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A new algebraic method, named Riccati equation rational expansion (RERE) method, is
devised for constructing multiple traveling wave solutions for nonlinear evolution equa-
tions (NEEs). With the aid of symbolic computation, we choose (1 + 1)-dimensional
dispersive long wave equation (DLWE) to illustrate our method. As a result, we ob-
tain many types of solutions including rational form solitary wave solutions, triangular
periodic wave solutions and rational wave solutions.
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1. Introduction

The tanh method provides a straightforward and effective algorithm to obtain par-
ticular traveling solutions for a large number of NEEs. Generally speaking, the var-
ious extensions and improvement of tanh method can be classified into two classes:
One is called the direct method, which represents the solutions of given NEEs as the
sum of a polynomial in exponential solutions.' ™ The other is called the subequation
method, which consists of looking for the solutions of given NEEs as a polynomial
in a variable which satisfies an equation or equations (named subequation).* 19
The present work is motivated by the desire to present a new subequation
method, named Riccati equation rational expansion (RERE) method, by propos-
ing a more general ansidtz so that it can be used to obtained more types and
general formal solutions which contain not only the results obtained by using the
known various tanh function methods!*~1% but also other types of solutions. For
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illustration, we apply the generalized method to solve (1 + 1)-dimensional disper-
sive long wave equation (DLWE) and successfully construct new and more general
solutions including rational form solitary wave solutions, triangular periodic wave
solutions and rational wave solutions for the (1 + 1)-DLWE.

This paper is organized as follows. In Sec. 2, we summarize the RERE method.
In Sec. 3, we apply the RERE method to (1+1)-DLWE and obtain many new form
solutions. Conclusions will be presented in Sec. 4.

2. The Riccati Equation Rational Expansion Method

In the following, we would like to outline the main steps of our method:

Step 1. For a given NEEs system with some physical fields w;(z,y,t) in three
variables x, v, t,

Fi (Wi, Wity Wizy Wiy, Witty Wizts Uity Wiz s Wiy, Wizy, - --) = 0, (1)
by using the wave transformation

where k, [ and A\ are constants to be determined later, the nonlinear partial differ-
ential equation (1) is reduced to a nonlinear ordinary differential equation (ODE):

Gi(U;, UL U, ..)=0. (3)

Step 2. We introduce a new ansétz in terms of finite rational formal expansion in
the following forms:

UiE) = ap + 3 PO F 058 (OVRT F(E)
TS (me(€) + pay/R+ 7€) + 1)

and the new variable ¢ = ¢(§) satisfying

(4)

d¢
¢ — (R+¢%) = 3 —(R+¢%) = (5)
where R, a;o, a;; and b;; (1 =1,2,...,5 =1,2,...,m;) are constants to be deter-

mined later.

Step 3. By balancing the highest-order derivative term and the nonlinear term in
Eq. (3), we can find the balance constant m; (m; is usually a positive integer). If
m; is a fraction or a negative integer, we first make the transformation,

Ui(§) = & (&), (6)
then substitute Eq. (6) into Eq. (3) and return to determine balance constant m;

again.

Step 4. Substitute Eq. (4) into Eq. (3) along with Eq. (5) and then set all co-
efficients of ¢*(£)(\/R + ¢%(£))’ of the resulting system’s numerator (i = 1,2,...,
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j =0, 1) to be zero to get an over-determined system of nonlinear algebraic equa-
tions with respect to k, p1, po, aio, a;j and b; (i =1,2,...,5=1,2,...,m;).

Step 5. Solving the over-determined system of nonlinear algebraic equations by
use of Maple, we would end up with the explicit expressions for k, p1, t2, o, ai;
and bij (Z: 172,...,.]' = 1,2,...,7711').

Step 6. It is well-known that the general solutions of Eq. (5) are
(1) when R <0,

$(€) = —V/—Rtanh(vV—RE),  ¢(&) = —v—Rcoth(vV—R¢), (7)
(2) when R =0,

P(§) = — (8)

1
g b
(3) when R > 0,

¢(€) = VRtan(VRE),  ¢(€) = —VRcot(VRE). (9)

Thus according to Egs. (2), (4), (7)—(9) and the conclusions in Step 5, we can obtain
the following rational formal traveling-wave solutions of Eq. (1).

