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Abstract A generalized Kadomtsev–Petviashvili equation is studied by nonlocal symmetry method and consistent
Riccati expansion (CRE) method in this paper. Applying the truncated Painlevé analysis to the generalized Kadomtsev–
Petviashvili equation, some Bäcklund transformations (BTs) including auto-BT and non-auto-BT are obtained. The
auto-BT leads to a nonlocal symmetry which corresponds to the residual of the truncated Painlevé expansion. Then
the nonlocal symmetry is localized to the corresponding nonlocal group by introducing two new variables. Further,
by applying the Lie point symmetry method to the prolonged system, a new type of finite symmetry transformation
is derived. In addition, the generalized Kadomtsev–Petviashvili equation is proved consistent Riccati expansion (CRE)
solvable. As a result, the soliton-cnoidal wave interaction solutions of the equation are explicitly given, which are difficult
to be found by other traditional methods. Moreover, figures are given out to show the properties of the explicit analytic
interaction solutions.
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1 Introduction

With the development of science and technology in

modern society, nonlinear science plays a more and more

important role both in the science advancement and in

our life. As one of the main parts of nonlinear science, the

theory of solitons has been applied to many areas of math-

ematics, fluid physics, micro-physics, solid state physics,

condensed matter physics, hydrodynamics, fluid dynam-

ics, cosmology, field theory. To find exact solutions of

nonlinear systems is a difficult and tedious but very im-

portant and meaningful work. With the development of

nonlinear science, many methods have been established by

mathematicians and physicists to obtain exact solutions

of soliton equations, such as the Inverse Scattering trans-

formation (IST),[1] Bäcklund transformation (BT),[2] Dar-

boux transformation (DT),[3−4] Hirota bilinear method,[5]

Painlevé method,[6−7] Lie symmetry method[8−10] and so

on.

It is known that Painlevé analysis is one of the best

approaches to investigate the integrable property of a

given nonlinear evolution equations, and the truncated

Painlevé expansion is a straight way to provide some

Bäcklund transformations (BTs) including auto-BT and

non-auto-BT. Furthermore, it can also be used to obtain

nonlocal symmetries and analytic solutions. As the non-

local symmetries are connected with integrable models

and they enlarge the class of symmetries, therefore, to

search for nonlocal symmetries of the nonlinear systems

is an interesting work. In 1969, Bluman[11] introduced

the concept of potential symmetry for a differential sys-

tem by writting the given system in a conserved form.

In 1991, Akhatov and Gazizov[12] provided a method for

constructing nonlocal symmetries of differential equations

based on the Lie–Bäcklund theory. In 1992, Galas[13] ob-

tained the nonlocal Lie–Bäcklund symmetries by intro-

ducing the pesudo-potentials as an auxiliary system. In

1993, Guthrie[14] got nonlocal symmetries with the help

of a recursion operator. In 1997, Lou and Hu[15−17] have

made some efforts to obtain infinite many nonlocal sym-

metries by inverse recursion operators, the conformal in-

variant form (Schwartz form) and Darboux transforma-

tion. More recently, in 2012, Lou, Hu, and Chen[18−20]

obtained nonlocal symmetries that were related to the

Darboux transformation with the Lax pair and Bäcklund

transformation. In 2013, Xin and Chen[21] gave a sys-

temic method to find the nonlocal symmetry of nonlin-
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ear evolution equation and improved previous methods

to avoid missing some important results such as integral

terms or high order derivative terms of nonlocal variables

in the symmetries. In 2014, Cheng etc.[22] demonstrated

the nonlocal symmetries can be successfully used to dis-

cover some types of important interaction solutions. In

recent years, it is found that Painlevé analysis can be

used to obtain nonlocal symmetries. This type of nonlocal

symmetries related to the truncated Painlevé expansion is

just the residual of the expansion with respect to singu-

lar manifold, and is also called residual symmetry.[23−24]

