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By backstepping control law and active control method, adaptive function projective synchronization of 2D and
3D discrete-time chaotic systems with uncertain parameters are investigated. To illustrate the effectiveness of
new scheme, some numerical examples are given.
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Since the synchronization of chaotic system is
discovered,[1] the synchronization problem in chaotic
systems has been intensively and extensively stud-
ied in recent decades. Up to now, there exist
many types of chaos synchronization schemes in dy-
namical systems.[2−15] Parameters adaptive control,[2]

active control,[3] feedback approach,[4] backstepping
design,[5] and so on have been successfully applied to
chaos synchronization. Backstepping design[6] has be-
come a systematic and powerful method for the con-
struction of both feedback controllers and associated
Lyapunov functions.

Over the last decade, some articles have been re-
ported to extend the backstepping design to deduce
some proper controllers to investigate chaos control
and synchronization.[7−9] However, they are based on
the exactly knowing of the system parameters. In real
situation, some or all of the parameters are unknown.
In this Letter, we study global chaos synchronization
of discrete-time chaotic system with uncertain param-
eters base on Chen and Li[11] and Lü’s scheme.[15,16]

First, we give a definition of adaptive function pro-
jective synchronization (AFPS). Then a synchroniza-
tion scheme is applied to investigate AFPS between
two identical 2D and 3D discrete-time chaotic systems
based on backstepping design. Moreover, we provide
numerical examples to demonstrate the effectiveness
of proposed method.

The discrete-time chaotic system (called the drive
system) in the form

x(k + 1) = F (x(k)), (1)

and the response system of (1) is defined by

y(k + 1) = G(y(k)) + U, (2)

where F : Rm → Rm, G : Rm → Rm are the vector-
valued functions, x(k) = [x1(k), · · · , xm(k)]T ∈ Rm,
y(k) = [y1(k), · · · , ym(k)]T ∈ Rm are the state vectors,
and U = [u1(x1(k), y1(k)), · · · , um(xm(k), ym(k))] ∈

Rm is an unknown controller vector. Let the error
state be

e(k) =
(
e1(k), e2(k), · · · , em(k)

)
=

(
x1(k + τ) − f1(x(k + τ))y1(k), x2(k + τ)
− f2(x(k + τ))y2(k), · · · , xm(k + τ)
− fm(x(k + τ))ym(k)

)
, (3)

where fi(i = 1 · · · ,m) are the scaling function, τ ∈
Z/Z− is a constant. It is said that Eqs. (1) and (2)
are globally AFPS when τ ∈ N (τ is called the syn-
chronization anticipation), if there exists proper con-
trollers U = (u1, u2, · · · , um)T such that lim

k→∞
(e(k)) =

0, we can say that there exist AFPS between the sys-
tems (1) and (2).

Remark. When we choose τ = 0, (i) f1 = f2 =
· · · ,= fn = 1, (ii) f1 = f2 = · · · ,= fn = α, (iii)
f1 = α1, f2 = α2, · · ·, fn = αn, (iv) f1 = f1(x),
f2 = f2(x), · · ·, fn = f3(x), and we will obtain CS[7],
PS[13], MPS[14] and FPS[11], respectively.

The Kawakami map[6]

x1(k + 1) = αx1(k) + x2(k),
x2(k + 1) = − β + x2

2(k). (4)

as the drive system, and the response system[14] reads

y1(k + 1) = α1(k)y1(k) + y2(k) + u1(x, y),
y2(k + 1) = − β1(k) + y2

2(k) + u2(x, y), (5)

where α1(k) and β1(k) are uncertain parameters which
estimate parameters of α and β. Here u1 and u2 are
the controllers such that two chaotic systems can be
synchronized in the sense of AFPS.

In the following we would like to realize Eqs. (4)
and (5) by backstepping design method.

Let the error states be e1(k) = x1(k + τ)− 3y1(k),
e2(k) = x2(k + τ) − (1 + tanh(x2(k + τ)2)y2(k),
e3(k) = α1(k) − α, e4(k) = β1(k) − β. Then from
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Eqs. (4) and (5), we have the discrete-time error sys-
tem

e1(k + 1) = x1(ξ) − 3α1y1 − 3y2 − 3u1(x, y),
e2(k + 1) = x2(ξ) − (1 + tanh(x2(ξ)2)

· (−β1 + y2
2 + u2(x, y)). (6)

while ξ = k+1+τ, η = k+τ , α1 = α1(k), β1 = β1(k),
x1 = x1(k), x2 = x2(k), y1 = y1(k), y2 = y2(k).
Based on the backstepping design and the improved
ideas of Refs. [11,15,16], we give a systematic and con-
structive algorithm to derive the controllers u(x, y)
step by step such that systems Eqs. (4) and (5) are
synchronized together.

