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a b s t r a c t 

Modulation instability, rogue waves and spectral analysis are investigated for the nonlinear 

Schrödinger equation with the higher-order terms. The modulation instability distribution 

characteristics from the sixth-order to eighth-order nonlinear Schrödinger equations are 

studied. Higher-order dispersion terms are closely related to the distribution of modula- 

tion stability regime, and n -order dispersion term corresponds to n − 2 modulation stabil- 

ity curves in the modulation instability band. Based on the generalized Darboux transfor- 

mation method, the higher-order rational solutions are constructed. Then the compact al- 

gebraic expression of the N -order rogue wave is given. Dynamic phenomena of the first- to 

third-order rogue waves are illustrated, which exhibit meaningful structures. Two arbitrary 

parameters play important roles in the rogue wave solution. One parameter can control the 

width and crest deflection of rogue wave, while the other can cause the change of width 

and amplitude of rogue wave. When it comes to the third-order rogue wave, three typical 

nonlinear wave structures, including fundamental, circular and triangular patterns, are dis- 

played and discussed. Through spectral analysis on the first-order rogue wave, when these 

parameters satisfy certain conditions, it occurs a transition between W-shaped soliton and 

rogue wave. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

It has been extensive interests in studying rogue waves in recent years. Rogue wave was first put forward conceptually

in the ocean [1] . Rogue waves are relatively large and spontaneous waves, whose appearance may result in catastrophic

damage [2] . Large amplitude, unexpected, coming out from nowhere without warning and suddenly vanishing away without

trace, are the basic characteristics [3] . The generation of rogue waves is closely related to modulation instability (MI). In

optical communication system, the interplay between the dispersion and nonlinear effects can result into MI, which is an

universal and very important physical phenomenon. The research on MI is conducive to improving the performance of

optical communication system. Following the groundbreaking hydrodynamics work of Benjamin and Feir in the early 1960s

[4] , MI has played a prominent role in diverse areas of scientific research, for example, plasma physics [5] , nonlinear optics

[6] , and fluid dynamics [7] . 
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In fact, the above mentioned instability can result in self-induced modulation of incoming continuous waves with sub-

sequent local pulses, which may be discovered in many physical systems. Due to the presence of this phenomenon, there

are many interesting physical effects, such as break-up of deep water-gravity waves in the ocean, the formation of enve-

lope solitons in electrical transmission lines and optical fibers, as well as the formation of cavitons in plasmas. Different

distributions of the MI gain can lead to distinct patterns of nonlinear dynamic phenomena [8] . The dispersion term and the

nonlinear term play different roles in the nonlinear systems, but both of them affect the stability of the solutions for the

nonlinear systems. Recently, some literatures have analyzed the importance of the higher-order dispersion terms, which is

not only affect the MI [9] but also induce some novel excited states [10,11] . The study of MI regions in nonlinear systems is

crucial in many fields, and is the basis for interpreting various models or natural phenomena. 

The nonlinear Schrödinger (NLS henceforth) equation has a prominent position in nonlinear physics. It has extensive

physical applications, especially in nonlinear optics [12] , atmosphere [13] , and water waves [14] . In 1983, Peregrine [15] gave

the analytical expression of rogue wave in the first-order, as a result of MI on the constant wave background. This type

of rogue wave also has another name, that is Peregrine breather. In recent years, many authors [16–18] have reported

the higher-order rogue wave solutions of the NLS equation. In addition, various extensions of the NLS equation have also

been studied, such as pair-transition-coupled NLS equation [19] , variable coefficient NLS equation [20–22] , three-component

NLS equations [23] , three-component coupled derivative NLS equations [24] , and n -component NLS equations [25] . General

higher-order solitons of three different types of nonlocal NLS equations in the reverse-time, PT-symmetric and reverse-

space-time were derived by using a Riemann-Hilbert treatment [26] . 

However, there exists only the lowest-order dispersion and nonlinearity terms in the standard NLS equation [27] . When

the characteristics of the solutions exceed the simple approximation in deriving the NLS equation, the higher-order terms

will hold the dominate role [28] . For instance, it may help to illustrate the physics of wave blow-up and collapse phenomena

[29] . Recently, there has been a series of outstanding and meaningful work on the higher-order NLS hierarchy [30–32] .

Kedziora et al. [30] presented the infinite NLS hierarchy with time variable coefficients and the integrability of the whole

hierarchy with each independent higher-order operator. Chowdury et al. [31] investigated the dynamics of MI when the

higher-order terms preserve the integrability of the infinite NLS hierarchy. In 2016, Ankiewicz et al [32] . studied different

nonlinear waves of the NLS equation with higher-order nonlinear and dispersion terms in the following form 

iq z + δ2 �2 (q ) − iδ3 �3 (q ) + δ4 �4 (q ) − iδ5 �5 (q ) + δ6 �6 (q ) − iδ7 �7 (q ) + δ8 �8 (q ) + · · · = 0 , (1) 

with 

�2 = q tt + 2 q | q | 2 , 
�3 = q t t t + 6 q 2 q t , 

�4 = q t t t t + 6 q ∗q 2 t + 4 q | q t | 2 + 8 | q | 2 q tt + 2 q 2 q ∗tt + 6 | q | 4 q, 

�5 = q t t t t t + 10 | q | 2 q t t t + 30 | q | 4 q t + 10 qq t q 
∗
tt + 10 qq ∗t q tt + 20 q ∗q t q tt + 10 q 2 t q 

∗
t , 

�6 = q t t t t t t + q 2 [60 | q t | 2 q ∗ + 50 q tt (q ∗) 2 + 2 q ∗t t t t ] + q [12 q ∗q t t t t + 18 q ∗t q t t t + 8 q t q 
∗
t t t + 70(q ∗) 2 q 2 t + 22 | q tt | 2 ] 

+ 10 q t [3 q ∗q t t t + 5 q ∗t q tt + 2 q t q 
∗
tt ] + 10 q 3 [2 q ∗q ∗tt + (q ∗t ) 

2 ] + 20 q ∗q 2 tt + 20 q | q | 6 , 
�7 = q t t t t t t t + 70 q 2 tt q 

∗
t + 112 q t | q tt | 2 + 98 | q t | 2 q t t t + 70 q 2 { q t [2 q ∗q ∗tt + (q ∗t ) 

2 ] + q ∗(2 q tt q 
∗
t + q t t t q 

∗) } 
+ 28 q 2 t q 

∗
t t t + 14 q [ q ∗(20 | q t | 2 q t + q t t t t t ) + 3 q t t t q 

∗
tt + 2 q tt q 

∗
t t t + 2 q t t t t q 

∗
t + q t + q ∗t t t t + 20 q t q tt (q ∗) 2 ] 

+ 140 | q | 6 q t + 70 q 3 t (q ∗) 2 + 14(5 q tt q t t t + 3 q t q t t t t ) q 
∗, 