The localization of this type of residual symmetry seems

easily performed than that coming from DT and BT. In

order to develop some types of relatively simple and un-

derstandable methods to construct exact solutions, Lou

proposed a consistent Riccati expansion (CRE) method

to identify CRE solvable systems in Ref. [25]. A sys-

tem is defined to be CRE solvable if it has a CRE. It

is clear that various integrable systems are CRE solvable,

and many systems have been verified having this property,

such as the Korteweg de-Vries (KdV) equation, the mKdV

equation, the Ablowitz–Kaup–Newell–Segur (AKNS) sys-

tem, the Kadomtsev–Petviashvili equation, the Sawada–

Kortera equation, the Kaup–Kupershmidt equation, the

Boussinesq equation, the Sine-Gordon equation, the Burg-

ers equation, the dispersive water wave equation, the mod-

ified asymmetric Veselov–Novikov equation. It has been

revealed that many similar interaction solutions between

a soliton and a cnoidal wave were found in various CRE

solvable systems. By this method, recent studies[26−36]

have found a lot of intercation solutions in many nonlin-

ear equations.

In the present paper, we focus on nonlocal symme-

try, prolonged system, Bäcklund transformation, CRE

solvable and exact interaction solutions of a generalized

Kadomtsev–Petviashvili equation[37] as follows:

uxt + uxxxx + 6uuxx + 6u2
x + 3uyy + 3uxy = 0 , (1)

where subscript means a partial derivative such as uxt =

∂u/∂t∂x.

It is well known that (2+1)-dimensional Kadomtsev–

Petviashvili equation can be used to model water waves

of long wavelength with weakly nonlinear restoring

forces and frequency dispersion. Various of generaliza-

tion of Kadomtsev–Petviashvili equation[38−40] are pro-

posed. Equation (1) can be transformed to the standard

Kadomtsev–Petviashvili equation under transformation

x → x , y → y − 3t , t → t . (2)

Therefore, Eq. (1) must have abundant physical phenom-

ena, finding more types of solutions of Eq. (1) is interesting

to understand the Kadomtsev–Petviashvili equation fully.

This paper is arranged as follows: In Sec. 2, the

auto Bäcklund transformation, non-auto Bäcklund trans-

formation and nonlocal symmetry of the generalized

Kadomtsev–Petviashvili equation are obtained by the

truncated Painlevé expansion approach, then the nonlocal

symmetry is localized by introducing another three depen-

dent variables and the corresponding nonlocal transforma-

tion group is found. In Sec. 3, some exact solutions are

derived via the similarity reductions of the prolonged sys-

tem. In Sec. 4, the generalized Kadomtsev–Petviashvili

equation is verified CRE solvable and the soliton-cnoidal

wave solutions are constructed. The last section contains

a summary and discussion.

2 Nonlocal Symmetry from the Truncated

Painlevé Expansion

For the generalized Kadomtsev–Petviashvili equation

(1), there exists a truncated Painlevé expansion

u =
u2

φ2
+

u1

φ
+ u0 , (3)

with u0, u1, u2, φ being the functions of x, y and t, the

function φ(x, y, t) = 0 is the equation of singularity man-

ifold.

Substituting Eq. (3) into Eq. (1) and balancing all the

coefficients of different powers of φ, we can get

u2 = −2φ2
x , u1 = 2φxx ,

u0 = −
φt

6φx

−
( φy

2φx

)2

−
φy

2φx

+
(φxx

2φx

)2

−
2φxxx

3φx

, (4)

and the generalized Kadomtsev–Petviashvili equation (1)

is successfully satisfing the following Schwarzian form:

(P + S + 3C)x + 3(CCx + Cy) = 0 . (5)

Here, we denote

P =
φt

φx

, S =
φxxx

φx

−
3

2

(φxx

φx

)2

, C =
φy

φx

, (6)

where P , C are the usual Schwarzian variables, S is

the Schwarzian derivative and both invariant under the

Möbious transformation, i.e.,

φ →
a + bφ

c + dφ
, (ad 6= bc) . (7)

If we take a special case a = 0, b = c = 1, d = ǫ, then

Eq. (7) can be rewritten as:

φ → φ − ǫφ2 + o(ǫ2) , (8)

which means (5) possesses the point symmetry[23]

σφ = −φ2 . (9)

From the standard truncated Painlevé expansion (3),

we have the following auto-Bäcklund transformation and

non-auto Bäcklund transformation theorem of Eq. (1).

