. Using the
LHS method, 50000 f -type points are selected (nf = 50000).
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Table 1 Generalization errors under different weighted loss function methods

O-type P-type TO-type TP-type Y-shaped

No weight 7.83 × 10−1 1.58 × 10−1 8.18 × 10−1 8.30 × 10−1 8.38 × 10−1

Fixed weighting 4.99 × 10−2 1.73 × 10−2 6.53 × 10−2 6.27 × 10−2 7.81 × 10−2

Adaptive weighting 3.73 × 10−2 1.56 × 10−2 3.65 × 10−2 3.30 × 10−2 3.43 × 10−2

The generalization error is a crucial factor in ensuring the applicability, reliability, and
generalization capability of the PINN model. Table 1 presents a comparison of the generaliza-
tion errors between two weighting methods and the classical PINN method. It is evident that
the classical PINN performs poorly in learning ISWI. However, the introduction of weighted
loss functions significantly reduces the generalization error, especially the adaptive weighting
method, which exhibits relatively smaller generalization error and demonstrates superior gen-
eralization capability. Next, we focus on presenting the simulation results of the adaptive
weighting method.

We construct a 12-layer feedforward neural network to simulate O-type interactions. After
training, the PINN model completes 7582 iterations in approximately 4636.36 seconds. The
loss functions LossKP and Lossb are reduced to 5.696 × 10−11 and 1.980 × 10−9, respectively.
Our experimental findings are visually represented in Figure 8. Two ISW of the same ampli-
tude produce wave peaks in the interaction region that are higher than their respective original
amplitudes. The predicted solution curve closely aligns with the exact solution curve through
the two-dimensional section diagram of the O-type interaction at different time points. Addi-
tionally, the density plots of the error illustrate that the regions of interaction produce large
errors. Figure 9 presents the exact density map, the learned density map with adaptive weights,
the learned density map with fixed weights, and corresponding satellite images. It is evident
that the learned density map closely match the exact density map and correspond well with
the satellite images. Moreover, O-type interactions induce phase shifts.

(a) (b) (c)

Figure 8 (Color online) The data-driven O-type interactions and the corresponding density

map of the error at τ = −1 (a), τ = 0 (b), and τ = 1 (c)
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Figure 9 (Color online) The density map of the O-type interactions: (a) The exact density map;

(b) The learned density map of the adaptive weighting; (c) The learned density map of

the fixed weighting; (d) The satellite imagery (Astronaut photograph (STS036-082-76)

acquired on 1 March 1990 at 1254 UTC), from [40]

The convergence curves of adaptive weights β1 and β2 are depicted in Figure 10. Over the
course of iterations, β1 consistently decreases, while β2 exhibits notable fluctuations during the
initial iterations. In the final 1000 iterations, β1 remains stable, whereas β2 continues to iterate.
The ultimate values for β1 and β2 are 49.69 and −4.455 × 10−5, respectively.

(a) (b)

Figure 10 (Color online) The numerical convergence curve of adaptive weights for the data-

driven O-type interactions

4.3 Data-Driven P-Type Interactions

With L set to 12, we achieve convergence of the loss functions, LossKP and Lossb, to 4.224×
10−9 and 1.131×10−8, respectively, after 6000 iterations, completing in approximately 3766.71
seconds. This successful convergence allowed us to obtain data-driven P-type interactions.
Figure 11 presents three-dimensional plots of the P-type interaction at various time points,
along with corresponding density plots of the errors. The P-type interactions emerge from the
interaction of two ISW with different amplitudes, and the amplitude within the interaction
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region falls between those of the two ISW. The curves of the predicted and exact solutions fit
relatively well. The main source of errors comes from the region with larger gradients.

(a) (b) (c)

Figure 11 (Color online) The data-driven P-type interactions and the corresponding density

map of the error at τ = −1 (a), τ = 0 (b), and τ = 1 (c)

Figure 12 showcases the exact density map of P-type interactions, the density map with
adaptive weight learning, the density map with fixed weight learning, and the corresponding
satellite images. It is clear that the simulated results match the precise results very well and
can be correlated with the ISWI in the Amanda Sea.