�8 = q t t t t t t t t + 14 q 3 [40 | q t | 2 (q ∗) 2 + 20(q ∗) 3 q tt + 2 q ∗q ∗t t t t + 4 q ∗t q 
∗
t t t + 3(q ∗tt ) 

2 ] 

+ q 2 [28 q ∗(14 | q tt | 2 + 6 q t q 
∗
t t t + 11 q ∗t q t t t + 238 q tt (q ∗t ) 

2 + 336 | q t | 2 q ∗tt + 560 q 2 t (q ∗) 3 

+ 98 q t t t t (q ∗) 2 + 2 q ∗t t t t t t ] + 2 q { 21 q 2 t [9(q ∗) 2 + 14 q ∗q ∗tt ] + q t [728 q tt q 
∗
t q 

∗ + 238 q t t t (q ∗) 2 

+ 6 q ∗t t t t t ] + 34 | q t t t | 2 + 36 q t t t t q 
∗
tt + 22 q tt q 

∗
t t t t + 20 q t t t t t q 

∗
t + 161 q 2 tt (q ∗) 2 + 8 q t t t t t t q 

∗} 
+ 182 q tt | q tt | 2 + 308 q tt q t t t q 

∗
t + 252 q t q t t t q 

∗
tt + 196 q t q tt q 

∗
t t t + 168 q t q t t t t q 

∗
t + 42 q 2 t q 

∗
t t t t 

+ 14 q ∗(30 q 3 t q 
∗
t + 4 q t t t t t q t + 5 q 2 t t t + 8 q tt q t t t t ) + 490(q ∗) 2 q 2 t q tt + 140 q 4 q ∗[ q ∗q ∗tt + (q ∗t ) 

2 ] + 70 q | q | 8 , 
where | q | = | q (z, t) | denotes envelope of the optical pulse with spatial coordinate z and scaled time coordinate t, δi ( i =
2 , 3 , 4 , 5 , · · · ∞ ) represents the i -order real dispersion coefficient. �3 is the Hirota operator [33] , �4 is the Lakshmanan-

Porsezian-Daniel operator [34] , �5 is known as the quintic operator [35] , �6 is the sextic operator, �7 is the heptic operator,

�8 is the octic operator. With an infinite number of arbitrary coefficients, these extensions are integrable. The arbitrariness

of coefficients enables us to go well beyond the single NLS equation. 

The motivation of this paper is to generalize the distribution law of MI for the NLS equation with higher-order terms

and analyze the influence of different parameters on rogue wave, then through the research of the sixth-order NLS equation

to verify whether the results are consistent with MI from the spectrum analysis and consider under what conditions rogue

wave can be transformed into W-shaped soliton. First of all, MI of a continuous wave for the NLS Eq. (1) with different

higher-order terms is investigated. We will discuss MI distribution characteristics from the sixth-order NLS equation to the

eighth-order NLS equation. Comparing their MI gain functions of NLS equations with different order dispersion terms, it

enables us to find the distribution law of MS curves in the MI band. 
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Nowadays many methods have been developed to investigate rogue waves of the nonlinear systems, such as the Darboux

transformation (DT) [36–42] , Hirota method [43–46] , nonlocal symmetry method [47] . Based on the generalized DT [36] ,

higher-order rogue waves will be constructed for the following sixth-order NLS equation [48–50] with only the higher-order

dispersion term 

iq z + δ2 �2 (q ) + δ6 �6 (q ) = 0 , (2)

which can be used to describe the pulses propagating along an optical fiber [4 8,50] . In [4 8] , bilinear forms and soliton solu-

tions of the generalized sixth-order NLS equation were derived by the Hirota method. In [49] , breather to soliton transitions

for the sixth-order NLS equation were investigated by the DT method. In [50] , multi-soliton solutions of the sixth-order NLS

equation were derived by the Hirota method. Here we will consider the plane wave solution of (2) containing space variable

z and time variable t in studying MI and rogue wave solution. For the parameter δ2 , many papers [51–53] have chosen

δ2 = 

1 
2 , this setting has certain convenient features. Here, we also set δ2 = 

1 
2 in Eq. (2) . 

Via the analytical rational expressions and MI characteristics, the dynamics of rogue waves will be studied in detail. Then

we investigate how to use the spectral features of the propagating wave envelope to reveal the existence of nonlinearity and

rogue wave in a short time before the occurrence of a special rogue wave event [54] . For this purpose, we apply the spectral

analysis approach [55–58] to the first-order rogue wave solution of Eq. (2) . 

The remainder of our article is constructed as follows. In Section 2 , MI distribution features of the NLS equation with

different higher-order nonlinear and dispersion terms will be discussed according to MI analysis theory. By virtue of the

generalized DT, a concrete expression of the N-order rogue wave solutions for the sixth-order NLS equation will be given in

Section 3 . In Section 4 , Utilizing the formulas obtained in the previous section, the first-order, second-order, and third-order

exact rogue wave solutions are presented, where their dynamic behavior are also analyzed. Section 5 is devoted to spectral

analysis on the first-order rogue wave. Finally, some conclusions are given. 

2. Modulation instability 

MI is observed in a time-averaged way and usually triggered from a continuous wave or quasi-continuous wave. The

continuous wave condition is corresponding to an effectively unbounded MI domain. Then it can yield information on av-

erage behavior of the nonlinear process and the general tendencies for instability, but usually prevents time-resolved of the

stochastic dynamics. MI symmetry breaking can occur for the reason of higher-order dispersion [59] . MI is the basic mech-

anism for generating rogue wave solutions. MI is an interactive gain procedure that generates priority frequency intervals

between patterns [60] . Studied here is the MI analysis on continuous waves for the NLS equation with different higher-order

dispersion terms, in order to reveal the MI features arising from the higher-order dispersion effects. The plane wave solution

of system (1) has the following form 

q cw 

= Ae iθ = Ae i (kz+ ωt) . (3)

