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Abstract The function projective synchronization of discrete-time chaotic systems is presented. Based on backstep-
ping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate function
projective synchronization (FPS) of discrete-time chaotic systems with uncertain parameters. With the aid of symbolic-
numeric computation, we use the proposed scheme to illustrate FPS between two identical 3D Hénon-like maps with
uncertain parameters. Numeric simulations are used to verify the effectiveness of our scheme.
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1 Introduction
Chaos synchronization has received considerable atten-

tion since the pioneering works of Fujisaka and Yamada,[1]

Pecora, and Carroll,[2] Pyragas,[3] Ott, Grebogi, and
Yorke.[4] Up to now, there exist many types of chaos
synchronization in dynamical systems such as complete
synchronization, partial synchronization, phase synchro-
nization, lag synchronization, anticipated synchroniza-
tion, generalized slag, anticipated, and completed syn-
chronization, synchronization, antiphase synchronization,
etc.[5−8] In particular, amongst all kinds of chaos syn-
chronization, projective synchronization in partially linear
systems reported by Mainieri and Rehacek[9] is one of the
most noticeable ones where the drive and response vectors
evolve in a proportional scale — the vectors become pro-
portional. Recently, some researchers[10−13] extended the
projective synchronization to non-partially-linear systems.
Many powerful methods have been reported to investigate
some types of chaos synchronization in continuous-time
systems. In fact, many mathematical models of neural
networks, biological process, physical process and chemi-
cal process, etc., were defined using discrete-time dynam-
ical systems.[14−18] Recently, more and more attentions
were paid to the chaos control and synchronization in
discrete-time dynamical systems.[18−22]

Backstepping design[18,23−25] has become a system-
atic and powerful method for the construction of both
feedback controllers and associated Lyapunov functions.
The design method has been applied to investigate con-
trol and synchronization of many continuous-time dy-
namical systems.[25−28] Up until now, some articles have

been reported to extend the backstepping design to de-
duce some proper controllers to investigate chaos con-
trol and synchronization in some discrete-time dynami-
cal systems.[18−22] The synchronization of chaotic systems
with uncertain parameters was investigated in Refs. [29] ∼
[34].

More recently, in Refs. [13] and [35] we have the pro-
posed function projective synchronization (FPS) in the
continuous-time systems where the drive and response
vectors evolve in a proportional scale function matrix.
Based on the FPS method and symbolic computation
Maple, in Ref. [13] the function projective synchroniza-
tion of two identical chaotic systems (two identical classic
Lorenz systems) is achieved up to a scaling function ma-
trix with different initial values. In Ref. [35], the function
projective synchronization of two different systems (the
unified chaotic system and the Rössler system) is achieved
up to a scaling function matrix f with different initial val-
ues.

In this paper, on the lines of the function synchroniza-
tion thought,[13,35] we would like to define a type of func-
tion projective synchronization in discrete-time dynamical
systems with uncertain parameters. Here based on the
backstepping design method, we present a systematic and
automatic algorithm to investigate simultaneously FPS,
via controllers between discrete-time drive system and re-
sponse system. With the aid of symbolic-numeric com-
putation, the proposed scheme is used to illustrate FPS
between two identical Hénon-like maps with uncertain pa-
rameters. Moreover numerical simulations are used to ver-
ify the effectiveness of the proposed scheme.
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This paper is arranged as follows. In Sec. 2, We in-
troduce FPS in discrete-time systems to investigate func-
tion projective synchronization in two identical Hénon-like
maps. Finally, some conclusions and discussions are given
in Sec. 3.

2 FPS of Two Identical Hénon-like Maps with
Two Uncertain Parameters

In the following, the definitions of function projective
synchronization in discrete-time dynamical systems is in-
troduced, a Lyapunov stability theory for discrete-time
dynamical systems is given.

Definition For two discrete-time (chaotic or hyper-
chaotic) dynamical systems (i) x(k + 1) = F (x(k))
and (ii) y(k + 1) = G(y(k)) + u(x(k), y(k)), where
(x(k), y(k)) ∈ Rm+m, k ∈ Z/Z−, and u(x(k), y(k)) ∈
Rm, let (iii) e(k) = (e1(k), e2(k), . . . , em(k)) =
(y1(k)−f1(x(k))x1(k), y2(k)−f2(x(k))x2(k), . . . , ym(k)−
fm(x(k))xm(k)) be boundary vector functions, if
there exists proper controllers u(x(k), y(k)) =
(u1(x(k), y(k)), u2(x(k), y(k)), . . . , um(x(k), y(k)))T such
that limk→∞(e(k)) = 0, we say that there exists func-
tion projective synchronizaton (FPS) between the
systems (i) and (ii).

Based on the Lyapunov stability theory, for
the error discrete-time (iii) generated by drive sys-
tem (i) and response system (ii), let L(e1(k), e2(k),
. . . , em(k))|ei(k)≡0(i=1,2,...,m)=0, if 4L(k) = L(k + 1) −
L(k) ≤ 0, with the equality holding if and only if ei(k) ≡ 0

(i = 1, 2, . . . , m), it is said that systems (i) and (ii) are
function projective synchronized.

