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A method is proposed to seek the nonlocal symmetries of nonlinear evolution equations. The validity and
advantages of the proposed method are illustrated by the applications to the Boussinesq equation, the coupled
Korteweg-de Vries system, the Kadomtsev–Petviashvili equation, the Ablowitz–Kaup–Newell–Segur equation and
the potential Korteweg-de Vries equation. The facts show that this method can obtain not only the nonlocal
symmetries but also the general Lie point symmetries of the given equations.
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Since the Lie group theory was introduced by So-
phus Lie,[1] the study of Lie group has always been
an important subject in mathematics and physics.
Using both classical and non-classical Lie group
approaches,[2−9] one can reduce the dimensions and
construct the analytical solutions of the given partial
differential equations (PDEs). In addition to the clas-
sical and non-classical Lie symmetries, there exist the
so-called nonlocal symmetries reported in the litera-
ture in the 1980s largely through the work of Olver.[10]

To search for nonlocal symmetries of the nonlinear
systems is an interesting work because the nonlocal
symmetries[11−14] can enlarge the class of symmetries
and they are connected with integrable models.

However, it is difficult to find the nonlocal symme-
tries of nonlinear PDEs. Usually, the nonlocal sym-
metries may be obtained with the help of a recursion
operator.[15] However, sometimes seeking the recur-
sion operators is a difficult work. The concept of po-
tential symmetry[11] was explicitly formulated first by
Bluman et al. and was subsequently applied in in-
vestigations of important classes of PDEs. Galas[13]

obtained the nonlocal Lie–Bäcklund symmetries by
introducing the pseudo-potentials as an auxiliary sys-
tem. Recently, Lou et al.[16,17] obtained explicit ana-
lytic interaction solutions between cnoidal waves and
solitary wave through the localization procedure of
nonlocal symmetries which are related to the Darboux
transformation (DT) for the well-known Korteweg-de
Vries (KdV) equation.

In some cases, one can obtain nonlocal symme-
tries through Lie point symmetries or Lie–Bäcklund
symmetries of the extended systems which include the
original equation and auxiliary systems. Nevertheless,
these methods may lose some important results such

as integral terms or high order derivative terms of non-
local variables in the symmetries. Thus it is necessary
to improve the previous methods to avoid missing the
above important terms. In this Letter, we present a
systemic method to find the high order nonlocal sym-
metries.

We consider a system ℱ of 𝑛th order differential
equations in 𝑝 independent and 𝑞 dependent variables,
expressed by

Δ𝑣(𝑥, 𝑢
(𝑛)) = 0, 𝑣 = 1, 2, . . . , 𝑙, (1)

involving 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑝), 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑞),
and the derivatives of 𝑢 with respect to 𝑥
up to order 𝑛. The function Δ𝑣(𝑥, 𝑢

(𝑛)) =
(Δ1(𝑥, 𝑢

(𝑛)), . . . ,Δ𝑙(𝑥, 𝑢
(𝑛))) will be assumed to be

smooth in the arguments. Let 𝑋 = R𝑝 be the space
representing the independent variables.

Let

𝑉 = 𝜉𝑝(𝑥, 𝑢)
𝜕

𝜕𝑥𝑝
+ 𝜂𝑞(𝑥, 𝑢)

𝜕

𝜕𝑢𝑞
, (2)

be the infinitesimal generator of the Lie group of point
transformations 𝑥̃ = 𝐹 (𝑥, 𝑢, 𝜀), 𝑢̃ = 𝐺(𝑥, 𝑢, 𝜀).

Next, we describe the method of constructing the
nonlocal symmetries as follows. For simplicity, we con-
sider the case 𝑝 = 2, 𝑞 = 1, i.e. (𝑥1, 𝑥2) = (𝑡, 𝑥).

Step 1. Choose the proper auxiliary systems. Usu-
ally, one can use the Lax pair, Bäcklund transforma-
tion, potential system, pseudo-potential, etc. with the
following forms

𝐹𝛼(𝑥, 𝑡, 𝑢, 𝑢𝑥, 𝑢𝑡, . . . , 𝜓𝑥, 𝜓𝑡,

𝜓𝑥𝑥, 𝜓𝑥𝑡, 𝜓𝑡𝑡, . . . , 𝜓𝜆𝑥, 𝜓𝜇𝑡) = 0,

𝛼 ∈ Z+, (3)
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where 𝜓 = (𝜓1, 𝜓2, . . . , 𝜓𝛽) denotes the 𝛽 auxiliary
variables and 𝜓𝜆𝑥 denotes the 𝜆th-order partial deriva-
tives with respect to 𝑥, 𝜓𝜇𝑡 denotes the 𝜇th-order par-
tial derivatives with respect to 𝑡.