Substituting Eq. (3) into Eq. (2) , it can be obtained that 

k = 20 A 

6 δ6 − 90 A 

4 ω 

2 δ6 + 30 A 

2 ω 

4 δ6 − ω 

6 δ6 + A 

2 − 1 

2 

ω 

2 , (4)

which is the wave number of the plane wave. The background frequency is ω, and the amplitude is A . According to the MI

theory, we add a small perturbation function p ( z, t ) to the plane wave solution. Then a perturbation solution can be derived

as 

q pert = ( A + εp(z, t) ) e i (kz+ ωt) , (5)

where p(z, t) = me i (Kz+�t) + ne −i (Kz+�t) , � indicates the disturbance frequency, and m, n are both small parameters. Sub-

stituting the perturbation solution (5) into the sixth-order NLS Eq. (2) , it can generate a system of linear homogeneous

equations for m and n . Based on the existence conditions for solutions of linear homogeneous equations, that is, the deter-

minant of the coefficient matrix for the system of m and n is equal to 0, it gives rise to the following dispersion relation

equation 

4 K 

2 + (16�ωδ6 (90 A 

4 − (30�2 + 60 ω 

2 ) A 

2 + 3�4 + 10 ω 

2 �2 + 3 ω 

4 ) + 8�ω) K 

+ 4�2 δ2 
6 (3600 A 

10 + (−3300�2 + 10800 ω 

2 ) A 

8 + (1240�4 − 5400 ω 

2 �2 − 7200 ω 

4 ) A 

6 

+ (−240�6 + 1140 ω 

2 �4 + 600 ω 

4 �2 + 5760 ω 

6 ) A 

4 + (24�8 − 120 ω 

2 �6 + 180 ω 

4 �4 − 1020 ω 

6 �2 

− 540 ω 

8 ) A 

2 − �10 + 6�8 ω 

2 − 15�6 ω 

4 + 22�4 ω 

6 + 15�2 ω 

8 + 36 ω 

10 ) + 4�2 δ6 (120 A 

6 − 70 A 

4 �2 

+ (14�4 + 30 ω 

2 �2 − 180 ω 

4 ) A 

2 − �6 − 3 ω 

2 �4 + 25 ω 

4 �2 + 12 ω 

6 ) + �2 (4 A 

2 − �2 + 4 ω 

2 ) = 0 . 

By solving this dispersion relation equation, MI gain can be obtained 

G 6 = | I m (K) | = 

1 

2 

I m 

(
| �| √ 

(�2 − 4 A 

2 ) g 2 
6 

)
, 

g 6 = 1 + 

[
2�4 + (−20 A 

2 + 30 ω 

2 )�2 + 60 A 

4 − 180 A 

2 ω 

2 + 30 ω 

4 
]
δ6 . (6)
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When �2 − 4 A 

2 < 0 , the wave number K will exist the imaginary part which makes the perturbation function p expo-

nentially increase and destroys the stability of the system. This instability is a condition for the existence of rogue wave.

Moreover, It can be seen from the gain G 6 that the parameters �, ω , A , δ6 play a pivotal role in MI of the sixth-order NLS

system. If setting δ6 = 0 , the gain G 6 will reduce to the standard NLS equation case. 

Similar to the above calculation process, we also obtain the MI gain functions of the seventh-order (i.e. δ2 = 

1 
2 , δ7 � =

0 , δ3 · · · δ6 = 0 in Eq. (1) ) and eighth-order (i.e. δ2 = 

1 
2 , δ8 � = 0 , δ3 · · · δ7 = 0 in Eq. (1) ) NLS equations, respectively. Their exact

expressions are as follows 

G 7 = | I m (K) | = 

1 

2 

I m 

(
| �| √ 

(�2 − 4 A 

2 ) g 2 
7 

)
, 

g 7 = 1 + 

[
14 ω �4 + 

(
−140 A 

2 ω + 70 ω 

3 
)
�2 + 420 A 

4 ω − 420 A 

2 ω 

3 + 42 ω 

5 
]
δ7 , (7) 

and 

G 8 = | I m (K) | = 

1 

2 

I m 

(
| �| 

√ (
�2 − 4 A 

2 
)
g 2 

8 

)
, 

g 8 = 1 + 

[ 
− 2 �6 + 

(
28 A 

2 − 56 ω 

2 
)
�4 + 

(
−140 A 

4 + 560 A 

2 ω 

2 − 140 ω 

4 
)
�2 

+ 280 A 

6 − 1680 A 

4 ω 

2 + 840 A 

2 ω 

4 − 56 ω 

6 
] 
δ8 . (8) 

Let δ7 and δ8 be 0, then gain G 7 and G 8 can also reduce to the standard NLS equation case. For Eqs. 6 –(8) , the gain G i (i =
6 , 7 , 8) increases with the corresponding polynomial g i under the condition | �| < 2 A . 

From the above analysis, it appears that there exists two distinctive MI and modulation stability (MS) regions, which

are distinguished with each other clearly. In the region | �| < 2 A , MI exists when g i � = 0 , (i = 6 , 7 , 8) . On the contrary, if

g i = 0 , (i = 6 , 7 , 8) , there appears nontrivial features in the MI region. This in turn implies that a MS region occurs in the

region of low perturbation frequency, where the growth rate of corresponding MI decays to zero. 

Comparing their MI gain functions of NLS equations with different order dispersion terms, we can obtain the distribution

law of MS curves in the MI band, see Fig. 1 . 

• When δ2 = 

1 
2 and the remaining coefficients δi = 0 , i = 3 , 4 , 5 , · · · , the system (1) can reduce to the classical NLS equa-

tion. And the highest power of g 2 ( ω) is equal to 0, namely, g 2 (ω) = 1 . Therefore, no MS region exists in the MI band

(| �| < 2 A ), which is described in Fig. 1 (a). 
• When δ2 = 

1 
2 and the other coefficients only δ3 � = 0, the system (1) is transformed into third-order NLS equation. And

the highest power of g 3 ( ω) is 1, i.e. a simple factor of ω. It appears that an MS curve exists in the MI band (| �| < 2 A ),

which is described in Fig. 1 (b). When δ3 = −0 . 1 , it can get the MI feature of the Hirota equation in [62] . 
• When δ2 = 

1 
2 and the other coefficients only δ4 � = 0, the system (1) can be degenerated to fourth-order NLS equation. The

highest power of g 4 ( ω) is 2. There exists an MS elliptic ring in the MI band (| �| < 2 A ), see Fig. 1 (c). Here we consider

the standard NLS equation with only the fourth-order term and the MI map is similar to the result in [63] , where the

third-order term i δ3 �3 ( q ) and the fourth-order term δ4 �4 ( q ) are considered. 
• When δ2 = 

1 
2 and the other coefficients only δ5 � = 0, we can transform (1) into fifth-order NLS equation. The highest

power of g 5 ( ω) is 3. Both an MS curve and an MS quasi-elliptic ring occur in the MI band (| �| < 2 A ), which is illustrated

in Fig. 1 (d). 
• When δ2 = 

1 
2 and the other coefficients only δ6 � = 0, we can transform (1) into sixth-order NLS equation. And the highest

power of g 6 ( ω) is 4. There are two MS quasi-elliptic rings in the MI band (| �| < 2 A ), see Fig. 1 (e). 
• When δ2 = 

1 
2 and the other coefficients only δ7 � = 0, Eq. (1) is reduced to seventh-order NLS equation. The highest power

of g 7 ( ω) is 5. There exists an MS curve and two MS quasi-elliptic rings in the MI band (| �| < 2 A ), see Fig. 1 (f). 
• When δ2 = 

1 
2 and the other coefficients only δ8 � = 0, we can transform (1) into eighth-order NLS equation. And the

highest power of g 8 ( ω) is 6. Then it reveals that two MS curves and two MS quasi-elliptic rings exist in the MI band

(| �| < 2 A ). The distribution of this case is illustrated in Fig. 1 (g). 