Theorem 1a (auto-BT theorem) If the function φ sat-

isfies Eq. (5), then:

u = −
2φ2

x

φ2
+

2φxx

φ
+ u0 , (10)
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is an auto-BT between the solution u and u0 of the gen-

eralized Kadomtsev–Petviashvili equation (1).

Theorem 1b (non-auto-BT theorem) If the function φ

satisfies Eq. (5), then:

u = −
φt

6φx

−
( φy

2φx

)2

−
φy

2φx

+
(φxx

2φx

)2

−
2φxxx

3φx

, (11)

is a non-auto-BT between φ and the solution u0 of the

generalized Kadomtsev–Petviashvili equation (1).

One knows that the symmetry equation for Eq. (1)

reads:

σu
xt + σu

4x + 6σuuxx + 6uσu
xx + 12σu

xux

+ 3σu
yy + 3σu

xy = 0 , (12)

where σu denotes the symmetry of u, respectively. From

the truncated Painlevé expansion (3) and the Theorem 1a

and 1b, a new nonlocal symmetry of Eq. (1) is presented

and studied as follows.

Theorem 2 Equation (1) has the nonlocal symmetry

given by

σu = 2φxx , (13)

where u and φ satisfy the non-auto BT (11).

Proof The nonlocal symmetry (13) is residual of the sin-

gularity manifold φ. The nonlocal symmetry (13) will also

be obtained with substituting the Möbious transformation

symmetry σφ into the linearized equation (4).

To find out the group of the nonlocal symmetry (13)

u → ū(ǫ) = u + ǫσu , (14)

we have to solve the following initial value problem

dū(ǫ)

dǫ
= 2φ̄xx , ū(ǫ) |ǫ=0= u , (15)

with ǫ being the infinitesimal parameter.

However, since it is difficult to solve Eqs. (15) for ū(ǫ)

due to the intrusion of the function φ̄(ǫ) and its differenti-

ations, we introduce new variables to eliminate the space

derivatives of φ̄(ǫ)

f = φx , g = fx . (16)

Now the nonlocal symmetry (13) of the original equa-

tion (1) becomes a Lie point symmetry of the prolonged

system (1), (11), and (16), saying










σu

σφ

σf

σg











=











2g

−φ2

−2φf

−2f2 − 2φg











. (17)

The result (17) indicates that the nonlocal symmetries

(13) are localized in the properly prolonged system (1),

(11), and (16) with the Lie point symmetry vector

V = 2g∂u − φ2∂φ − 2φf∂f − 2(f2 + φg)∂g . (18)

In other words, the symmetries related to the truncated

Painlevé expansion are just a special Lie point symmetry

of the prolonged system.

Now we have obtained the localized nonlocal symme-

tries, an interesting question is what kind of finite trans-

formation would correspond to the Lie point symmetry

(18). We have the following theorem.

Theorem 3 If {u, φ, f, g} is a solution of the prolonged

system (1), (11), and (16), then {ū, φ̄, f̄ , ḡ} is given by

φ̄ =
φ

ǫφ + 1
, f̄ =

f

(ǫφ + 1)2
,

ḡ =
g

(ǫφ + 1)2
−

2ǫf2

(ǫφ + 1)3
,

ū = u +
2ǫg

ǫφ + 1
−

2ǫ2f2

(ǫφ + 1)2
,

with arbitrary group parameter ǫ.

Proof Using Lie’s first theorem on vector (18) with the

corresponding initial condition

dū(ǫ)

dǫ
= 2ḡ(ǫ) , ū(0) = u ,

dφ̄(ǫ)

dǫ
= −φ̄2(ǫ) , φ̄(0) = φ ,

df̄(ǫ)

dǫ
= −2φ̄(ǫ)f̄(ǫ) , f̄(0) = f ,

dḡ(ǫ)

dǫ
= −2(f̄ 2(ǫ) + φ̄(ǫ)ḡ(ǫ)) , ḡ(0) = g .