Figure 12 (Color online) The density map of the P-type interactions: (a) The exact density map;

(b) The learned density map of the adaptive weighting; (c) The learned density map

of the fixed weighting; (d) The satellite imagery (ERS-2 SAR image of the Andaman

acquired on 11 February 1997 at 0359 UTC), from [40]
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The convergence curves of adaptive weights β1 and β2 during the simulation process of the P-
type interaction are illustrated in Figure 13. β1 steadily decreases, while β2 exhibits noticeable
fluctuations during the initial iterations. In the last 1000 iterations, β1 remains stable, while
β2 continues to iterate. The final iterative values for β1 and β2 are 48.11 and −1.065 × 10−4,
respectively.

(a) (b)

Figure 13 (Color online) The numerical convergence curve of adaptive weights for the data-driven

P-type interactions

4.4 Data-Driven TO-Type Interactions

For capturing the structural and dynamical behavior of the TO-type interactions, we con-
figure L = 11. Following 6753 iterations completing in approximately 3771.70 seconds, the
LossKP and Lossb impressively converge to 2.998 × 10−11 and 5.655 × 10−9, respectively. Fig-
ure 14 presents three-dimensional plots of the TO-type interaction at various time instances,
along with density plots illustrating the associated errors. Different from the O-type interac-
tions, the amplitude of the interaction region of the TO-type interactions is generated by two
different amplitudes of the ISW.

(a) (b) (c)

Figure 14 (Color online) The data-driven TO-type interactions and the corresponding density

map of the error at τ = −1 (a), τ = 0 (b), and τ = 1 (c)
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The exact density map of the TO-type interaction, the density map with adaptive weight
learning, the density map with fixed weight learning, and the corresponding satellite images are
illustrated in Figure 15. It is worth noting that the distinctive feature of this interaction lies in
the absence of any noticeable phase shift.

Figure 15 (Color online) The density map of the TO-type interactions: (a) The exact density map;

(b) The learned density map of the adaptive weighting; (c) The learned density map

of the fixed weighting; (d) The satellite imagery (ERS-2 SAR image of the Andaman

acquired on 11 February 1997 at 0359 UTC), from [40]

The convergence curves of the adaptive weights β1 and β2 during the simulation process of
TO-type interactions are shown in Figure 16. β1 gradually decreases, while β2 exhibits notice-
able fluctuations in the initial iterations. In the last 1000 iterations, β1 remains unchanged,
while β2 continues to iterate. The final iterative values for β1 and β2 are 49.23 and 7.516×10−5,
respectively.

(a) (b)

Figure 16 (Color online) The numerical convergence curve of adaptive weights for the data-

driven TO-type interactions

4.5 Data-Driven TP-Type Interactions

To model the TP-type interactions, we employ a 12-layer feedforward neural network. The
PINN model converge after 10063 iterations, which takes approximately 5549.18 seconds. The
loss functions LossKP and Lossb impressively reached values of 7.195×10−11 and 1.401×10−9,
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respectively. Figure 17 offers three-dimensional representations of the TP-type interaction,
complemented by density plots illustrating the associated errors. In contrast to P-type interac-
tions, the amplitude within the TP-type interaction region is lower than that of any of the ISW.
This visual aspect makes it appear as if two ISW are not interacting. Figure 18 presents the
exact density map of the TP-type interaction, the density map with adaptive weight learning,
the density map with fixed weight learning, and corresponding satellite images. This type of
interaction has been rarely reported, and corresponds to an ISW pattern captured along the
coast of Washington State by the RADARSAT-1 satellite.

(a) (b) (c)

Figure 17 (Color online) The data-driven TP-type interactions and the corresponding density

map of the error at τ = −1 (a), τ = 0 (b), and τ = 1 (c)

Figure 18 (Color online) The density map of the TP-type interactions: (a) The exact density

map; (b) The learned density map of the adaptive weighting; (c) The learned density

map of the fixed weighting; (d) The satellite imagery (RADARSAT-1 image showing

internal waves off the coast of Washington State, acquired 9 August 1999 at 0155

UTC), from [40]
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Convergence curves of the adaptive weights β1 and β2 during the simulation of TP-type
interactions are depicted in Figure 19. The process of iteration is similar to the previous
interactions, and the final iterative values for β1 and β2 are 48.98 and 3.742×10−5, respectively.