The MI distribution features of all above higher-order dispersion NLS equations are illustrated in Fig. 1 . According to

the above analysis, it is evident that there exist two arbitrary parameters, namely higher order dispersion coefficient δi , i =
2 , 3 , 4 · · · and amplitude A . These parameters control the MS distribution of system (1) in the MI band. By adjusting the

parameters, the MS quasi-elliptic and MS elliptic ring can be completely contained within the MI band or intersected at the

MI boundary, the latter case yields two curves in the MI band. Fig. 1 only shows one case that the MS ellipse is contained

in the MI band when the semi-major axis of the MS ellipse less than 2. When choosing appropriate values of parameters to

make the semi-major axis of the MS ellipse greater than 2, we can get another case that only the MS curves exist in the MI

band. From Fig. 1 (g), there appears that the MS elliptic ring in the middle degenerates into two MS curves. 

By analyzing the expressions in Eq. (6) , we can discuss the MI distribution characteristics of the sixth-order NLS Eq. (2) .

Obviously, g 6 is a polynomial about ω and its highest power is 4. If this polynomial factor is decomposed into the product

form of single factors, then we can get four solutions, which means that G 6 has four curves in the frequency plane ( ω, �).

Here, Fig. 1 (e) illustrates the MI gain distribution features in the frequency plane ( ω, �). It is clear that this frequency plane
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Fig. 1. Plots of the distribution of MI gain with perturbation frequency � and continuous background frequency ω, and A = 1 . The dashed white lines 

indicate the resonance lines, the dashed green lines mean boundary lines, and the solid green lines represent that perturbation is stable. In addition to MS 

curves and MS quasi-elliptic curves, the remaining areas are all non-zero MI gain in the MI band. (a) The standard NLS equation [61] with δ2 = 1 / 2 : no MS 

region exists in the MI band. (b) The Hirota equation [62] with δ3 = 1 : an MS curve exists in the MI band. (c) The Lakshmanan-Porsezian-Daniel equation 

[63] with δ4 = −(7 + 

√ 

15 ) / 48 : an MS elliptic ring appears in the MI band. (d) The fifth-order NLS equation [64,65] with δ5 = 0 . 12 : it has not only an MS 

curve, but also an MI quasi-elliptic ring in the MI band. (e) The sixth-order NLS equation with δ6 = 0 . 05 : it has two MS quasi-elliptic rings in the MI band. 

(f) The seventh-order NLS equation with δ7 = 0 . 2 : an MS curve and two MS quasi-elliptic rings in the MI band. (g) The eighth-order NLS equation with 

δ8 = 0 . 1 : two MS curves and two MS quasi-elliptic rings appear in the MI band. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 2. The growth rate of modulation G 6 versus frequency � for the sixth-order NLS Eq. (2) with ω = 0 , 1 , 2 , respectively. 

 

 

 

 

 

 

contains two different regions, MI and MS. The expression �2 − 4 A 

2 in G 6 indicates that a low-perturbed frequency MI

band (| �| < 2 A ) exists in the frequency plane ( ω, �). Setting A = 1 and δ6 = 0 . 05 , there are two MS quasi-elliptic rings in

frequency plane ( ω, �), which is demonstrated by Fig. 1 (e). When selecting suitable parameters so that the elliptical semi-

major axis is greater than 2, then there exist four curves in the MI band. With selecting of δ6 = 0 , Eq. (2) can be transformed

into classical NLS equation and the corresponding MI gain G 6 is reduced to 1 
2 Im 

(
| �| √ 

(�2 − 4 A 

2 ) 
)

. Fig. 1 (a) displays the

MI gain distribution features of classical NLS equation, which has obviously neither MS curve nor MS quasi-elliptic ring in

the MI band. 
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Table 1 

Relation between three parameters. 

The Nonlinear Schrödingner equation with higher-order terms 

The order of dispersion term 2 3 4 5 6 7 8 ... n 

The highest power of ω in g i function 0 1 2 3 4 5 6 ... n-2 

The number of the MS curves in MI band 0 1 2 3 4 5 6 ... n-2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 , 

 

 

 

From Eq. (6) , we can see that the gain function G 6 depends on free parameters A, δ6 and ω. It is shown in Fig. 2

for different values of ω and fixed A = 1 , δ6 = 0 . 05 . It is clear that these gain curves are symmetrical about � = 0 , as

Fig. 2 shows. For ω = 0 , the growth rate can reach zero at � = 0 , ±2 . The gain curve has two local maxima at � = ±1 . 0736 .

For ω = 1 , the green line curve can reach zero at the same point as the case of ω = 0 , and the maximum gain occurs at

� = ±1 . 0707 . In addition to the three points above, for ω = 2 , there are two other points, � = ±1 . 2457 , where the gain G 6

is equal to 0. For ω = 2 , the blue dot-dashed curve has four local maxima at four points, � = ±0 . 6895 and � = ±1 . 8219 .

The shape of the gain curve in last case is obviously different from the first two cases. 

By discussing the influence of different higher-order terms on the MI gain distribution, we have the expression G i (i =
2 , 3 , · · · ) including a factor 1 

2 Im 

(
| �| √ 

(�2 − 4 A 

2 ) 
)

and a polynomial g i . A determines the range of the MI gain, and g i 

determines the MS curve distribution. In the present paper, we consider MI of the standard NLS equation just with only one

higher-order term, and then compare it with the standard NLS equation. It is not difficult to find that the higher-order term

determines the power of polynomial g i , which has a great influence on the distribution of MI, so the higher-order term plays

a crucial role in the MI feature. From the standard NLS equation to eighth-order dispersion NLS equation, the number of the

MS curves is 0,1,2,3,4,5,6, respectively; and the highest power of g i is also 0,1,2,3,4,5,6, respectively. Finally, a relationship

between the order of the dispersion term, the highest degree of the polynomial g i with respect to ω, and the number of MS

curves is shown in Table 1 . 