(1) when R < 0,
m; aij(—\/j%tanh(mg))j + bij(_m
w; = ag + Z x tanh(v/—R¢))7~1/—Risech(v/—R¢) (10a)
7=1 (1 — pyv/—Rtanh(v/—RE) + poy/— Risech(v/—RE))1

m; aij(—\/j%coth(\/.——RS))j + bij(—\/jR
u; = ag + Z x coth(v/—R¢))?~t/—Rcsch(v/—R€) (10b)
7=1 (1 — ;=R coth(v/—RE) & pav/— R csch(v/—R€))7
(2) when R =0,

al] :':bl_])
= aio + —7 11
0 Z (& — p1 % p2)d (1)

(3) when R > 0,
ai; (VR tan(VRE))’ + by (VR tan(VRE))' ' v Rsec(vVRE)
U; = Q0 + Z

(1 + p1VRtan(vVRE) + pov/Rsec(vVRE))I » (122)
o +Zaw VEcot(VEE)) = biy(—vR cot(VEE) 'V Fese(vFE)
e (1 — VR cot(VRE) + pav/Resc(VRE)) |
(12b)

where § = k(xz + ly + At) and i = /1.
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Remark. The more general the ansétz is, the more general and more formal the
solutions of the NEEs will be. The ansétz proposed here is more general than the
ansitz in the tanh function method,' extended tanh function method,* improved
extended tanh function method,>™" projective Riccati equations method® and gen-
eral projective Riccati equations method.? ! If we set the parameters in Eq. (4) to
different values, the above methods can be recovered by the RERE method. The
concrete case is as follows:

(1) Setting 1 = po = by = 0, we just recover the solutions obtained by extended
tanh function method?;

(2) Setting u1 = pe = 0, we just recover the solutions obtained by the improved
extended tanh function method®S;

(3) Setting u1 = 0 and pua # 0, we just recover the solutions obtained by the
projective Riccati method.? !0

(4) The other solutions obtained here, to our knowledge, are all new formal exact
solutions of NEEs.

It is clear to see that this method can make further extension which we will
present in our following paper.
Firstly, we can naturally present a more general ansétz, which reads,

ai;¢? (€) +bij¢! "1 (§) /R + ¢*(€)
e (€) :aio+§ +eii (VR4 029/ (€)) + diy¢7 () 7
= (nd€) + e/ R+ ¢%(8)

+ (VR + ¢2(8)/6(8)) + pmjad™ 1 (6) + 1)
where aio, aij, bij, Cij, dij, pi1, ty2, Wi, pja (0= 1,2,...,5 = 1,2,...,m;) and
¢ are differentiable function to be determined later. We must point that u,; is no
need to equal to pg;, when ¢ # k (this is different with other various existing

tanh methods, which all require p;; = pgj, when i # k), because Eq. (13) is
also satisfying solving the recurrent relation or derivative relation for the terms of

(13)

polynomial for computation closed. Therefore, for some nonlinear equations, more
types of solutions would be expected.
Secondly, we can present a more general ansétz, which reads,

aij ¢ () + by 1 (E) /321 g (&)
S + i (Vo ' (©)/¢7 () + dij¢ ™7 (§)
uz(é):azO‘FZ J =0 L l J
= (1j10(&) + pjz v/ 21— e (€) _
+ 153V 21— ' (€)/6(6)) + pjad™H(§) + 1)
where a0, Qij, bija Cij, dij7 Mjts K52, K53, Hj4, h'l (Z = 1a27"'7j = 1727"‘7mi7
1=1,2,...,r) and ¢ are differentiable function to be determined later. Here ¢(¢)
satisfies a more general subequation, e.g.,

56 =228 _ IS ). (15)
=0

dg
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We can easily see that they are different ansétz because of the different choices of
the subequations.

