
Chaos, Solitons and Fractals 33 (2007) 532–539

www.elsevier.com/locate/chaos
Symbolic computation and solitons of the nonlinear
Schrödinger equation in inhomogeneous optical fiber media

Biao Li a,b,c,*, Yong Chen b,c

a Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China
b Nonlinear Science Center, Ningbo University, Ningbo 315211, China
c MM Key Lab, Chinese Academy of Sciences, Beijing 100080, China

Accepted 15 December 2005
Abstract

In this paper, the inhomogeneous nonlinear Schrödinger equation with the loss/gain and the frequency chirping is
investigated. With the help of symbolic computation, three families of exact analytical solutions are presented by
employing the extended projective Riccati equation method. From our results, many previous known results of nonlin-
ear Schrödinger equation obtained by some authors can be recovered by means of some suitable selections of the arbi-
trary functions and arbitrary constants. Of optical and physical interests, soliton propagation and soliton interaction
are discussed and simulated by computer, which include snake-soliton propagation and snake-solitons interaction, boo-
merang-like soliton propagation and boomerang-like solitons interaction, dispersion managed (DM) bright (dark) sol-
iton propagation and DM solitons interaction.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

As is known, the nonlinear Schrödinger equation (NLS) model is one of the most important and ‘‘universal’’ non-
linear models of modern science. In particular, NLSE optical solitons are regarded as the natural data bits and as an
important alternative for the next generation of ultrahigh speed optical telecommunication systems. The milestone
works are: the possibility of solitons in optical fibers proved by Hasegawa and Tappert [1]; the inverse scattering trans-
form scheme for NLSE reported by Zakharov and Shabat [2]; the experimental evidence of solitons in optical fibers
shown by Mollenauer et al. [3]. Since then, the dynamics of the soliton propagation in optical fibers has become a major
area of research given its potential applicability in the optical communication systems, and have been extensively stud-
ied theoretically by various methods [4–28]. However, in a real fiber, in general, the core medium is not homogeneous
[6,7]. Considering the inhomogeneities in the fiber, the dynamics of the optical pulse propagation is governed by the
following inhomogeneous nonlinear Schrödinger [6,7] equation (INLS)
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where u(z, t) is the complex envelope of the electrical field in a comoving frame, z is the normalized distance and t is the
retarded time, a(z) is the group velocity dispersion parameter and b(z) is related to the Kerr nonlinearity, and M(z) and
F(z) are inhomogeneous parameters related to phase modulation and loss/gain, which are the functions of the propa-
gation distance z, respectively. The study of nonlinear wave propagation for Eq. (1) is of great interest and have wide
range of applications. It is not only restricted for optical pulse propagating in inhomogeneous optical fiber media, which
has found application in pulse compression, but also for the core of a dispersion-managed soliton [8]. Recently, the
application of Eq. (1) with various forms of inhomogeneities has been studied in various papers [9–13]. It should be
pointed out that without the residual loss/gain term Eq. (1) has been studied in different context in [9,10]. With the
loss/gain term, Eq. (1) has been reported in [10–14] from the integrability point of view, where by choosing a special
parameter, one soliton solution has been obtained by Bäcklund transformation. Without the phase modulation term
M(z), Eq. (1) has been studied by many authors, such as, in [10,17,18], Serkin et al. developed an effective mathematical
algorithm to discover and investigate infinite number of novel soliton solutions and discussed soliton management and
femtosecond soliton amplification; Ruan et al. [22] reported some exact solutions by the symmetry approach; Hong
et al. [23] proposed an intrinsic conservation law; Li et al. [26] develop a system method and construct six families
of exact analytical solutions for it.

In [6], by the transformation u ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðzÞ=bðzÞ

p
qðz; tÞ, z ¼ 1

2

R
aðsÞds, Eq. (1) become the following nonintegrable

form:
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þ 2l2jqj2qþM1ðzÞt2qþ iF 1ðzÞq ¼ 0; ð2Þ
here M1(z) = 2M(z)/a(z) and F1(z) = 2F(z)/a(z) + (b(z)a(z)z � b(z)za)/a(z)2b(z) are related to the phase modulation and
the loss/gain, respectively, and the subscript ‘‘z’’ represents the derivative with respect to z, and the parameter l is the
real constant. Under the conditions F1(z) = b = const and M1(z) = b2, Li et al. [7] obtained N-solitary solution of Eq.
(2) by Darboux transformation and investigated two exact analytical solutions that describe the modulation instability
and the soliton propagation on a continuous wave background with the loss/gain and the frequency chirping. In [27],
three families of analytical solutions for Eq. (2) are derived by us, and the soliton propagation and solitons interaction
scenario are discussed and simulated by computer.