3. Generalized Darboux Transformation for the sixth-order NLS equation 

In this section, we will construct a generalized DT to obtain the rational solution for the sixth-order NLS Eq. (2) . The

linear spectral problem of Eq. (2) with j = 6 in [30] can be expressed as follows 

�t = i (λσ1 + Q ) �, �z = 

6 ∑ 

c=0 

iλc V c �, (9) 

where 

σ1 = 

(
1 0 

0 −1 

)
, Q = 

(
0 q ∗

q 0 

)
, V c = 

(
A c B 

∗
c 

B c −A c 

)
, 

with 

A 0 = −1 

2 

| q | 2 − 10 δ6 | q | 6 − 5 δ6 [ q 
2 (q ∗t ) 

2 + (q ∗) 2 q 2 t ] − 10 δ6 | q | 2 (qq ∗tt + q ∗q tt ) − δ6 | q tt | 2 + δ6 (q t q 
∗
t t t + q ∗t q t t t − q ∗q t t t t − qq ∗t t t t )

A 1 = 12 iδ6 | q | 2 (q t q 
∗ − q ∗t q ) + 2 iδ6 (q t q 

∗
tt − q ∗t q tt + q ∗q t t t − q ∗t t t q ) , A 2 = 1 + 12 δ6 | q | 4 − 4 δ6 | q t | 2 + 4 δ6 (q ∗tt q + q tt q 

∗) , 

A 3 = 8 iδ6 (qq ∗t − q ∗q t ) , A 4 = −16 δ6 | q | 2 , A 5 = 0 , A 6 = 32 δ6 , B 2 = −24 iδ6 | q | 2 q t − 4 iδ6 q t t t , B 4 = 16 iδ6 q t , 

B 0 = 

i 

2 

q t + iδ6 q t t t t t + 10 iδ6 (qq ∗t q tt + qq ∗tt q t + | q | 2 q t t t + 3 | q | 4 q t + q t | q t | 2 + 2 q ∗q t q tt ) , B 3 = −16 δ6 | q | 2 q − 8 δ6 q tt , 

B 1 = q + 12 δ6 q 
∗q 2 t + 16 δ6 | q | 2 q tt + 4 δ6 q 

2 q ∗tt + 2 δ6 q t t t t + 12 δ| q | 4 q + 8 δ6 q | q t | 2 , B 5 = 32 δ6 q, B 6 = 0 . 

Here � = (ψ, φ) † is the vector eigenfunction of the linear spectral problem (9) with spectral parameter λ, ψ and φ denote

complex functions with z and t , † means matrix transpose and 

∗ denotes the complex conjugation. It is clearly that U z − V t +
UV − V U = 0 , which is the compatibility condition of (9) and can directly give rise to Eq. (2) . 

Suppose that �1 = (ψ 1 , φ1 ) † is a fundamental vector solution of the linear spectral problem (9) with q = q [0] and λ = λ1 .

Then the basic DT for Eq. (2) has the form 

�[1] = T [1]�, T [1] = λI − H [0]
1 H [0] −1 , 

q [1] = q [0] + 2(λ∗
1 − λ1 ) 

ψ 1 [0] ∗φ1 [0] 

(| ψ 1 [0] | 2 + | φ1 [0] | 2 ) , (10) 

where φ1 [0] = φ1 , ψ 1 [0] = ψ 1 , and 

I = 

(
1 0 

0 1 

)
, H[0] = 

(
ψ 1 [0] −φ1 [0] ∗

φ1 [0] ψ 1 [0] ∗

)
, 
1 = 

(
λ1 0 

0 λ∗
1 

)
. 
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In the general case, assume similarly that �l = (ψ l , φl ) 
† , 1 ≤ l ≤ N represent N elementary solutions to (9) with q = q [0]

and λ = λl . Then N -fold basic DT for Eq. (2) is thereby inferred that 

�[ N] = T [ N] T [ N − 1] T [ N − 2] · · · T [1]�, T [ l] = λI − H [ l]
l H [ l] −1 , 

q [ N] = q [ N − 1] + 2(λ∗
N − λN ) 

ψ N [ N − 1] ∗φN [ N − 1] 

(| ψ N [ N − 1] | 2 + | φN [ N − 1] | 2 ) , (11)

where �l [ l − 1] = (ψ l [ l − 1] , φl [ l − 1]) † , and 

�l [ l − 1] = T l [ l − 1] T l [ l − 2] T l [ l − 3] · · · T l [1]�l , T l [ k ] = T [ k ] | λ= λl 
, 

H[ l − 1] = 

(
ψ l [ l − 1] −φl [ l − 1] ∗

φl [ l − 1] ψ l [ l − 1] ∗

)
, 
l = 

(
λl 0 

0 λ∗
l 

)
, 1 ≤ l ≤ N, 1 ≤ k ≤ l − 1 . 

Considering an elementary solution cannot be iterated many times by the above method, it is necessary to construct the

generalized DT [36] to overtake this difficulty. Therefore, suppose that �1 = �1 (λ1 + ε) is a special solution of (9) with q [0]

at λ = λ1 + ε. Applying the Taylor expansion on �1 at ε = 0 , it yields 

�1 = � [0] 
1 

+ � [1] 
1 

ε + � [2] 
1 

ε2 + � [3] 
1 

ε3 + · · · + � [ N] 
1 

εN + · · · , (12)

with ε a small parameter and � [ k ] 
1 

= 

1 
k ! 

∂ k 

∂λk 
�1 (λ) | λ= λ1 

. It is obvious that � [0] 
1 

is the solution of (9) with q = q [0] at λ = λ1 .

3.1. The 1-fold generalized DT 

According to the basic DT (10) , we can easily derive the 1-fold generalized DT formulas, that is 

�[1] = T [1]�, T [1] = λI − H [0]
1 H [0] −1 , 

q [1] = q [0] + 2(λ∗
1 − λ1 ) 

ψ 1 [0] ∗φ1 [0] 

(| ψ 1 [0] | 2 + | φ1 [0] | 2 ) , (13)

with φ1 [0] = φ[0] 
1 

, ψ 1 [0] = ψ 

[0] 
1 

, and 

H[0] = 

(
ψ 1 [0] −φ1 [0] ∗

φ1 [0] ψ 1 [0] ∗

)
, 
1 = 

(
λ1 0 

0 λ∗
1 

)
. 

3.2. The 2-fold generalized DT 

Apparently, T [1] �1 is the new solution of the Lax pair (9) with q [1] at λ = λ1 + ε and T 1 [1]� [0] 
1 

= 0 . With the limit 

lim 

ε→ 0 

T [1] | λ= λ1 + ε�1 

ε
= lim 

ε→ 0 

(ε + T 1 [1])�1 

ε

= � [0] 
1 

+ T 1 [1]� [1] 
1 

≡ �1 [1] , 

it gives a nonzero solution of (9) with q [1] at λ = λ1 . Hence, 2-fold generalized DT can be constructed 

�[2] = T [2] T [1]�, T [2] = λI − H [1]
2 H [1] −1 , 

q [2] = q [1] + 2(λ∗
1 − λ1 ) 

ψ 1 [1] ∗φ1 [1] 

(| ψ 1 [1] | 2 + | φ1 [1] | 2 ) , (14)

with �1 [1] = (ψ 1 [1] , φ1 [1]) † , and 

H[1] = 

(
ψ 1 [1] −φ1 [1] ∗

φ1 [1] ψ 1 [1] ∗

)
, 
2 = 

(
λ1 0 

0 λ∗
1 

)
. 