One can easily obtain the solutions of the above equations

given in Theorem 3, thus the theorem is proved.

Actually, the above group transformation is equiva-

lent to the truncated Painlevé expansion (3) since the sin-

gularity manifold equations (1), (11), and (16) are form

invariant under the transformation 1 + ǫφ → φ (with

ǫf → φx, ǫg → φxx).

3 Similarity Reductions with the Nonlocal

Symmetries

In this section, we will discuss the symmetry reduc-

tions related to the nonlocal symmetries. In order to

search for more similarity reductions of Eq. (1), we study

Lie point symmetries of the prolonged systems instead of

the single Eq. (1). According to the classical Lie point

symmetry method, the Lie point symmetries for the whole

prolonged systems possess the form

σu = Xux + Y uy + Tut − U ,

σφ = Xφx + Y φy + Tφt − Φ ,

σf = Xfx + Y fy + Tft − F ,

σg = Xgx + Y gy + Tgt − G , (19)

where X , Y , T , U , Φ, F , G are function of x, y, t, u, φ, f ,

g, which means that the prolonged system (1), (11), and

(16) are invariant under the transformations

u → u + ǫσu , φ → φ + ǫσφ ,

f → f + ǫσf , g → g + ǫσg , (20)
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with the infinitesimal parameter ǫ.

The symmetries σk (k = u, φ, f, g) are defined as the

solution of the linearized equations of the prolonged sys-

tems (1), (11), and (16)

σu
xt + σu

4x+ 6σuuxx+ 6uσu
xx + 12σu

xux+ 3σu
yy+ 3σu

xy = 0 ,

(σu
xt + σφ

xxxx + 3σφ
yy + 3σφ

xy)φ
3
x

− (3σφ
xxφy + 4σφ

xxxφxx + σφ
t φxx + 3σφ

y φxx

+ σφ
xxφt + 4σφ

xxφxxx)φ2
x − (3σφ

xxφ2
y

− 3σφ
xφxxφy + 6σφ

y φxxφy − 9σφ
xxφ2

xx − σφ
xφxxφt

− 4σφ
xφxxφxxx)φx + 6σφ

x(φ2
y − φ2

xx)φxx = 0 ,

σf − σφ
x = 0 , σg − σf

x = 0 . (21)

Substituting the expressions (19) into the symmetry equa-

tions (21) and collecting the coefficients of the indepen-

dent partial derivatives of dependent variables u, φ, f , g.

Then we obtain a system of overdetermined linear equa-

tions for the infinitesimals X , Y , T , U , Φ, F , G, which

can be easily given by solving the determining equations

X = −
1

18
f1tty

2 +
1

18
(6x + 3y)f1t −

1

6
f2ty + f3 ,

Y =
2

3
f1ty + f2 , T = f1 , F = c1φf + c2f ,

Φ =
1

2
c1φ

2 + c2φ + c3, G = c1(f
2 + gφ) + c2g ,

U = −
1

108
f1ttty

2 +
1

108
(6x − 3y)f1tt −

1

36
f2tty

+
1

108
(−72u + 9)f1t +

1

6
f3t −

1

12
f2t − c1g , (22)

where f1 ≡ f1(t), f2 ≡ f2(t), f3 ≡ f3(t) are arbitrary func-

tions of t, c1, c2, and c3 are arbitrary constants. When

c2 = c3 = f1 = f2 = f3 = 0 and c1 = −2, the obtained

symmetry is just Eq. (17), and when c1 = 0, the related

symmetry is only the general Lie point symmetry of the

original equation (1). To obtain more group invariant so-

lutions, we would like to solve the symmetry constraint

condition σk = 0 defined by Eq. (19) with Eq. (22), which

is equivalent to solving the following characteristic equa-

tions

dx

X
=

dy

Y
=

dt

T
=

du

U
=

dφ

Φ
=

df

F
=

dg

G
. (23)

To solve the characteristic equations, one special case

is listed in the following.