In this letter based on the backstepping design method,
we would like to present a systematic, generalized and
constructive scheme to seek the controllers such that two
identical 3D Hénon-like maps with strict-feed form are
function projective synchronized.

Consider the 3D discrete-time Henon-like map

x1(k + 1) = 1 + x3(k) − αx2
2(k) ,

x2(k + 1) = 1 + βx2(k) − αx2
1(k) ,

x3(k + 1) = βx1(k) (1)

as the drive system, and the response system is followed
as:

y1(k + 1) = 1 + y3(k) − α1(k)y2
2(k) + u1(x, y) ,

y2(k + 1) = 1 + β1(k)y2(k) − α1(k)y2
1(k) + u2(x, y) ,

y3(k + 1) = β1(k)y1(k) + u3(x, y) , (2)

where α1(k) and β1(k) are uncertain parameters, which
estimate the parameters of α and β. And u1, u2, and
u3 are the controllers such that two chaotic systems can
be synchronized in the sense of FPS. In the following, we
would like to realize the FPS of two identical Hénon-like
maps with two uncertain parameters by backstepping de-
sign method.

Let the error states be e1 = x1−2y1, e2 = x2+y2, e3 =
x3−(1+tanh2 x3)y3, e4(k) = α1(k)−α, e5(k) = β1(k)−β.
Then from (3.1) and (3.2), we have the discrete-time error
dynamical system

e1(k + 1) = −1 + x3(k) − αx2
2(k) − 2y3(k) + 2α1(k)y2

2(k) − 2u1(x, y) ,

e2(k + 1) = 2 + βx2(k) − αx2
1(k) + β1(k)y2(k) − α1(k)y2

1(k) + u2(x, y) ,

e3(k + 1) = βx1(k) − (1 + tanh(βx1(k))2)(β1(k)y1(k) + u3(x, y)) . (3)

In the following based on the backstepping design and the improved ideas of Refs. [25–27], we give a systematic and
constructive algorithm to derive the controllers u(x, y) step by step such that systems (1) and (2) are synchronized
together.

Step 1 Let the first partial Lyapunov function be L1(k) = |e1(k)| and the second error variable be

e2(k) = e1(k + 1) − c11e1(k) (4)

where c11 ∈ R. Then we have the derivative of L1(k)

∆L1(k) = |e1(k + 1)| − |e1(k)| ≤ (|c11| − 1)|e1(k)| + |e2(k)| . (5)

Step 2 Let the second partial Lyapunov function candidate be L2(k) = L1(k)+d1|e2(k)| and the third error variable
be

e3(k) = e2(k + 1) − c21e1(k) − c22e2(k) , (6)

where d1 > 1, c21, c22 ∈ R. Therefore, from (4) and (6) we have the derivative L2(k),

∆L2(k) = L2(k + 1) − L2(k) ≤ (d1|c21| + |c11| − 1)|e1(k)| + (d1|c22| + 1 − d1)|e2(k)| + d1|e3(k)| . (7)

Step 3 Let the third partial Lyapunov function candidate be L3(k) = L2(k) + d2|e3(k)| and the forth error state be

e4(k) = e3(k + 1) − c31e1(k) − c32e2(k) − c33e3(k) , (8)

where d2 > d1 > 1, c31, c32, c33 ∈ R. Therefore, from (6) and (8) we have the derivative L3(k),

∆L3(k) = L3(k + 1) − L3(k)
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≤ (d2|c31| + d1|c21| + |c11| − 1)|e1(k)| + (d2|c32| + d1(|c22| − 1) + 1)|e2(k)|

+ (d2|c33| + d1 − d2)|e3(k)| + d2|e4(k)| . (9)

Step 4 Let the fourth partial Lyapunov function candidate be L4(k) = L3(k) + d3|e4(k)| and the fourth error state
be

e5(k) = e4(k + 1) − c41e1(k) − c42e2(k) − c43e3(k) − c44e4(k) , (10)

where d3 > d2 > d1 > 1, c41, c42, c43, c44 ∈ R. Therefore, from (8) and (10) we have the derivative L4(k),

∆L4(k) = L4(k + 1) − L4(k)

≤ (d3|c41| + d2|c31| + d1|c21| + |c11| − 1)|e1(k)| + (d3|c42| + d2|c32| + d1(|c22| − 1) + 1)|e2(k)|

+ (d3|c43| + d2|c33| + d1 − d2)|e3(k)| + (d3|c44| + d2 − d3)|e4(k)| + d3|e5(k)| . (11)

Step 5 Let the Lyapunov function be L(k) = L4(k) + d4|e5(k)|. From the above steps we have

e5(k + 1) − c51e1(k) − c52e2(k) − c53e3(k) − c54e4(k) + c55e5(k) = 0 , (12)

where d4 > d3 > d2 > d1 > 1, c51, c52, c53, c54, c55 ∈ R. Then from (10), (11), and (12), we obtain the derivative of the
Lyapunov function L(k),