3.3. The 3-fold generalized DT 

Continuing the similar process above, we give 3-fold generalized DT. Under the following conditions 

T 1 [1]� [0] 
1 

= 0 , T 1 [2](� [0] 
1 

+ T 1 [1]� [1] 
1 

) = 0 , 

and applying the limit 

lim 

ε→ 0 

[ T [2] T [1]] | λ= λ1 + ε�1 

ε2 
= lim 

ε→ 0 

(T 1 [2] + ε)(T 1 [1] + ε)�1 

ε2 

= � [0] 
1 

+ (T 1 [1] + T 1 [2])� [1] 
1 

+ T 1 [2] T 1 [1]� [2] 
1 

≡ �1 [2] , 
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a nontrivial solution can be obtained for the Lax pair (9) with q [2] at λ = λ1 . Then the 3-fold generalized DT is naturally

deduced as follows 

�[3] = T [3] T [2] T [1]�, T [3] = λI − H [2]
3 H [2] −1 , 

q [3] = q [2] + 2(λ∗
1 − λ1 ) 

ψ 1 [2] ∗φ1 [2] 

(| ψ 1 [2] | 2 + | φ1 [2] | 2 ) , (15) 

where �1 [2] = (ψ 1 [2] , φ1 [2]) † , and 

H[2] = 

(
ψ 1 [2] −φ1 [2] ∗

φ1 [2] ψ 1 [2] ∗

)
, 
3 = 

(
λ1 0 

0 λ∗
1 

)
. 

3.4. The N-fold generalized DT 

Iterating N times of the above process, it naturally gives rise to the expression of N -fold generalized DT, which reads 

�1 [ N − 1] = � [0] 
1 

+ 

N−1 ∑ 

l=1 

T 1 [ l]�
[1] 
1 

+ 

l−1 ∑ 

k =1 

N−1 ∑ 

l=1 

T 1 [ l] T 1 [ k ]�
[2] 
1 

+ · · · + T 1 [ N − 1] T 1 [ N − 2] · · · T 1 [1]� [ N−1] 
1 

, 

�[ N] = T [ N] T [ N − 1] T [ N − 2] · · · T [1]�, T [ N] = λI − H [ N − 1]
N H [ N − 1] −1 , 

q [ N] = q [ N − 1] + 2(λ∗
1 − λ1 ) 

ψ 1 [ N − 1] ∗φ1 [ N − 1] 

(| ψ 1 [ N − 1] | 2 + | φ1 [ N − 1] | 2 ) , (16) 

where �1 [ N − 1] = (ψ 1 [ N − 1] , φ1 [ N − 1]) † , and 

H[ l − 1] = 

(
ψ 1 [ l − 1] −φ1 [ l − 1] ∗

φ1 [ l − 1] ψ 1 [ l − 1] ∗

)
, 
l = 

(
λ1 0 

0 λ∗
1 

)
, 1 ≤ l ≤ N. 

Combining the above formulas 13 –(16) , it follows a compact formula for N -order rational solution of (2) that 

q [ N] = q [0] + 2(λ∗
1 − λ1 ) 

N−1 ∑ 

j=0 

ψ 1 [ j] 
∗φ1 [ j] 

(| ψ 1 [ j] | 2 + | φ1 [ j] | 2 ) . (17) 

It is necessary to mention that the seed solution q [0] and its corresponding vector solution ( ψ 1 [ j ], φ1 [ j ]) † of the Lax pair

(9) with the spectral parameter λ = λ1 are specified data that must be chosen to get the explicit solution (17) . In the

following section, we will utilize the above formula to derive rogue wave solutions and analyze their dynamic behavior. 

4. Rogue wave solutions 

Having established the result of generalized DT, attention is now given to constructing higher-order rogue wave solutions

for (2) . For this purpose, we choose the following seed solution 

q [0] = e iθ , θ = at + (−a 6 δ6 + 30 a 4 δ6 − 90 a 2 δ6 − 1 

2 

a 2 + 20 δ6 + 1) z, a ∈ R . (18) 

The problem that a seed solution cannot be iterated by basic DT, can be solved by constructing its generalized DT. By

substituting Eq. (18) into Eq. (9) , the corresponding fundamental vector solution can be obtained, that is 

�1 = 

(
i (C 1 e 

M − C 2 e 
−M ) e −

i 
2 θ

(C 2 e 
M − C 1 e 

−M ) e 
i 
2 θ

)
, (19) 

with 

C 1 = 

(a + 2 λ + 

√ 

(a + 2 λ) 2 + 4 ) 
1 
2 √ 

(a + 2 λ) 2 + 4 

, C 2 = 

(a + 2 λ + 

√ 

(a + 2 λ) 2 + 4 ) 
1 
2 √ 

(a + 2 λ) 2 + 4 

, 

M = 

1 

4 

√ 

(a + 2 λ) 2 + 4 

{ 

[ i (−2 a 5 + 4 a 4 λ − 8 a 3 λ2 + 16 a 2 λ3 − 32 aλ4 + 64 λ5 + 40 a 3 − 48 a 2 λ

+ 48 aλ2 − 32 λ3 − 60 a + 24 λ) δ6 + i (−a + 2 λ)] z + 2 it + 

N ∑ 

k =1 

s k ξ
2 k 

} 

, s k = m k + in k , (m k , n k ∈ R ) , 

where ξ is a small real parameter [36] . Setting λ = − 1 
2 a + i + ξ 2 and expanding �1 at ξ = 0 , it has 

�1 (ξ ) = � [0] + � [1] ξ 2 + � [2] ξ 4 + · · · . (20) 

1 1 1 
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Fig. 3. Plots of first-order rogue wave with a = −0 . 5 , 0 , 0 . 5 , from left to right, respectively and δ6 = 0 . 01 . 

Fig. 4. Contour graphics of the first-order rogue wave with a = −0 . 5 , −0 . 3 , 0 , 0 . 3 , 0 . 5 , from left to right, respectively and δ6 = 0 . 01 . 

 

 

 

 

 

 

 

 

 

 

 

Here, vector function � [0] 
1 

has the following explicit expression 

ψ 

[0] 
1 

= 

1 + i 

2 

η[0] 
1 

e −
i 
2 θ , φ[0] 

1 
= −1 + i 

2 

η[0] 
2 

e 
i 
2 θ , (21)

where 

η[0] 
1 

= 12(a 5 − 5 ia 4 − 20 a 3 + 30 ia 2 ) δ6 + 2(180 δ6 + 1) a − 2 i (60 δ6 + 1) , 

η[0] 
2 

= 12(ia 5 + 5 a 4 − 20 ia 3 − 30 a 2 ) δ6 + 2 i (180 δ6 + 1) a + 2(60 δ6 + 1) . 