3. Exact Solutions of the (1 + 1)-Dimensional Dispersive Long
Wave Equation

Let us consider the (14 1)-dimensional dispersive long wave equation (DLWE), i.e.,

vy + 00, +w, =0,
1 (16)
wi + (wv)w + ngww = 0;
where w—1 is the elevation of the water wave, v is the surface velocity of water along
x-direction. The equation system (16) can be traced back to the works of Broer,*!
Kaup,'? Jaulent-Miodek,'? Martinez,'* Kupershmidt,'® etc. A good understanding
of all solutions of Eq. (16) is very helpful for coastal and civil engineers to apply the
nonlinear water wave model in a harbor and coastal design. Therefore, finding more
types of exact solutions of Eq. (16) is of fundamental interest in fluid dynamics.
There are several papers devoted to this equation.'6—19
By considering the wave transformations v(x,t) = V (), w(z,t) = W() and
& = k(z + \t), we change Eq. (16) to the form
ANV +VV 4+ W' =0,
1 2y, (17)
AW+ (WV) + gk V"'=0.

According to the proposed method, we expand the solution of Eq. (17) in the
form

+Z a; (€) +bj¢? 71 () R+¢2(§)
= (d(§) + pa/ R+ ¢%(8) +1)7

+Z A (§) + B¢~ () R+¢2(§)
= (uad(8) + pey/ R+ ¢*(8) + 1)

where ¢(&) satisfies Eq. (5). Balancing the term V" with term (WV')" and the term
W' with term V'V’ in Eq. (17) gives m,, = 1 and m,, = 2. So we have
L w9l + b BT PE
11 6(€) + po/R+ ¢2(€) +1°
A9(E) + BiyR+2(E) | A20°() + Bad(§)V R+ $2(0)
(&) + pa/ R+ () +1  (1o(§) + pay/ R+ ¢*(§) +1)°

(18)

V() =a

W(ﬁ) = Ay +

where ¢(€) satisfies Eq. (5).
With the aid of Maple, substituting Eq. (18) along with Eq. (5) into Eq. (17),
yields a set of algebraic equations for ¢*(£)(v/R + ¢2(€))? (i = 0,1,...,5 = 0,1).
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Setting the coefficients of these terms ¢'(£)(y/R + ¢2(£))? to zero yields a set of
over-determined algebraic equations with respect to ag, a1, b1, Ag, A1, B1 As, Bs,
Wi, po and k.

By use of the Maple soft package “Charsets” by Dongming Wang, which is based
on the Wu-elimination method,?° solving the over-determined algebraic equations,
we get the following results.

Here we just consider the condition R < 0.

Case 1.

1
k:k7 M1:0, H2 = p2, (J,O:—)\7 alzig\/gka

1 1
blzig,/3—3u§Rk, Ao:—ngR, A =0, (19)
1 1 1
By = Zus RE? Ay = —Zk2 By = +=V3k%*\/3 — 312R.
1 3M2R , 2 35 2 9\/_ 15

2 +kpuoR — A\/3 — 3u3R
By = —/,LQRk2, ag = i K2 M1 = ai :Al :BQZOa

3 B V3= 312R
2 K2R(—1+ 213R)
- k=k, b —+2/3-3.2Rk, Aj=—— 2% (20)
M2 M2, 3 1 3 253 ) 0 3(_1+,U§R) 9
2
A2 - —§k2
Case 3

2
k=k, 1= P, p2 =by =By =By =0, aozig\/gkRul—)\,

:I:\/_( iR+ 1)k, Ag = —+

~(BR+ IR, (21)

2
A = gulez(lﬁRﬂLl)’ Az = —§k2(M%R+1)2-
Case 4.

k=k, M1 = p1, ag = —A, 2 =ay =By =By =0,

— 2 2 _ 2
by _igw/3u1R+3k, Ao _——Rk (2uiR+1), (22)

4
Av= SRR+ DE - Ar = ——kz(u R+1)%.
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Case 5.

1 1
:i—\/§k2\/3ulR+3u1R p2e =0,  ap :jzgx/gkRul -
1 1
=+= \F( IR+ 1)k, Aoz—ngR(u%RH), by =+ ,/3H1R+3k

Ay = §k2Ru1(u§R+l), k=k, M1 = p1 Az =—§k2(M%R+1)2,

1
= i§\/§k2\/3ulR+ 3(WR+1).