The motivation in this paper lies in the optical and physical importance of the INLSE (1) and the need to have some
exact analytical solutions. To have some explicit analytical solutions of INLSE (1) may enable one to better understand
the optical and physical phenomena which it describes. The exact solutions, which are accurate and explicit, may help
physicists and engineers to discuss and examine the sensitively of the model to several physical parameters. In this work,
we will work on INLSE (1) to construct a series exact analytical solutions by symbolic computation and the extended
projective Riccati equation method proposed by us [25–28]. As a result, three families of analytical solutions for INLSE
(1) are derived. Then based on these analytical solutions, soliton propagation and soliton interaction are discussed and
simulated by computer.
2. Solitons of INLSE in inhomogeneous optical fiber media

We now investigate NLSE (1) with the extended projective Riccati equation method proposed by us [25–28]. In order
to obtain some exact solutions of INLSE (1), firstly we make the transformation
uðz; tÞ ¼ ½a0ðzÞ þ a1ðzÞrðnÞ þ b1ðzÞsðnÞ� exp i½t2k2ðzÞ þ tk1ðzÞ þ k0ðzÞ�
� �

; ð3Þ
where
n ¼ tXðzÞ þ dðzÞ; ð4Þ
and a0(z), a1(z), b1(z), X(z), d(z), k2(z), k1(z) and k0(z) are functions of z to be determined, s(n) and r(n) satisfy the fol-
lowing projective Riccati equation:
drðnÞ
dn
¼ �rðnÞsðnÞ; dsðnÞ

dn
¼ 1� lrðnÞ � s2ðnÞ; ð5Þ
where l is constant, and r(n) and s(n) satisfy the following equation:
s2ðnÞ ¼ 1� 2lrðnÞ þ ðl2 � 1Þr2ðnÞ. ð6Þ
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Substituting (3)–(6) into INSLE (1), removing the exponential term, collecting coefficients of monomials of s(n), r(n)
and t of the resulting system, then separating each coefficients to the real part and imaginary part and setting each part
to zero, we obtain an ordinary differential equation (ODE) system with respect to differentiable functions a, b(z), M(z),
F(z), a0(z), a1(z), b1(z), k0(z), k1(z) and k2(z). Because the ODE system include 21 ODEs, for simplification, we omit
them in the paper.

Solving the ODE system with symbolic computation system-Maple, we can obtain the following results:

Case 1.
l ¼ 0; k0ðzÞ ¼ �
1

2

Z
aðzÞe�4

R
k2ðzÞaðzÞ dzdzC2

1 �
Z

aðzÞe�4
R

k2ðzÞaðzÞ dzdzC2
2 þ C3;

a0ðzÞ ¼ a1ðzÞ ¼ 0; k1ðzÞ ¼ C1e�2
R

k2ðzÞaðzÞ dz
; F ðzÞ ¼ �

d
dz b1ðzÞ þ aðzÞk2ðzÞb1ðzÞ

b1ðzÞ
;

MðzÞ ¼ 2aðzÞðk2ðzÞÞ2 þ
d

dz
k2ðzÞ; dðzÞ ¼ �C2C1

Z
aðzÞe�4

R
k2ðzÞaðzÞdzdzþ C4;

XðzÞ ¼ C2e�2
R

k2ðzÞaðzÞ dz
; bðzÞ ¼ � aðzÞC2

2e�4
R

k2ðzÞaðzÞ dz

ðb1ðzÞÞ2
;

ð7Þ
where C1, C2, C3, C4 are arbitrary constants, a(z), k2(z) and b1(z) are arbitrary functions of z.

Case 2.
l ¼ a0ðzÞ ¼ b1ðzÞ ¼ 0; k1ðzÞ ¼ C1e�2
R

k2ðzÞaðzÞ dz; MðzÞ ¼ 2aðzÞðk2ðzÞÞ2 þ
d

dz
k2ðzÞ;

dðzÞ ¼ �C2C1

Z
aðzÞe�4

R
k2ðzÞaðzÞ dzdzþ C4; XðzÞ ¼ C2e�2

R
k2ðzÞaðzÞ dz;

k0ðzÞ ¼
1

2

Z
aðzÞe�4

R
k2ðzÞaðzÞ dzdzC2

2 �
1

2

Z
aðzÞe�4

R
k2ðzÞaðzÞ dzdzC2

1 þ C3;

bðzÞ ¼ aðzÞC2
2e�4

R
k2ðzÞaðzÞ dz

ða1ðzÞÞ2
; F ðzÞ ¼ �

d
dz a1ðzÞ þ aðzÞk2ðzÞa1ðzÞ

a1ðzÞ
;

ð8Þ
where C1, C2, C3, C4 are arbitrary constants, a(z), k2(z) and a1(z) are all arbitrary function of z, a01 ¼ d
dz a1ðzÞ.