Clearly, � [0] 
1 

= (ψ 

[0] 
1 

, φ[0] 
1 

) † satisfies the system (9) with spectral parameter λ1 = − a 
2 + i . Therefore, utilizing the formula

(17) with N = 1 , it suffices to obtain first-order rogue wave solution of (2) , 

q [1] = 

(
1 + 

D 1 + iE 1 
F 1 

)
e iθ , (22)

where 

F 1 = 144(a 10 − 15 a 8 + 160 a 6 − 200 a 4 + 300 a 2 + 100) z 2 δ2 
6 + 48(a 6 − 15 a 4 + 10) z 2 δ6 

−48(a 4 − 20 a 2 + 30) aztδ6 + 4(a 2 + 1) z 2 − 8 azt + 4 t 2 + 1 , 

D 1 = −288(a 10 − 15 a 8 + 160 a 6 − 200 a 4 + 300 a 2 + 100) z 2 δ2 
6 − 96(a 6 − 15 a 4 + 10) z 2 δ6 

+ 96(a 4 − 20 a 2 + 30) aztδ6 − 8(a 2 + 1) z 2 + 16 azt − 8 t 2 + 2 , 

E 1 = 240(a 4 − 6 a 2 + 2) zδ6 + 8 z. 

Obviously, there are two arbitrary parameters a and δ6 in the expression q [1], the latter is the sixth-order dispersion

coefficient. We fix δ6 to analyze the effect of frequency a on the dynamic behavior of the rogue waves. Taking the case of

a = 0 as a criterion, when a < 0, the crest of rogue wave occurs counterclockwise deflection; while a > 0, the crest occurs

clockwise deflection, and the width of the crest also changes. In addition, when | a | increases, the deflection angle of crest

of rogue wave increases, and so does its width. Figs. 3 and 4 illustrate the above dynamic characteristics. Now, fixing a to

be any particular constant and taking limit on q [1] at δ6 → ∞ , that is 

lim 

| δ6 |→∞ 

| q [1] | ≡ 1 . (23)

As the absolute value of δ6 increases, the modulus of q [1] gradually reverts to a constant background plane. In other word,

the rogue wave gradually disappears and the energy gradually decreases. Without loss of generality, fixing a = 0 , Fig. 5
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Fig. 5. The evolution process of the rogue wave structure with the change of δ6 for a = 0 . 

Fig. 6. Plots of second-order rogue wave by choosing m 1 = n 1 = 0 and a = −0 . 5 , 0 , 0 . 5 , from left to right, respectively. 

Fig. 7. 3D graphics of the second-order rogue wave by choosing δ6 = 0 . 01 , m 1 = 100 , n 1 = 0 and a = −0 . 5 , 0, 0.5, from left to right, respectively. 

 

 

 

 

 

 

 

 

 

shows the evolution process of the first-order rogue wave structure with the parameter δ6 . When δ6 = 0 , Eq. (1) degenerates

into the standard NLS equation, and it follows that the amplitude of | q [1]| is equal to 3. 

Similar to the computational process of Section 3.2 , taking limit 

lim 

ξ→ 0 

T [1] | ξ= − 1 
2 a + i + ξ 2 �1 

ξ 2 
= lim 

ξ→ 0 

(ξ 2 + T 1 [1])�1 

ξ 2 

= � [0] 
1 

+ T 1 [1]� [1] 
1 

≡ �1 [1] , (24) 

and using the obtained formula (17) with N = 2 , it is not difficult to deduce the concrete expression of the second-order

rogue wave solution. Since the expression of this solution is too cumbersome, we only show its dynamic behavior, which

are illustrated by Figs. 6 and 7 . They present two kinds of rogue wave structures, and have different dynamic behavior. The

corresponding contour map of Fig. 7 is demonstrated in Fig. 8 . 

Substituting m 1 = 0 , n 1 = 0 into Eq. (17) , the second-order fundamental rogue wave solution can be derived, and there

exists a maximum value 5 at point (0,0) in the ( t, z ) plane, see Fig. 6 . However, when only changing a parameter m 1 = 100 ,

the fundamental structure disappears, there appears a triplet structure containing three first-order rogue waves. Similarly,

the deflation properties in first-order rogue wave also exist in the above two kinds of second-order rogue wave structures.

The evolution process of this corresponding rogue wave structure is demonstrated in Fig. 8 with different values of ampli-

tude a . 
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Fig. 8. The corresponding contour graphics for the second-order rogue wave obtained in Fig. 7 with parameters: δ6 = 0 . 01 , m 1 = 100 , n 1 = 0 and a = −0 . 5 , 

−0 . 3 , 0,0.3, 0.5, from left to right, respectively. 

Fig. 9. Three kinds of third-order rogue wave structures for Eq. (2) . Left columns: fundamental type structure at a = 0 , δ6 = 0 . 01 , m i = n i = 0 (i = 1 , 2) ; 

middle columns: triangular structure at m 1 = 100 , the rest of the parameters are same to left columns; right columns: circular structure at m 2 = 10 0 0 , the 

rest of the parameters are same to left columns. 

 

 

 

 

 

 

 

 

 

 

 

Applying formula (17) with N = 3 , it then yields the third-order rogue wave solution. Here, we just show three types of

third-order rogue wave solutions, fundamental pattern, triangular pattern and circular pattern rogue waves, respectively, see

Fig. 9 . The first row is the three-dimensional graphs, and the second row is the corresponding density maps. The amplitude

of the third-order fundamental rogue wave reaches maximum value 7 at point (0,0) in the ( t, z ) plane. Obviously, these

rogue waves are symmetrical, which can be seen from Figs. 9 (d-f). They also possess the above deflection characteristics. In

short, when N > 1, the higher-order rogue waves with different structures can be obtained by choosing appropriate values

of the parameters m k and n k . 

5. Spectral analysis of rogue waves 

Our attention is now turned to spectral analysis of rogue wave solution for Eq. (22) in this section. In [54] , it appears that

the specific triangular spectrum for a Peregrine rogue wave could be applied to early warning of rogue waves by spectral

measurements. The spectral analysis is referred to as a useful method in predicting and exciting rogue wave solutions in

the nonlinear fiber [55,56] . In order to calculate the spectrum of first-order rogue wave solution more conveniently, we take

δ6 = 

1 
12 in Eq. (22) . It then follows that 

q [1] = 

(
4(1 + iK 1 ) 

K 

− 1 

)
exp (iθ0 ) , (25)
2 
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Fig. 10. The first row displays density figures of two first-order rogue waves and a W-shaped soliton solution in Eq. (25) with a = 0 , 2, and 1 
5 

√ 

75 − √ 

165 , 

from left to right, respectively. The bottom row displays the spectrum evolution of | F ( β , z )| in Eq. (27) . 

 

 

 

 

 

 

 

 

 

 

where 

K 1 = (5 a 4 − 30 a 2 + 12) z, θ0 = at + 

(
5 

2 

a 4 − 97 

12 

a 2 + 

8 

3 

)
z, 

K 2 = (a 10 − 15 a 8 + 160 a 6 − 260 a 4 + 304 a 2 + 144) z 2 − 4(a 4 − 20 a 2 + 32) azt + 4 t 2 + 1 . 