Without loss of generality, we assume f1 = f2 = 0,

and f3 = 1. For simplicity, we introduce ∆2 = c2
2 − 2c1c3.

We find the similarity solutions after solving out the char-

acteristic equations (23)

φ = −
c2

c1
−

∆

c1
tanh

[1

2
∆(F1 + x)

]

,

f = −F2 sech2
[1

2
∆(F1 + x)

]

,

g = −F3 sech2
[1

2
∆(F1 + x)

]

−
4c1

∆
F4

sech2[(1/2)∆(F1 + x)]

e∆(F1+x) + 1
,

u = F4 +
2c1

∆
F3 tanh

[1

2
∆(F1 + x)

]

−
c2
1

∆2
F 2

2 tanh
[1

2
∆(F1 + x)

]

×
[

tanh
[1

2
∆(F1 + x)

]

− 2
]

, (24)

where F1 = F1(y, t), F2 = F2(y, t), F3 = F3(y, t), and

F4 = F4(y, t) are the group invariant functions while y

and t are the similarity variables. Substituting Eq. (24)

into the prolonged system (1), (11), and (16), the invariant

functions F1, F2, F3 and F4 satisfy the reduction systems

F2 =
∆2

2c1
,

F3 = −
∆3

2c1
−

∆3

c1( e∆(F1+x) + 1)
,

F4 =
1

2
f4ty +

1

4
f2
4 −

2

3
f5t +

∆2

6
, (25)

where F1 satisfies the following reduction equation

F1 = −f4y + f5 , (26)

where f4 = f4(t), f5 = f5(t) are arbitrary functions with

t. It is obvious that once the solutions F1 are solved out

with Eq. (26), the solutions F2, F3, and F4 can be solved

out directly from Eq. (25). So the explicit solutions for

the generalized Kadomtsev–Petviashvili equation (1) are

immediately obtained by substituting F1, F2, F3, and F4

into Eq. (24).

4 CRE Solvable and Soliton-Cnoidal Waves

Solution

4.1 CRE Solvable

For the generalized Kadomtsev–Petviashvili equation

(1), we aim to look for its truncated Painlevé expansion

solution in the following possible form

u = u0 + u1R(w) + u2R(w)2 , (w = w(x, y, t)) , (27)

where R(w) is a solution of the Riccati equation

Rw = b0 + b1R + b2R
2 , (28)

with b0, b1, b2 being arbitrary constants. By vanishing

all the coefficients of the power of R(w) after substituting

Eq. (27) with Eq. (28) into Eq. (1), we have seven over-

determined equations for only four undetermined func-

tions u0, u1, u2 and w, It is fortunate that the overdeter-

mined system may be consistent, thus we obtain

u1 = −2b1b2w
2
x − 2b2wxx , u2 = −2b2

2w
2
x ,

u0 =
1

6
(δ − 12b0b2)w

2
x − b1wxx
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−
1

2

((wxx

wx

)2

+
(wy

wx

)2)

−
2

3
S1 −

1

6
P1 −

1

2
C1 , (29)

and the function w must satisfy

δwxwxx + 3(C1C1x + C1x + C1y) + S1x + P1x = 0 ,

(δ = 4b0b2 − b2
1) , (30)

where

P1 =
wt

wx

, C1 =
wy

wx

, S1 =
wxxx

wx

−
3

2

(wxx

wx

)2

. (31)

From above, it shows that the Eq. (1) really has the

truncated Painlevé expansion solution related to the Ric-

cati equation (28). At this point, we call the expan-

sion (27) is a consistent Riccati expansion (CRE) and the

generalized Kadomtsev–Petviashvili equation (1) is CRE

solvable.[25]

In summary, we have the following theorem:

Theorem 4 If w is a solution of

δwxwxx + 3(C1C1x + C1x + C1y) + S1x + P1x = 0 , (32)

then:

u = u0 − (2b1b2w
2
x + 2b2wxx)R(w) − 2b2

2w
2
xR(w)2 (33)

is a solution of Eq. (1), with R ≡ R(w) being a solution

of the Riccati equation (28).