Let 𝑈 ≃ R be the space representing the single
coordinate 𝑢, the space 𝑈1 is isomorphic to R2 with
coordinates (𝑢𝑥, 𝑢𝑡). Similarly, 𝑈2 ≃ R3 has the coor-
dinates representing the second order partial deriva-
tives of 𝑢, and in general, 𝑈𝑘 ≃ R𝑘+1, since there are
𝑘+1 distinct 𝑘th order partial derivatives of 𝑢. Finally,
the space 𝑈 (𝑘) = 𝑈 × 𝑈1 × · · · × 𝑈𝑘 with coordinates
𝑈 (𝑘) = (𝑢;𝑢𝑥, 𝑢𝑡;𝑢𝑥𝑥, 𝑢𝑥𝑡, 𝑢𝑡𝑡; . . .).

Step 2. In this step, we prolong the basic space
𝑋 × 𝑈 to the space 𝑋 × 𝑈 (𝑛), with coordinates
(𝑥, 𝑡, 𝑢, 𝑢, 𝑢𝑥, 𝑢𝑡, . . .). The 𝑛th prolongation of 𝑉 , de-
noted by 𝑉 (𝑛), will be a vector field on the 𝑛-jet space
𝑋 × 𝑈 (𝑛). The vector field in general takes the form

𝑉 (𝑛) =

2∑︁
𝑖=1

𝜉𝑖
𝜕

𝜕𝑥𝑖
+
∑︁
𝐿

𝜂𝐿
𝜕

𝜕𝑢𝐿
. (4)

Here we give a different definition of coefficients,
i.e. the coefficients 𝜉𝑖 and 𝜂𝐿 all depend on the
variables (𝑥, 𝑡, 𝑢, . . . , 𝜓, 𝜓, 𝜓𝑥, 𝜓𝑡, . . . , 𝜓𝜆𝑥, 𝜓𝜇𝑡). Here
𝜂0 = 𝜂 and 𝜂𝐿 have the form

𝜂𝐿 = 𝐷𝐿𝑢−
2∑︁

𝑖=1

𝑢𝐿𝐷𝐿𝜉
𝑖. (5)

Remark 1: The prolongation of vector fields show
that this kind of symmetry is neither classical Lie
point symmetries nor Lie–Bäcklund symmetries be-
cause it depends on the auxiliary variables and the
high order partial derivatives. More results may be
obtained if we assume the coefficients 𝜉𝑖 and 𝜂𝐿 have
integral terms of the auxiliary variable, i.e., they are
the functions of (𝑥, 𝑡, 𝑢, . . . ,

∫︀
𝜓𝑑𝑥, . . .).

Step 3. In order to seek the nonlocal symmetries,
we should solve the following equations

𝑉 (𝑛)Δ𝑣(𝑥, 𝑢
(𝑛))

⃒⃒⃒
Δ𝑣(𝑥,𝑢

(𝑛))=0
Eq. (3)

= 0. (6)

Using the above equation, one can obtain a large
number of elementary determining equations for the
coefficient functions. Those determining equations
can be solved and the general solution will determine
the most general symmetry of the system.

Example 1: The well-known Boussinesq
equation[18−20] is

𝑢𝑡𝑡 + (𝑢2)𝑥𝑥 +
1

3
𝑢𝑥𝑥𝑥𝑥 = 0, (7)

and the corresponding Lax pair of Eq. (7) has the form

𝜓𝑥𝑥𝑥 = −3

2
𝑢𝜓𝑥 −

(︁3
4
𝑢𝑥 +

3

4
𝜕−1
𝑥 𝑢𝑡

)︁
𝜓,

𝜓𝑡 = −𝜓𝑥𝑥 − 𝑢𝜓, (8)

and its adjoint version is

𝜑𝑥𝑥𝑥 = −3

2
𝑢𝜑𝑥 −

(︁3
4
𝑢𝑥 − 3

4
𝜕−1
𝑥 𝑢𝑡

)︁
𝜑,

𝜑𝑡 = 𝜑𝑥𝑥 + 𝑢𝜑. (9)

That is to say, the integrable conditions of Eqs. (8)
and (9), 𝜓𝑥𝑥𝑥𝑡 = 𝜓𝑡𝑥𝑥𝑥 and 𝜑𝑥𝑥𝑥𝑡 = 𝜑𝑡𝑥𝑥𝑥 are just the
Boussinesq equation (7).