Case 3.
a0ðzÞ ¼ 0; a1ðzÞ ¼ �b1ðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 1

p
; F ðzÞ ¼ �

aðzÞk2ðzÞb1ðzÞ þ d
dz b1ðzÞ

b1ðzÞ
;

MðzÞ ¼ 2ðk2ðzÞÞ2aðzÞ þ
d

dz
k2ðzÞ; k1ðzÞ ¼ C1e�2

R
aðzÞk2ðzÞ dz;

XðzÞ ¼ C3e�2
R

aðzÞk2ðzÞ dz; bðzÞ ¼ � 1

4

aðzÞC2
3e�4

R
aðzÞk2ðzÞ dz

ðb1ðzÞÞ2
;

k0ðzÞ ¼ �
1

2

Z
aðzÞe�4

R
aðzÞk2ðzÞ dzdzC2

1 �
1

4

Z
aðzÞe�4

R
aðzÞk2ðzÞ dzdzC2

3 þ C6;

dðzÞ ¼ �C3C1

Z
aðzÞe�4

R
aðzÞk2ðzÞ dzdzþ C5;

ð9Þ
where C1, C2, C3, C4 are arbitrary constants, a(z), k2(z) and b1(z) are arbitrary functions of z.

We know that Eqs. (5) and (6) have the following solutions:
rðnÞ ¼ 1

lþ cosh n
; sðnÞ ¼ sinh n

lþ cosh n
. ð10Þ
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Thus according to (3), (4), (7)–(10), we can obtain three families of exact analytical solutions for INLSE (1) as follows:
Family 1–2. From Cases 1, 2, two families of solutions for INLSE (1) are as follows:
u1ðz; tÞ ¼ C2pðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� aðzÞ

bðzÞ

s
tanh C2 pðzÞt þ C1

Z
aðzÞpðzÞ2 dz

� �
þ C4

� �

� exp i k2ðzÞt2 þ C1pðzÞt � C2
1 þ 2C2

2

2

Z
aðzÞpðzÞ2 dzþ C3

� �� �
; ð11Þ

u2ðz; tÞ ¼ C2pðzÞ

ffiffiffiffiffiffiffiffiffi
aðzÞ
bðzÞ

s
sech C2 pðzÞt þ C1

Z
aðzÞpðzÞ2 dz

� �
þ C4

� �

� exp i k2ðzÞt2 þ C1pðzÞt þ C2
2 � C2

1

2

Z
aðzÞpðzÞ2 dzþ C3

� �� �
; ð12Þ
where
pðzÞ ¼ e�2
R

k2ðzÞaðzÞ dz; MðzÞ ¼ 2aðzÞðk2ðzÞÞ2 þ
d

dz
k2ðzÞ;

bðzÞC2
0 ¼ aðzÞC2

2pðzÞe2
R

F ðzÞ dz
;

ð13Þ
and C0, C1, C2, C3, C4 are arbitrary constants.
Family 3.
u3ðz; tÞ ¼
C3pðzÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� aðzÞ

bðzÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 1

p
lþ coshðnÞ �

sinhðnÞ
lþ coshðnÞ

" #

� exp i k2ðzÞt2 þ C1pðzÞt � 2C2
1 þ C2

3

4

Z
aðzÞpðzÞ2 dzþ C3

� �� �
; ð14Þ
where
pðzÞ ¼ e�2
R

k2ðzÞaðzÞ dz; MðzÞ ¼ 2aðzÞðk2ðzÞÞ2 þ
d

dz
k2ðzÞ;

4bðzÞC2
0 ¼ �aðzÞC2

3pðzÞe2
R

F ðzÞ dz; n ¼ C3pðzÞt � C3C1

Z
aðzÞpðzÞ2 dzþ C5;

ð15Þ
and l, C0, C1, C3, C5 are arbitrary constants.
Remark: (1) When setting C1 = 0, M(z) = 0, the Theorems 1–2 [17] and Theorems 1–2 [18] can be reproduced by our

solutions (11) and (12); (2) When setting M(z) = 0, the solutions obtained in [23] can also be recovered by selecting arbi-
trary functions and arbitrary constants suitably; (3) The solutions obtained in [27] can be recovered by setting
a(z) = const, b(z) = const; (4) When setting M(z) = 0, the solutions in [26] can be recovered. But to our knowledge,
the other solutions have not been reported earlier.