∆L(k) = L(k + 1) − L(k)

≤ (d4|c51| + d3|c41| + d2|c31| + d1|c21| + |c11| − 1)|e1(k)| + (d4|c52| + d3|c42| + d2|c32|

+ d1(|c22| − 1) + 1)|e2(k)| + (d4|c53| + d3|c43| + d2|c33| + d1 − d2)|e3(k)| + (d4|c54|

+ d3|c44| + d2 − d3)|e4(k)| + (d3 − d4 + d4|c55|)|e5(k)| . (13)

With the aid of symbolic computation, from (4), (6), (8), (10), and (12), we can determine the scalar controllers of
u(x, y) in the form

u1(x, y) = −1/2 + 1/2 x3(k) − 1/2 α (x2(k))2 − y3(k) + α1(k)(y2(k))2 − 1/2 c11x1(k)

+ c11y1(k) − 1/2 x2(k) − 1/2 y2(k) ,

u2(x, y) = −2 − β x2(k) + α (x1(k))2 − β1(k)y2(k) + α1(k)(y1(k))2 + c21x1(k) − 2 c21y1(k)

+ c22x2(k) + c22y2(k) + x3(k) − y3(k) − y3(k)(tanh(x3(k)))2 ,

u3(x, y) =
A

B
,

where

A = β x1(k) − β1(k)y1(k) − (tanh(β x1(k)))2β1(k)y1(k) − c31x1(k) + 2c31y1(k)−c32x2(k) − c32y2(k)

− c33x3(k) + c33y3(k) + c33y3(k)(tanh(x3(k)))2 − α1(k) + α ,

B = 1 + (tanh(β x1(k)))2 ,

and

α1(k + 1) = α + c41x1(k) − 2 c41y1(k) + c42x2(k) + c42y2(k) + c43x3(k)

− c43y3(k) − c43y3(k)(tanh(x3(k)))2 + c44α1(k) − c44α + β1(k) − β ,

β1(k + 1) = β + c51x1(k) − 2 c51y1(k) + c52x2(k) + c52y2(k) + c53x3(k)

− c53y3(k) − c53y3(k)(tanh(x3(k)))2 + c54α1(k) − c54α + c55β1(k) − c55β .

From (13), we know that the right-hand side of (13) is

negative-definite, if the parameters di (i = 1, 2, 3, 4) and

cij (1 ≤ j ≤ i ≤ 4) satisfy

ld1|c21| + d2|c31| + d3|c41| + d4|c51| + |c11| < 1 ,

d1|c22| + d2|c32| + d3|c42| + d4|c52| < d1 − 1 ,

d2|c33| + d3|c43| + d4|c53| < d2 − d1 ,

d3|c44| + d4|c54| < d3 − d2 ,

|c55| <
d4 − d3

d4
,

then ∆L(k) is negative-definite, which denotes that the
resulting close-loop discrete-time system

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is globally asynptotically stable and limk→+∞ ei(k) = 0,

that is to say, the Hénon map discrete-time systems (1)

and (2) are function projective synchronized.

Fig. 1 The orbits of the error states.

In the following we use numerical simulations to verify

the effectiveness of the obtained controllers u(x, y). Here

we take α = 1.4, β = 0.2, c11 = 0.3, c21 = 0.02, c22 = 0.4,

c31 = 0.05, c32 = 0.1, c33 = −0.2, c41 = 0.01, c42, c43 =

0.03, c44 = 0.04, c51 = 0.01, c52 = 0.02, c53 = 0.03,

c54 = 0.04, c55 = 0.05, d1 = 2, d2 = 3, d3 = 5, d4 = 6 and

the initial values [x1(0) = 0.1, x2(0) = 0.2, x3(0) = −0.5],

[y1(0) = −0.5, y2(0) = 0.2, y3(0) = 0.1], and α1(0) = 0.1,

β1(0) = 0.1 respectively. The graphs of the error states

are shown in Figs. 1(a)-1(c), and simulations of the two

parameters α1(k), β1(k) are displayed in Figs. 2(a) and

2(b). Finally we give the attractors after being synchro-

nized with controllers are displayed in Fig. 3.

Fig. 2 The orbits of uncertain parametes.

Fig. 3 The two attractors after being synchronized
with (f1(x), f2(x), f3(x)) = (2,−1, 1+tanh(x3(k))2): the
dark one is the response system with the controllers, and
the other is the drive system.

3 Summary and Conclusions
In summary, we have defined function projective syn-

chronization in discrete-time dynamical systems. And
then based on backstepping design with controllers, a
systematic and automatic scheme is developed investi-
gate FPS between the discrete-time drive systems and re-
sponse systems with strict-feedback forms. With the aid
of symbolic-numeric computation, we use the proposed
scheme to illustrate FPS between two identical 3D Hénon-
like maps with uncertain parameters. Numerical simula-
tions are used to verify the effectiveness of the proposed
scheme.
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