Apply the Lax pair and its adjoint Lax pair of the
Boussinesq equation as the auxiliary systems. Then,
the vector field takes the form

𝑉 = 𝜉1
𝜕

𝜕𝑥
+ 𝜉2

𝜕

𝜕𝑡
+ 𝜂

𝜕

𝜕𝑢
. (10)

One can prolong the basic space 𝑉 to the space
𝑋 × 𝑈 (4) and obtain the prolongation of 𝑉 ,

𝑉 = 𝜉1
𝜕

𝜕𝑥
+ 𝜉2

𝜕

𝜕𝑡
+ 𝜂

𝜕

𝜕𝑢
+ 𝜂𝑥

𝜕

𝜕𝑢𝑥

+ 𝜂𝑥𝑥
𝜕

𝜕𝑢𝑥𝑥
+ 𝜂𝑡𝑡

𝜕

𝜕𝑢𝑡𝑡
+ 𝜂𝑥𝑥𝑥𝑥

𝜕

𝜕𝑢𝑥𝑥𝑥𝑥
,

(11)

where the coefficients of 𝑉 all depend on the variables
(𝑥, 𝑡, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥, 𝜓, 𝜑, 𝜓𝑥, 𝜑𝑥, 𝜓𝑥𝑥, 𝜑𝑥𝑥), and

𝜂𝑡 = 𝐷𝑡(𝜂 − 𝜉1𝑢𝑥 − 𝜉2𝑢𝑡) + 𝜉1𝑢𝑥𝑡 + 𝜉2𝑢𝑡𝑡,

𝜂𝑥 = 𝐷𝑥(𝜂 − 𝜉1𝑢𝑥 − 𝜉2𝑢𝑡) + 𝜉1𝑢𝑥𝑥 + 𝜉2𝑢𝑡𝑥,

· · ·
𝜂𝑥𝑥𝑥𝑥 = 𝐷𝑥𝑥𝑥𝑥(𝜂 − 𝜉1𝑢𝑥 − 𝜉2𝑢𝑡) + 𝜉1𝑢𝑥𝑥𝑥𝑥𝑥

+ 𝜉2𝑢𝑡𝑥𝑥𝑥𝑥. (12)

Applying 𝑉 to Eq. (7), one can obtain the infinites-
imal criterion (6) to be

𝜂𝑡𝑡 + 4𝑢𝑥𝜂
𝑥 + 2𝜂𝑢𝑥𝑥 + 2𝑢𝜂𝑥𝑥 +

1

3
𝜂𝑥𝑥𝑥𝑥 = 0. (13)

Substituting the general formulae (12) into (13)
and replacing 𝑢𝑡𝑡, 𝜓𝑥𝑥𝑥, 𝜓𝑡, 𝜑𝑥𝑥𝑥, 𝜑𝑡 by Eqs. (7), (8)
and (9), we obtain the determining equations for the
functions 𝜉1, 𝜉2, 𝜂. Calculated by computer algebra,
the general solutions of them take the form

𝑉 =
(︁1
2
𝑐1𝑥+𝑐3

)︁ 𝜕

𝜕𝑥
+(𝑐1𝑡+𝑐2)

𝜕

𝜕𝑡
−(𝑐1𝑢−𝑐4(𝜓𝜑)𝑥)

𝜕

𝜕𝑢
,

(14)
where 𝑐1, 𝑐2, 𝑐3, 𝑐4 are arbitrary constants.

Remark 2: The vector field (14) contains two parts,
𝑉 1 = ( 12𝑐1𝑥 + 𝑐3)

𝜕
𝜕𝑥 + (𝑐1𝑡 + 𝑐2)

𝜕
𝜕𝑡 − 𝑐1𝑢

𝜕
𝜕𝑢 and

𝑉 2 = 𝑐4(𝜓𝜑)𝑥
𝜕
𝜕𝑢 . One can see that the first part is

the classical Lie point symmetry, and the second part
is the nonlocal symmetry. Therefore, both the gen-
eral local symmetries and nonlocal symmetries can be
obtained by this method.