In order to understand the significance of these solutions expressed by (11)–(15), the main soliton features of them
were investigated by using direct computer simulations with the accuracy as high as 10�9. We have investigated the
interaction dynamics of particle-like solutions obtained and the influence of high-order effects on the dynamics of dis-
persion and amplification management. As follows from numerical investigations elastic character of chirped solitons
interacting does not depend on a number of interacting solitons and their phases. For simplicity, we only consider some
examples for each solution under some special parameters. Here, U = ju(z, t)j2 denotes the intensity of solution.

Figs. 1a,b and 2a,b shows the snake-shaped dark solitons and boomerange-like solitons scenario given by u1(z, t).
Dispersion managed (DM) soliton u1(z, t) with periodic dispersion coefficient are shown in Figs. 3a,b and 4a,b.
Fig. 5a and b depict one snake-shaped bright soliton propagation and two snake-shaped bright solitons interaction
given by u1(z, t), respectively. Fig. 6a and b represents one DM bright soliton evolution and two DM bright solitons
interaction given by u2(z, t). Fig. 7a and b plot one periodic DM dark soliton propagation and two periodic DM solitons
interaction.

In Fig. 8a and b, we consider some periodical chirped soliton solutions of u3(z, t). Suppose that the intensity of sol-
itons varies periodically as
aðzÞ ¼ 1� 0:8 sinðzÞ2; bðzÞ ¼ 1; pðzÞ ¼ 1

2zþ fC0

. ð16Þ



Fig. 1. Snake-soliton propagation and contour plot of two snake-solitons interaction scenario given by dark solitons u1. Input
conditions: k2(z) = 0, a(z) = �cos(z), b(z) = cos(z), C1 = 5, C2 = 4, C4 = 0 in (a).

Fig. 2. Boomerang-like soliton propagation and interaction scenario given by dark solitons u1. Input conditions: k2(z) = 0,
a = b = 1 � 0.14z, C1 = 1, C2 = 0.6, C4 = 0.

Fig. 3. Evolution of the periodic dark solitary wave and contour plot of two periodic dark solitary wave given by u1 with k2(z) = 0.1,
a(z) = sin(z), b(z) = �sin(z), C1 = 1, C2 = 0.6, C4 = 0.
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Fig. 4. (a) depicts one DM dark soliton propagation and (b) simulates two DM dark solitons interaction given by u1 with k2(z) = 0.1,
a(z) = 1 � 0.9sin(2z)2, b(z) = 1, C1 = 0.1, C2 = 0.6, C4 = 0.

Fig. 5. (a) and (b) depict snake-soliton propagation and interaction given by u2 with k2(z) = 0, a(z) = �b(z) = �cos(z), C1 = 5,
C2 = 0.4, C4 = 0.

Fig. 6. (a) and (b) depict one DM bright soliton propagation and interaction scenario given by u2, respectively. Input conditions:
k2(z) = 0.1, a(z) = 1 � 0.9cos(2z)2, b(z) = 1, C1 = 0.01, C2 = 2, C4 = 0.
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Fig. 7. (a) and (b) depict one dark soliton propagation and two dark solitons interaction scenario given by u3, respectively. Input
conditions: k2(z) = 0, a(z) = �b(z) = �sin(z), C1 = 5, C3 = 2, C4 = 0, l = 1.1.

Fig. 8. (a) and (b) depict one periodic DM dark soliton propagation and two periodic DM dark solitons interaction scenario given by
u3, respectively. Input conditions: a(z)=1 � 0.8sin(z)2, b(z) = 1, fC0 ¼ 20, C1 = 1, C3 = �30, C5=0, l = 2.
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Then we can deduce the parameters k2(z), M(z) and F(z), for example
k2ðzÞ ¼
�5:0

ð�10:0z� 5:0fC0 þ 8:0ðsinðzÞÞ2zþ 4:0ðsinðzÞÞ2fC0Þ
. ð17Þ
It is necessary to point out that we plot some figures for each solutions under some special parameters. In fact, under
different parameters, the feature of solutions by u1(z, t), u2(z, t) and u3(z, t) are rich and colorful. In the future work, we
will further study the various NLS equations and make great efforts to reveal some significative phenomena in physics
and optics
3. Summary and discussion

In this paper, the inhomogeneous nonlinear Schrödinger equation with the loss/gain and the frequency chirping is
investigated. With the help of symbolic computation, three families of exact analytical solutions are presented by
employing the extended projective Riccati equation method. From our results, many previous known results of nonlin-
ear Schrödinger equation obtained by some authors can be recovered by means of some suitable selections of the arbi-
trary functions and arbitrary constants. Of optical and physical interests, soliton propagation and soliton interaction
are discussed and simulated by computer.
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