Step 1. The first error variable E1(k) = e1(k).
Let the first partial Lyapunov function be L1(k) =
|E1(k)| = |e1(k)| and the second error variable be

e2(k) = e1(k + 1) − δ11e1(k), (7)

where δ11 ∈ R. We have the derivative of L1(k)

∆L1(k) = |e1(k + 1)| − |e1(k)|
≤ (|δ11| − 1)|e1(k)| + |e2(k)|. (8)

Step 2. Let the second partial Lyapunov function
candidate be L2(k) = L1(k) + c1|e2(k)| and the third
error variable be

e3(k) = e2(k + 1) − δ21e1(k) − δ22e2(k), (9)

where c1 > 1, δ21, δ22 ∈ R. Therefore, from Eqs. (7)
and (9) we have the derivative L2(k)

∆L2(k) = L2(k + 1) − L2(k)
≤ (c1|δ21| + |δ11| − 1)|e1(k)| + (c1|δ22|
+ 1 − c1)|e2(k)| + c1|e3(k)|. (10)

Step 3. Let the third partial Lyapunov function
candidate be L3(k) = L2(k)+c2|e3(k)| and the fourth
error state be

e4(k) = e3(k+1)−δ31e1(k)−δ32e2(k)−δ33e3(k), (11)

where c2 > c1 > 1, δ31, δ32, δ33 ∈ R. Therefore, from
Eqs. (9) and (11) we have the derivative L3(k)

∆L3(k) = L3(k + 1) − L3(k)
≤(c2|δ31| + c1|δ21| + |δ11| − 1)|e1(k)|

+ (c2|δ32| + c1(|δ22| − 1) + 1)|e2(k)|
+ (c2|δ33| + c1 − c2)|e3(k)| + c2|e4(k)|. (12)

Step 4. Let the fourth partial Lyapunov function
candidate be L4(k) = L3(k)+c3|e4(k)| and the fourth
error state be

e4(k + 1) − δ41e1(k) − δ42e2(k)
− δ43e3(k) − δ44e4(k) = 0, (13)

where c3 > c2 > c1 > 1, δ41, δ42, δ43, δ44 ∈ R. There-
fore, from (11) and (13) we have the derivative L4(k)

∆L4(k) = L4(k + 1) − L4(k)|
≤ (c3|δ41| + c2|δ31| + c1|δ21| + |δ11| − 1)|e1(k)|

+ (c3|δ42| + c2|δ32| + c1(|δ22| − 1) + 1)|e2(k)|
+ (c3|δ43| + c2|δ33| + c1 − c2)|e3(k)|
+ (c3|δ44| + c2 − c3)|e4(k)|. (14)

From Eq. (14), we know that the right-hand side
of Eq. (14) is negative and infinite, if the parameters
ci(i = 1, 2, 3, 4) and δij(1 ≤ j ≤ i ≤ 4) satisfy

c1|δ21| + c2|δ31| + c3|δ41| + |δ11| < 1,

c1|δ22| + c2|δ32| + c3|δ42| < c1 − 1,

c2|δ33| + c3|δ43| < c2 − c1, |δ44| <
c3 − c2

c3
. (15)

Here ∆L(k) is negative and infinite. From Eqs. (7),
(9), (11) and (13) we obtain the controllers

u1(x, y) =
1
3
x1(ξ) − α1y1 −

2
3
y2 −

1
3
δ11x1(η)

+ δ11y1 −
1
3
x2(η) +

1
3
tanh(x2(η))2y2,

u2(x, y) =
1

1 + tanh(x2(ξ))2
((−x2(ξ) + y2

2 − β1

− tanh(x2(ξ))2y2
2 − tanh(x2(ξ))2β1

+ δ21x1(η) − 3δ21y1 + δ22x2(η)
− δ22y2) − δ22y2)tanh(x2(η))2, (16)

α1(k + 1) = α + δ31x1(η) − 3δ31y1 + δ32x2(η)
− δ32y2 − δ32tanh(x2(η)y2

+ δ33α1 − δ33α + β1 − β,

β1(k + 1) = β + δ41x1(η) − 3δ41y1 + δ42x2(η)
− δ42y2) − δ42tanh(x2(η))y2) + δ43α1

− δ43α + δ44β1 − δ44β, (17)

ξ = k + 1 + τ , η = k + τ , α1 = α1(k), β1 = β1(k),
x1 = x1(k), y1 = y1(k).
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Fig. 1. Orbits of the error states: (a) e1(k) = x1(k + τ)−
3y1(k), τ = 1, (b) e2(k) = x2(k + τ) − [1 + tanh(x2(k +
τ))2]y2(k), τ = 1.