Example 2: The coupled KdV system[22,23] has the
form

𝑢𝑡 = −6𝑣𝑣𝑥 + 6𝑢𝑢𝑥 − 𝑢𝑥𝑥𝑥,

𝑣𝑡 = 6𝑢𝑣𝑥 + 6𝑣𝑢𝑥 − 𝑣𝑥𝑥𝑥, (15)

100202-2

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

http://cpl.iphy.ac.cn


CHIN.PHYS. LETT. Vol. 30, No. 10 (2013) 100202

and the Lax pair for Eqs. (15) is as follows:

𝜑1𝑥𝑥 = 𝑣𝜑2 + 𝑢𝜑1 − 𝜆𝜑1,

𝜑2𝑥𝑥 = 𝑢𝜑2 − 𝑣𝜑1 − 𝜆𝜑2,

𝜑1𝑡 = −4𝜑1𝑥𝑥𝑥 + 6𝑣𝜑2𝑥 + 6𝑢𝜑1𝑥 + 3𝑣𝑥𝜑2 + 3𝑢𝑥𝜑1,

𝜑2𝑡 = −4𝜑2𝑥𝑥𝑥 + 6𝑢𝜑2𝑥 − 6𝑣𝜑1𝑥 + 3𝑢𝑥𝜑2 − 3𝑣𝑥𝜑1.

The vector field has the form

𝑉 = 𝜉1
𝜕

𝜕𝑥
+ 𝜉2

𝜕

𝜕𝑡
+ 𝜂1

𝜕

𝜕𝑢
+ 𝜂2

𝜕

𝜕𝑣
. (16)

Using the formula (4), one can prolong the space
𝑉 to the space 𝑋 × 𝑈 (3) × 𝑉 (3), which here we omit.
Applying the prolonged vector field and following step
3, one can obtain the general solutions

𝑉 =
(︁𝑐1𝑥

3
+ 𝑐3𝑡+ 𝑐4

)︁ 𝜕

𝜕𝑥
+ (𝑐1𝑡+ 𝑐2)

𝜕

𝜕𝑡

+
[︁𝑐6
2
(𝜑21 − 𝜑22)𝑥 − 𝑐5(𝜑1𝜑2)𝑥 +

2𝑐1𝑢

3
+
𝑐3
6

]︁ 𝜕
𝜕𝑢

−
[︁
𝑐6(𝜑1𝜑2)𝑥 − 𝑐5

2
(𝜑22 − 𝜑21)𝑥 − 2𝑐1𝑣

3

]︁ 𝜕
𝜕𝑣
.

(17)

where 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6 are arbitrary constants.
Example 3: The Kadomtsev–Petviashvili (KP)

equation[24,25] has the following form

𝑢𝑥𝑡 − 6𝑢2𝑥 − 6𝑢𝑢𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥 + 3𝑢𝑦𝑦 = 0. (18)

It is well known that the KP equation possesses
the Lax pair and the adjoint Lax pair

𝜓𝑥𝑥 = 𝑢𝜓 − 𝜓𝑦,

𝜓𝑡 = −4𝜓𝑥𝑥𝑥 + 6𝑢𝜓𝑥 + 3(𝑢𝑥 −
∫︁
𝑢𝑦𝑑𝑥)𝜓,

𝜑𝑥𝑥 = 𝑢𝜑+ 𝜑𝑦,

𝜑𝑡 = −4𝜑𝑥𝑥𝑥 + 6𝑢𝜑𝑥 + 3(𝑢𝑥 +

∫︁
𝑢𝑦𝑑𝑥)𝜑.

(19)

Let the vector field of Eq. (18) take the form

𝑉 = 𝜉1
𝜕

𝜕𝑥
+ 𝜉2

𝜕

𝜕𝑦
+ 𝜉3

𝜕

𝜕𝑡
+ 𝜂

𝜕

𝜕𝑢
. (20)

Using the prolonged vector field and following step
3, one can obtain the solution

𝑉 =
(︁𝑥
3
𝐹1𝑡 −

𝑦2

18
𝐹1𝑡𝑡 −

𝑦

6
𝐹2𝑡 − 6𝐹3 + 𝑐2

)︁ 𝜕

𝜕𝑥

+
(︁2𝑦
3
𝐹1𝑡 + 𝐹2

)︁ 𝜕

𝜕𝑦
+ 𝐹1

𝜕

𝜕𝑡
+
(︁2𝑢

3
𝐹1𝑡 +

𝑥

18
𝐹1𝑡𝑡

− 𝑐1(𝜓𝜑)𝑥 − 𝑦2

108
𝐹1𝑡𝑡𝑡 −

𝑦

36
𝐹2𝑡 − 𝐹3𝑡

)︁ 𝜕

𝜕𝑢
,

(21)

where 𝐹1, 𝐹2 and 𝐹3 are arbitrary functions of 𝑡, and
𝑐1 and 𝑐2 are arbitrary constants.