Now we perform spectral analysis approach on the above derived first-order rogue wave solution by the Fourier transfor-

mation as follows 

F (β, z) = 

1 √ 

2 π

∫ + ∞ 

−∞ 

q [1](z, t) exp (iβt) dt. (26) 

From the solution (25) , it is inferred that the rogue wave solution contains two parts, a plane wave and a variable signal

part. It is clear that the plane wave background becomes infinity and the integral is a δ function, so we omit the spectrum

of plane wave background. The corresponding modulus of the rogue wave signal is given by 

| F (β, z) | = 

√ 

2 π exp 

(
− | β ′ | 

2 

√ 

1 + (5 a 4 − 30 a 2 + 12) 2 z 2 
)
, (27) 

where β ′ = β + a . 

Firstly, from the perspective of the bottom row in Fig. 10 , it is clear that the spectrum of the solution (25) with different

a has strong symmetry property. And then combined with the expression (27) , when a � = ± 1 
5 

√ 

75 ± 5 
√ 

165 , Fig. 10 (d) and (e)

have specific triangular spectrum of a Peregrine rogue wave. Furthermore, one can easily find that the triangular widening

appears at a = 0 , when compared to the case at a = 2 . The corresponding density diagrams are displayed in Fig. 10 (a) and

(b). However, when a = ± 1 
5 

√ 

75 ± 5 
√ 

165 , the spectrum of the solution (25) possess a band structure, see Fig. 10 (f), and the

rogue wave solution is now reduced to a stable W-shaped soliton solution in Fig. 10 (c). Similarly, N -order rogue waves can

be reduced to N -order W-shaped solitons. This result in turn implies that MI analysis is consistent with spectral analysis for

the sixth-order Eq. (2) with δ6 = 

1 
12 . From the perspective of MI gain function (6) , it can be adduced that 

g 6 = 

1 

(30 A 

4 − 10�2 A 

2 − 90 a 2 A 

2 + �4 + 15 a 2 �2 + 15 a 4 + 6) , (28) 

6 
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Fig. 11. Spectrum evolution of | F ( β , z )| in Eq. (31) with δ6 = 0 , 0.1 and − 1 
60 

, from left to right, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where A is the amplitude, � is the perturbed frequency and a is the frequency of background. By setting A = 1 , � = 0 and

g 6 = 0 , it follows 

g 6 = 

1 

2 

(5 a 4 − 30 a 2 + 12) = 0 , (29)

then there occurs a transition of two sates here, which happens between the rogue wave and the W-shaped soliton in the

region of zero-frequency MS. 

In order to demonstrate the impact of the parameter δ6 , we will give the spectral analysis of the rogue wave solution by

selecting a = 0 in Eq. (22) for convenience. It thus transpires that 

q [1] = 

(
4(1 + 2 i (1 + 60 δ6 ) z) 

4 t 2 + 4(1 + 60 δ6 ) 2 z 2 + 1 

− 1 

)
exp (i (1 + 20 δ6 ) z) , (30)

and 

| F (β, z) | = 

√ 

2 π exp 

(
− | β| 

2 

√ 

1 + 4(1 + 60 δ6 ) 2 z 2 
)
. (31)

Similarly, when δ6 � = − 1 
60 , the spectrum structure of the solution (30) also possesses specific triangular spectrum of a

Peregrine rogue wave. In addition, their spectrums have the same features with different parameters as Eq. (25) . By compar-

ing Fig. 10 (d-f) with Fig. 11 , it is obvious that the small change of δ6 will lead to a big change in the corresponding triangular

spectrum structure. When δ6 = − 1 
60 , the solution (30) degenerates into a W-shaped soliton, and the corresponding spectrum

appears in a banded form, which is presented in Fig. 11 (c). 

6. Summary and discussions 

In conclusion, Modulation instability, rogue wave and spectral analysis are studied for the nonlinear Schrödinger equation

with higher-order terms. MI of the continuous wave background has been investigated for the NLS equation with different

higher-order dispersion terms. The MI distribution characteristics for the sixth-order to the eighth-order NLS equations are

studied in detail. There are two arbitrary parameters, namely, higher-order dispersion term δi , i = 3 , 4 , . . . and amplitude A .

These parameters control the MS distribution of the NLS with different higher-order dispersion terms in the MI band. By

adjusting the parameters, the MS quasi-elliptic and MS elliptic ring can be completely contained within the MI band or

intersected at the MI boundary, the latter case yields two curves in the MI band. g i is a polynomial with ω, and its highest

power of ω is closely related to the number of MS curves in the MI band. It is adduced that the higher-order dispersion

terms indeed affect the distribution of the MS regime, n -order dispersion term corresponds to n − 2 modulation stability

curves in the MI band. Here, we do not consider the case of NLS equation with multiple dispersion terms, only considering

the case with a higher-order dispersion term. It is inferred that the distribution of MS curve in the MI band is not affected.

Therefore, when multiple different dispersion terms exist simultaneously, the higher-order dispersion term plays the main

role in the distribution of MS curve in the MI band. 

Then we construct a generalized DT for the sixth-order NLS equation and derive a compact algebraic expression of N -

order rogue waves. The specific expression of first-order rogue wave is derived. Since expressions of higher-order rogue

waves are too cumbersome, we only demonstrate the dynamic behavior through pictures. There are two arbitrary param-

eters a and δ6 existing in the rogue wave solutions, the sign of the former determines the direction of deflection and the

magnitude of the absolute value affects the angle of deflection and the width of rogue wave solution. While the latter can

cause the change of the width and amplitude of rogue wave. For the first- to third-order rogue waves, they all own the de-

flection properties mentioned above. For the third-order rogue wave solution, three kinds of structures, that is fundamental,

triangular, and circular, are illustrated in Fig. 9 , and their dynamic features are discussed in detail. 
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In addition, we analyze the spectral features of the first-order rogue wave and the conditions of the state transition

between first-order rogue wave and W-shaped soliton. Via the spectral analysis approach on first-order rogue wave, it has

been found that arbitrary parameters a and δ6 have effects on the spectrum of the solution (25) . Fixing δ6 = 

1 
12 and a � =

± 1 
5 

√ 

75 ± 5 
√ 

165 , the solution has specific triangular spectrum for a Peregrine rogue wave and the value of a is related to

the size of the triangular spectrum. While a = ± 1 
5 

√ 

75 ± 5 
√ 

165 , the solution is reduced to a W-shaped soliton, which is not

localized in temporal and spatial context and the spectrum is banded. Similarly, fixing a and δ6 satisfying certain constraint,

the spectrum of the solution (30) also presents the specific triangular spectrum or banded spectrum, which corresponding

to the rogue wave solution or W-shaped soliton solution, respectively. 

Finally, it is worthy to mention that we will further study the excitation conditions and numerical analysis of various

nonlinear waves and their corresponding positions in the MI gain plane in the future. We hope that the above results will

play a guiding role in the physics experiment. 
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