We use numerical simulations to verify the effec-
tiveness of the above-mentioned controllers. The pa-
rameters are chosen as α = −0.1, β = 1.6, δ11 = 0.3,
δ21 = 0.02, δ22 = 0.4, δ31 = 0.05, δ32 = 0.1,
δ33 = −0.2, δ41 = 0.01, δ42 = 0.02, δ43 = 0.03,
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δ44 = 0.04, c1 = 2, c2 = 3, c3 = 5 and the initial values
[x1(0) = 0.1, x2(0) = 0.2], [y1(0) = 0.2, y2(0) = 0.1],
and α1(0) = 0.1, β1(0) = 0.1, and the figures of syn-
chronization errors are displayed in Fig. 1(a)–1(b), and
simulations of the two parameters α1(k), β1(k) are dis-
played in Fig. 2(a) and 2(b). Finally the attractors af-
ter being synchronized with controllers are displayed
in Fig. 3.

-1.5

-1.0

-0.5

0.0

a

0.2

0.6

1.0

1.4

b

0.0 0.5 1.0 1.5 2.0

t

0.0 0.5 1.0 1.5 2.0

t

(a) (b)

Fig. 2. Orbits of uncertain parameters.
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Fig. 3. Two attractors after synchronized with τ = 1, the
dark one is the response system with the controllers, and
the other is the drive system.

The generalized Hénon map[12]

x1(k + 1) = − βx2(k),
x2(k + 1) =1 + βx3(k) − αx2

1(k),
x3(k + 1) = βx2(k) + x1(k). (18)

as the drive system, and the response system is as
follows:

y1(k + 1) = − β1(k)y2(k) + u1(x, y),
y2(k + 1) =1 + β1(k)y3(k) − α1(k)y2

1(k) + u2(x, y),
y3(k + 1) = β1(k)y2(k) + y1(k) + u3(x, y), (19)

where α1(k) and β1(k) are uncertain parameters which
estimate the parameters of α and β, while u1, u2 and
u3 are the controllers such that two chaotic systems
can be synchronized in the sense of AFPS. Then we
would like to realize AFPS of Eqs. (18) and (19).

Let the error states be e1(k) = x1(k + τ)− 3y1(k),
e2(k) = x2(k + τ) + y2(k), e3(k) = x3(k + τ) − (1 +
coth(x3(k + τ)))2y3(k), e4(k) = α1(k) − α, e5(k) =
β1(k)− β. Then from Eqs. (18) and (19), we have the
discrete-time error dynamical system

e1(k + 1) = x1(ξ) + 3β1y2 − 3u1(x, y),

e2(k + 1) =1 + y3 + x2(ξ) − α1y
2
2 + u2(x, y),

e3(k + 1) = x3(ξ) − (1 + coth(x3(ξ))2)
· (β1y2 + y1 + u3(x, y)). (20)

while ξ = k+1+τ , η = k+τ , α1 = α1(k), β1 = β1(k),
x1 = x1(k), x2 = x2(k), x3 = x3(k), y1 = y1(k),
y2 = y2(k), y3 = y3(k). In the following we consider
AFPS between Eqs. (18) and (19) via the following
scheme.

Step 5. Let the fourth partial Lyapunov function
candidate be L4(k) = L3(k)+c3|e4(k)| and the fourth
error state be

e5(k) = e4(k + 1) − δ41e1(k) − δ42e2(k)
− δ43e3(k) − δ44e4(k), (21)

where c3 > c2 > c1 > 1, δ41, δ42, δ43, δ44 ∈ R. There-
fore, from Eqs. (11) and (21) we have the derivative
L4(k)

∆L4(k) = L4(k + 1) − L4(k)
≤ (c3|δ41| + c2|δ31| + c1|δ21| + |δ11| − 1)|e1(k)|

+ (c3|δ42| + c2|δ32| + c1(|δ22| − 1) + 1)|e2(k)|
+ (c3|δ43| + c2|δ33| + c1 − c2)|e3(k)|
+ (c3|δ44| + c2 − c3)|e4(k)| + c3|e5(k)|. (22)

Step 6. Let the Lyapunov function be L(k) =
L4(k) + c4|e5(k)|. From the above steps we have

e5(k + 1) − δ51e1(k) − δ52e2(k) − δ53e3(k)
− δ54e4(k) + δ55e5(k) = 0, (23)

where c4 > c3 > c2 > c1 > 1, δ51, δ52, δ53, δ54, δ55 ∈ R.
Then from Eqs. (21),(22), and (23), we obtain the
derivative of the Lyapunov function L(k)