Example 4: The Ablowitz–Kaup–Newell–Segur
(AKNS) equations[21,26]

𝑢𝑡 = −𝑖𝑢𝑥𝑥 + 2𝑖𝑢2𝑣,

𝑣𝑡 = 𝑖𝑣𝑥𝑥 − 2𝑖𝑣2𝑢 (22)

have the following Lax pair(︂
𝜑1𝑥
𝜑2𝑥

)︂
=

(︂
−𝑖𝜆 𝑢
𝑣 𝑖𝜆

)︂(︂
𝜑1
𝜑2

)︂
,(︂

𝜑1𝑡
𝜑2𝑡

)︂
=

(︂
2𝑖𝜆2 + 𝑖𝑢𝑣 −2𝜆𝑢− 𝑖𝑢𝑥
−2𝜆𝑣 + 𝑖𝑣𝑥 −2𝑖𝜆2 − 𝑖𝑢𝑣

)︂(︂
𝜑1
𝜑2

)︂
.

(23)

Using the same method we can obtain the nonlocal
symmetries taking the form

𝑉 =(𝑐1𝑡+ 𝑐3𝑥+ 𝑐2)
𝜕

𝜕𝑥
+ (2𝑐3𝑡+ 𝑐4)

𝜕

𝜕𝑡

−
(︁4𝑐3 + 2𝑐6 + 𝑐1𝑖𝑥

2
𝑢− 𝑐5𝜑

2
1

)︁ 𝜕

𝜕𝑢

+
(︁2𝑐6 + 𝑐1𝑖𝑥

2
𝑣 + 𝑐5𝜑

2
2

)︁ 𝜕

𝜕𝑣
, (24)

where 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5 and 𝑐6 are arbitrary constants.
Example 5: Here we construct the nonlocal sym-

metries by using the Bäcklund transformation (BT)
of the potential Korteweg-de Vries (pKdV) equation.
The pKdV equation[27] has the form

𝑢𝑡 = −𝑢𝑥𝑥𝑥 + 3𝑢2𝑥. (25)

For Eq. (25), there exists the following BT[28]

𝑢1,𝑥 = − 𝑢𝑥 − 2𝜆+
(𝑢− 𝑢1)

2

2
,

𝑢1,𝑡 = − 𝑢𝑡 + 2𝑢2𝑥 + 2𝑢21,𝑥 + 2𝑢𝑥𝑢𝑥

− (𝑢− 𝑢1)(𝑢𝑥𝑥 − 𝑢1,𝑥𝑥), (26)

with 𝜆 being the arbitrary parameter.
Equations (26) show that if 𝑢 is a solution to

Eq. (25), so is 𝑢1, that is to say, they represent a finite
symmetry transformation between two exact solutions
of Eq. (25). Hence 𝑢1 satisfies the following form

𝑢1,𝑡 = −𝑢1,𝑥𝑥𝑥 + 3𝑢21,𝑥. (27)

In order to obtain the nonlocal symmetry of
Eq. (25), we first give a transformation

𝑣 = 𝑢− 𝑢1, 𝑤 = 𝑢+ 𝑢1, (28)

where 𝑣 and 𝑤 are functions of 𝑥 and 𝑡.
Using Eq. (28), we can obtain

𝑢 =
𝑣

2
+
𝑤

2
, 𝑢1 =

𝑤

2
− 𝑣

2
, (29)

then, the vector field of 𝑢, 𝑢1 and 𝑣, 𝑤 have the fol-
lowing relations

𝑉1 =
𝑉1
2

+
𝑉2
2
, 𝑉2 =

𝑉2
2

− 𝑉1
2
, (30)
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where 𝑉1, 𝑉2, 𝑉1, 𝑉2 are vector field of 𝑢, 𝑢1, 𝑣, 𝑤,
respectively, and the coefficients of 𝑉1, 𝑉2 all depend
on the variables (𝑥, 𝑡, 𝑣, 𝑤,

∫︀
𝑣𝑑𝑥,

∫︀
𝑤𝑑𝑥).