4.2 Soliton-Cnoidal Wave Interaction Solutions

Obviously, the Riccati equation (28) has a special so-

lution R(w) = tanh(w), while the truncated Painlevé ex-

pansion solution (27) becomes

u = u0 + u1 tanh(w) + u2 tanh2(w) , (34)

where u0, u1, u2, and w are determined by Eqs. (28), (29),

and (30).

We know the solution (34) is just consistent with Theo-

rem 4. As consistent tanh-function expansion (CTE) (34)

is a special case of CRE, it is quite clear that a CRE

solvable system must be CTE solvable, and vice verse.

If a system is CTE solvable, some important interaction

solitary wave solutions can be constructed directly. In or-

der to say the relation clearly, we give out the following

Bäcklund transformation.

Theorem 5(BT) If w is a solution of Eq. (30) with δ = 4,

then

u=u0−(2b1b2w
2
x+2b2wxx) tanh(w)−2b2

2w
2
x tanh2(w), (35)

is a solution of Eq. (1), where u0 is determined by Eq. (29)

with b0 = 1, b1 = 0, b2 = −1.

In order to obtain the solution of Eq. (1), we consider

w in the form

w = k1x + l1y + d1t + g , (36)

where g is a function of x, y and t. It will lead to the in-

teraction solutions between a soliton and other waves. By

means of Theorem 5, some nontrivial solutions of the gen-

eralized Kadomtsev–Petviashvili equation (1) can be ob-

tained from some quite trivial solutions of Eq. (30), which

are listed as follows.

Case 1 In Eq. (30), we take a trivial solution for w,

saying

w = kx + ly + dt + c , (37)

with k, l, d, c being arbitrary constants. Then substituting

Eq. (37) into Theorem 5 yields the following kink soliton

and ring soliton solution of the generalized Kadomtsev–

Petviashvili equation (1):

u = − (d + 3l)
1

6k
−

l2

2k2

−
2

3
k2 + 2k2 sech2(kx + ly + dt + c) . (38)

Case 2 To find out the interaction solutions between

soliton and cnoidal periodic wave, let

w = k1x+l1y+d1t+W (X) , (X ≡ k2x+l2y+d2t) , (39)

where W1 ≡ W1(X) = WX satisfies

W 2
1X = a0 + a1W1 + a2W

2
1 + a3W

3
1 + a4W

4
1 , (40)

with a0, a1, a2, a3, a4 being constants. Substituting

Eq. (39) with Eq. (40) into Theorem 5, we have the rela-

tions

a0 =
k2
1a2

k2
2

−
2k3

1a3

k3
2

+ (12k4
1 + k1d1 + 3k1l1 + l21)

1

k4
2

− (k1d2 + 3k1l2 + 4l1l2)
k1

k5
2

−
5k2

1l
2
2

k6
2

,

a1 =
2a2k1

k2
−

3k2
1a3

k2
2

+ (16k3
1 + d1 + 3l1)

1

k3
2

+ (6l1l2 − k1d2 − 3k1l2)
1

k4
2

−
6k1l

2
2

k5
2

, a4 = 4 , (41)

which lead to the following explicit solutions of Eq. (1) in

the form of

u=
4

3
(k1+k2W1)

2−
d1 + 3l1+ d2W1 + 3l2W1 + 4k3

2W1XX

6(k1 + k2W1)

+
k4
2W 2

1X − (l1 + l2W1)
2

2(k1 + k2W1)2

+ 2W1X tanh(k1x + l1y + d1t + W )

− 2(k1 + k2W1)
2 tanh2(k1x + l1y + d1t + W ) . (42)

It is known that an equation by the definition of the

elliptic functions can be written out in terms of Jacobi el-

liptic functions. The formula (42) exhibits the interactions

between soliton and abundant cnoidal periodic waves. To

show these soliton-cnoidal waves more intuitively, we just

take a simple solution of Eq. (40) as

W1 = µ0 + µ1 sn(mX, n) , (43)

where sn(mX, n) is the usual Jacobi elliptic sine function.