(a) (b)

Figure 19 (Color online) The numerical convergence curve of adaptive weights for the data-

driven TP-type interactions

4.6 Data-Driven Y-Shaped Interactions

Finally, we design an 8-layer neural network that successfully learns the Y-shaped inter-
actions. The model undergoes a total of 8079 iterations, which are accomplished in a mere
3149.89 seconds. The loss functions LossKP and Lossb reach 1.089 × 10−10 and 2.420 × 10−9,
respectively. The experimental results are shown in Figure 20. The Y-shaped interactions are
formed by the resonant interaction of three ISW at a vertex, which demonstrates that the in-
teraction of ISW can produces a Miles resonance. Figure 21 presents the exact density map of
the Y-shaped interaction, the density map with adaptive weight learning, the density map with
fixed weight learning, and the corresponding satellite images.

(a) (b) (c)

Figure 20 (Color online) The data-driven Y-shaped interactions and the corresponding density

map of the error at τ = −1 (a), τ = 0 (b), and τ = 1 (c)
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Figure 21 The density map of the Y-shaped interactions: (a) The exact density map; (b)

The learned density map of the adaptive weighting; (c) The learned density map

of the fixed weighting; (d) The satellite imagery (RADARSAT-1 image showing

internal waves off the coast of Washington State, acquired 9 August 1999 at 0155

UTC), from [40]

The convergence curves for the adaptive weights, β1 and β2, throughout the simulation of
Y-shaped interactions are illustrated in Figure 22. The concluding values for β1 and β2 are
48.68 and −4.925× 10−5, respectively.

(a) (b)

Figure 22 (Color online) The numerical convergence curve of adaptive weights for the data-

driven Y-shaped interactions

We compile the final converged values of LossKP and Lossb for all the experimental results,
as detailed in Table 2. The values of each loss function term are very small, and there is no
imbalance as shown in Figure 6.
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Table 2 Convergence values of different terms in the loss function

O-type P-type TO-type TP-type Y-shaped

LossKP 5.696 × 10−11 4.224 × 10−9 2.998 × 10−11 7.195 × 10−11 1.089 × 10−10

Lossb 1.980 × 10−9 1.131 × 10−8 5.655 × 10−9 1.401 × 10−9 2.420 × 10−9

The PINN with weighted loss function method is specially designed for simulating oceanic
ISWI. It successfully solves the problem of loss function imbalance caused by the properties of
ISWI. It is able to accurately simulate the detailed structure and dynamical behavior of ISWI,
and performs well in the simulation of many types of interactions.

5 Conclusions and Discussions

We introduce fixed and adaptive weighting methods into the loss function to design an
improved PINN method suitable for simulating two-dimensional oceanic ISWI. At first, the
classical PINN method in the two-dimensional space is used to simulate different types of ISWI
with the support of three types of data points, and the simulation results show that these
interactions are close to the zero plane, which is caused by two properties of the ISW. One is
the significantly smaller amplitude compared to the wavelength. The other is the occurrence
of these interactions on a relatively large spatial scale. Furthermore, these properties cause
the loss function imbalance, i.e., the PINN model is biased towards optimizing the residuals of
PDE during the training process, while ignoring the constraints of the initial boundary value
conditions.

To solve this problem, we introduce the weighted loss function methods to balance the
different terms in the loss function. Applying this improved PINN model we successfully sim-
ulate five different types of ISWI and obtain their detailed structural and dynamical behavior.
The exact and predicted solution curves for all the results are in high agreement, with the
errors mainly originating from the region of large gradients, that is, the interaction region. The
learned density maps are in general agreement with the exact density maps and are able to
correspond to satellite images of oceanic ISWI. In addition, both LossKP and Lossb converge
to a smaller value, indicating that the imbalance problem of the loss function is solved. The
adaptive weighting method can automatically update the weights of different terms without
manually adjusting the weights, in which the weights of LossKP are decreasing and converge
preferentially, and the weights of Lossb fluctuate more at the beginning and converge slowly.
The PINN method with adaptive weighting exhibits a small generalization error, showing that
it has a better generalization ability compared with other methods.

As is known, there are many different types of internal waves in the ocean, so it is important
to establish new systems to describe these diverse types of internal waves, as well as to improve
the PINN method to adapt to different types of internal waves. These will be our future
research.
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