Substituting transformations (29) into Eqs. (25)–
(27), one can obtain

𝑣𝑡 = −𝑣𝑥𝑥𝑥 + 3𝑣𝑥𝑤𝑥, 𝑤𝑡 = −𝑤𝑥𝑥𝑥 +
3

2
𝑣2𝑥 +

3

2
𝑤2

𝑥,
(31)

𝑤𝑥 = −2𝜆+
𝑣2

2
, 𝑤𝑡 =

1

2
𝑣2𝑥 +

3

2
𝑤2

𝑥 − 𝑣𝑣𝑥𝑥. (32)

Using the same method we can obtain the nonlo-
cal symmetries of Eqs. (31) with Eqs. (32) having the
forms

𝑉1 =
(︁𝑐1𝑥

3
+ 𝑐6𝑡+ 𝑐7

)︁ 𝜕

𝜕𝑥
+ (𝑐1𝑡+ 𝑐2)

𝜕

𝜕𝑡

+
(︁
𝑐4𝑒

−
∫︀
𝑣𝑑𝑥 + 𝑐5𝑒

∫︀
𝑣𝑑𝑥 − 𝑐1𝑣

3
+ 𝑐3

)︁ 𝜕

𝜕𝑣
,

𝑉2 =
(︁𝑐1𝑥

3
+ 𝑐6𝑡+ 𝑐7

)︁ 𝜕

𝜕𝑥
+ (𝑐1𝑡+ 𝑐2)

𝜕

𝜕𝑡

−
(︁𝑐1𝑤

3
+
𝑐6𝑥

3
+ 𝑐4𝑒

−
∫︀
𝑣𝑑𝑥 − 𝑐5𝑒

∫︀
𝑣𝑑𝑥 − 𝑐8

)︁ 𝜕

𝜕𝑤
.

(33)

Finally, substituting the above results and
Eqs. (28) into Eqs. (30), we can obtain the nonlocal
symmetries of Eqs. (25) and (27) with BT (26),

𝑉1 =
(︁𝑐1𝑥

3
+ 𝑐6𝑡+ 𝑐7

)︁ 𝜕

𝜕𝑥
+ (𝑐1𝑡+ 𝑐2)

𝜕

𝜕𝑡

+
(︁
𝑐5𝑒

∫︀
(𝑢−𝑢1)𝑑𝑥 − 𝑐1𝑢

3
− 𝑐6𝑥

6
+
𝑐3 + 𝑐8

2

)︁ 𝜕

𝜕𝑢
,

𝑉2 =
(︁𝑐1𝑥

3
+ 𝑐6𝑡+ 𝑐7

)︁ 𝜕

𝜕𝑥
+ (𝑐1𝑡+ 𝑐2)

𝜕

𝜕𝑡

−
(︁
𝑐4𝑒

−
∫︀
(𝑢−𝑢1)𝑑𝑥+

𝑐1𝑢1
3

+
𝑐6𝑥

6
+
𝑐3 − 𝑐8

2

)︁ 𝜕

𝜕𝑢1
.

(34)

where 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7 and 𝑐8 are arbitrary
constants. If we set 𝑐1 = 𝑐2 = 𝑐3 = 𝑐4 = 𝑐6 =
𝑐7 = 𝑐8 = 0, 𝑐5 = 1, the same result will be found
in Ref. [16] but their result is only a special case of
ours.

In summary, a systemic method to find the non-
local symmetry of nonlinear evolution equation has
been presented. Through several classical examples,
we can observe that this method can obtain nonlocal
symmetries effectively.

Moreover, how to use the nonlocal symmetries to
build similarity solutions is another important work.

In Ref. [17], the authors proposed a new method. The
idea is to incorporate the original equation(s) in an ex-
tended related system by introducing other auxiliary
dependent variables. In this case, the primary non-
local symmetry is equivalent to Lie point symmetries
of prolonged systems, then one can find the nonlo-
cal group as well as the explicit similarity solutions.
Following this idea, seeking new explicit analytic solu-
tions using the nonlocal symmetries of these nonlinear
systems is worthy of further study.

We would like to thank Professor S. Y. Lou for his
enthusiastic guidance and helpful discussion.
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