∆L(k) = L(k + 1) − L(k) ≤
(
c4|δ51| + c3|δ41|

+ c2|δ31| + c1|δ21| + |δ11| − 1
)
|e1(k)| +

(
c4|δ52|

+ c3|δ42| + d2|c32| + c1(|δ22| − 1) + 1
)
|e2(k)|

+
(
c4|δ53| + c3|δ43| + c2|δ33| + c1 − c2

)
|e3(k)|

+
(
c4|δ54| + c3|δ44| + c2 − c3

)
|e4(k)|

+
(
c3 − c4 + c4|δ55|

)
|e5(k)|. (24)

From Eq. (24), we know that the right-hand side of
Eq. (24) is negative and infinite, if the parameters
ci(i = 1, 2, 3, 4) and δij(1 ≤ j ≤ i ≤ 4) satisfy

c1|δ21| + c2|δ31| + c3|δ41| + c4|δ51| + |δ11| < 1,

c1|δ22| + c2|δ32| + c3|δ42| + c4|δ52| < c1 − 1,

c2|δ33| + c3|δ43| + c4|δ53| < c2 − c1,

c3|δ44| + c4|δ54| < c3 − c2, |δ55| <
c4 − c3

c4
, (25)

then ∆L(k) is negative and infinite. From Eqs. (7),
(9), (11), (21) and (23), we can determine the scalar
controllers of u(x, y) in the form

u1(x, y) = β1y2 +
1
3
x1(ξ) + δ11y1 −

1
3
δ11x1(η)
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− 1
3
y2 −

1
3
x2(η),

u2(x, y) = − 1 + α1y
2
2 − x2(ξ) − 2y3 − 3δ21y1

+ δ21x1(η) + δ22y2

+ δ22x2(η) + x3(η) − y3coth(x3(η))2,

u3(x, y) =
1

1 + coth(x3(ξ))2
(−β1y2 − y1 + x3(ξ)

+ β1y2coth(x3(ξ)2 − y1coth(x3(ξ)2

+ 3δ31y1 − δ31x1(η) − δ32y2 − δ32x2(η)
+ δ33y3 − δ33x3(η)
+ δ33y3coth(x3(η))2 − α1 + α), (26)

α1(k + 1) = α − 3δ41y1 + δ41x1(η) + δ42y2 + δ42x2(η)
+ δ43x3(η) − δ43y3coth(x3(η))2 + δ44α1

− δ44α + β1 − β,

β1(k + 1) = β − 3δ51y1 + δ51x1(η) + δ52y2 + δ52x2(η)
− δ53y3 + δ53x3(η) − δ53y3coth(x3(η))2

+ δ54α1 − δ54α + δ55β1 − δ55β, (27)

while ξ = k+1+τ , η = k+τ , α1 = α1(k), β1 = β1(k),
x1 = x1(k), x2 = x2(k), x3 = x3(k), y1 = y1(k),
y2 = y2(k), y3 = y3(k). Then we use numerical
simulations to verify the effectiveness of the obtained
controllers u(x, y). Here take α = 1.07, β = 0.3,
δ11 = 0.3, δ21 = 0.02, δ22 = 0.4, δ31 = 0.05, δ32 = 0.1,
δ33 = −0.2, δ41 = 0.01, δ42 = 0.02, δ43 = 0.03, δ44 =
0.04, δ51 = 0.01, δ52 = 0.02, δ53 = 0.03, δ54 = 0.04,
δ55 = 0.05, c1 = 2, c2 = 3, c3 = 5, c4 = 6 and the
initial values [x1(0) = 0.2, x2(0) = 0.7, x3(0) = 0.06],
[y1(0) = 0.06, y2(0) = 0.7, y3(0) = 0.2], and α1(0) =
0.1, β1(0) = 0.1, respectively.

In the case τ > 0, without loss of generality, we set
τ = 1, Thus the figures of AFPS errors are displayed
in Figs. 4(a)–4(c), and simulations of the two parame-
ters α1(k), β1(k) are displayed in Figs. 5(a) and 5(b).
Finally the attractors after synchronized are displayed
in Fig. 6.
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Fig. 4. Orbits of the error states: (a) e1 = x1(k + τ) − 3y1(k), τ = 1. (b) e2 = x2(k + τ) + y2(k), τ = 1, (c)
e3 = x3(k + τ) − (1 + coth(x3(k + τ))2)y3(k), τ = 1.
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Fig. 6. Two attractors after synchronized with τ = 1, the
dark one is the response system with the contollers, and
the other is the drive system.

In summary, we have presented a synchronization
scheme to study AFPS in discrete-time chaotic sys-
tems. The scheme is applied to investigate AFPS be-
tween two identical 2D and 3D discrete-time chaotic
systems with uncertain parameters. Numeric simula-
tions are used to verify the effectiveness of our scheme.
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