The modulus n of the Jacobi elliptic function satisfies:
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0 ≤ n ≤ 1. When n → 1, sn(ξ) degenerates as hyper-

bolic function tanh(ξ), when n → 0, sn(ξ) degenerates as

trigonometric function sin(ξ). Substituting Eq. (43) with

Eq. (41) into Eq. (40) and setting the coefficients of cn(ξ),

dn(ξ), sn(ξ) equal to zero, without loss of generality, takes

k1 = k2 = 1, l1 = l2, yields

a2 = (5 − n2)m2 + 24(m + 1) ,

a3 = 8(m + 2) , µ0 = −1 +
1

2
m ,

µ1 = −
1

2
mn, d2 = (n2 − 1)m3 + d1 . (44)

Hence, one kind of soliton-cnoidal wave solutions is

obtained by taking Eq. (43) and

W = µ0X + µ1

∫ X

X0

sn(mY, n)dY , (45)

with the parameter requirement (44) into the general so-

lution (42).

The solution given in Eq. (42) with Eq. (41) denotes

the analytic interaction solution between the soliton and

the cnoidal periodic wave. In Fig. 1, we plot the inter-

action solution of the potential u when the value of the

Jacobi elliptic function modulus n 6= 1. This kind of solu-

tion can be easily applicable to the analysis of interesting

physical phenomenon. In fact, there are full of the solitary

waves and the cnoidal periodic waves in the real physics

world.

Fig. 1 (Color online) The type of soliton-cnoidal wave interaction solution for u with the parameters m = 1,
n = 1/2, k2 = 1, l1 = −1, µ0 = −3/2, and µ1 = 1/4: (a) One-dimensional image at x = 0, t = 1; (b)
One-dimensional image at x = 0, y = 1; (c) The three-dimensional plot; (d) Overhead view for u at t = 0.

5 Summary and Discussions

In summary, the generalized Kadomtsev–Petviashvili

equation (1) is investigated by nonlocal symmetry method

and consistent Riccati expansion (CRE) method.

On the one hand, applying the Painlevé expan-

sion to the generalized Kadomtsev–Petviashvili equation,

two BTs including auto-BT and non-auto-BT are ob-

tained. By developing the truncated Painlevé expan-

sion, the Schwartzian form of the generalized Kadomtsev–

Petviashvili equation is found and the residual is demon-

strated to be just the nonlocal symmetry. Meanwhile, the

nonlocal symmetry is just related to the Möbious trans-

formation symmetry by the linearized equation of non-

auto-BT. Then the nonlocal symmetry is readily localized

to Lie point symmetry by prolonging the original equa-

tion to a large system, the corresponding finite symmetry

transformation and similarity reductions are found.

On the other hand, by means of the CRE method,

the soliton-cnoidal wave solutions of the generalized

Kadomtsev–Petviashvili equation are obtained. By a spe-
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cial form of CRE, i.e. the consistent tanh-function ex-

pansion (CTE), kink soliton+cnoidal periodic wave solu-

tion and ring soliton+cnoidal periodic wave solution are

explicitly expressed by the Jacobi elliptic and the corre-

sponding elliptic integral. The interactions between soli-

tons and cnoidal periodic waves display some interesting

and physical phenomena. The CRE method used here

can be developed to find other kinds of solutions and in-

tegrable models. It can also be used to find interaction

solutions among different kinds of nonlinear waves. The

CRE method did provide us with the result which is quite

nontrivial and difficult to be obtained by other traditional

approaches.

In addition, the generalized Kadomtsev–Petviashvili

equation (1) have been reported little in the current ar-

ticles. So uncovering more integrable properties of the

equation, such as the Darboux transformation, Hamilto-

nian structure and the conservation, are interesting and

meaningful work. The details on the CRE method and

other methods to solve interaction solutions among dif-

ferent kinds of nonlinear waves and the investigation of

other integrability properties such as Hamiltonian struc-

ture of the generalized Kadomtsev–Petviashvili equation

(1) deserves further study.
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