(23)
Case 6
= +1, po = +1, aoziéx/gkR—)\7 blzj:%\/gk,
E*R(1 + R?) ARK?
=0 k=k Ag=—" "7 Ay =—— ™
a1 3 ) 0 3(—1+R) ) 1 3(—1+R)’ (24)
2 2 2
Bi=— kR(1+R)’ Ay = k(1+R)’ B, = ARK
3(-1+R) 3(-1+R) 3(-1+R)
Case 7.
k=k, pr = +1, o = +1, aoziéx/gkR—)\7
1 kE*R(1 + R) 1
=+-(1+ R)kV3 Ayg=—" """ by = +=(14+ R)kV3
o =3 RRVE, Ao 51w 0 A0 V3,
2k?R(1 + R) 2k?R(1 + R) k(1 + R)?
Alz_ia 31:_77 A2:77
3(-1+R) 3(-1+R) 3(-1+R)
k*(1+ R)?
By=——~— """
3(-1+R)
(25)
Case 8.
= +1, o = +1, aozil\/ﬁkR—A7 alzj:%(l—&—R)k\/ﬁ,
1 2
k=k, =4- f( 14+ R)k, Aoz—ngR, A1=§k2R, (26)

1
By =0, Ay= —§k2(1 +R), By = —ng(—1 +R).

From Egs. (17), (18) and Cases 1-8, we obtain the following solutions for
Eq. (16).

Family 1

\/—k\/_tanh(\/—g + /3 — 3u2 Rkv/— Rsech(v/—R¢)
3(1 + ipav/— Rsech(v/—R)) 7

v = —A

(27a)
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w :—lk2R:t ipz Rk*v/—Rsech(y/—RE)
T3 3(1 + ipav/— R sech(v/—R¢€))

N E?Rtanh?(v—RE) + ik?\/1 — p2RR tanh(v/—RE) sech(v/—RE)

3(1 + ipn/— Rsech(v/—R¢))?2 - (27D)
_ V3kv/—=Rcoth(v/—R¢) + /3 — 3u2 Rkv/— R csch(v/—R¢) (280)
2 3(1 £+ pav/—Resch(v/—RE)) ’ :
e —leR n w2 Rk?v/— R csch(v/—RE)
273 3(1 =+ pov/—R csch(v/—RE))
N k2R coth?(vV—RE) + k2\/1 — p2RR coth(v/—RE) csch(v/—RE) (28b)
3(1 £ p2v/—Resch(v/—RE))? ’
where £ = k(z + At), R <0, uo, k and A are arbitrary constants.
Family 2.
+husR — A\\/3 — 3u3R L 23— 3u3 Rkv/— R sech(v/—R¢) (20a)

= /3_3,2R 3(1 + ifrav/—Rsech(V—RE))
i1 Rk?y/— R sech(v/—RE) N 2Rk? tanh®(v/—R¢)

wa = Aot 3(1 % ipav/—Rsech(v—RE))  3(1 £ ipav/—Rsech(v—RE))?
(29b)
_ dhpaR— A\/3 - 3u3R n 21/3 — 3u3 Rkv/— R csch(v/—R¢) (302)
" /3 - 32R 3(1+ piov/—Resch(V_RE))
_ 4 2wBKV"Resch(V—R¢) | 2RK coth?(vV=R¢)
22 = A0 30 % pov/—Resch(vV—RE)) | 3(1+ pav/—Resch(v—Re))?
(30D)

where £ = k(x+ At), Ap is determined by Eq. (20), R < 0, p2, k and X are arbitrary
constants.

Family 3.
2 _ _
vt — igﬁk}%m a4 2v/3(u3 R + 1)kv/— R tanh(v/—R¢) ’ (31a)
3 3(—p1vV/—Rtanh(v/—RE) + 1)
2 2,32 _ _
wsy = —z(u%R—&— 1)k2R — 4(k*Ruy + k*pi R?)v/—Rtanh(v/—RE)
3 3(—p1v—Rtanh(v/—RE) + 1)
(2k2ut R? 4 4k>Ryi3 + 2k?) Rtanh? (v —R¢) (31b)

3(—p1vV/—Rtanh(v/—RE) + 1)2
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2v/3(u2 R + 1)kv/— R coth(v/—R¢)
3(—p1vV/—Rcoth(v/—RE) +1)
4(k?Rpuy + k2p3 R?)\/—R coth(v/—R¢)
3(—pmv/—=Rcoth(v—R¢) +1)
(2k2 i R? + 4K* Ry + 2k?) R coth®(v/—RE)
3(—p1v/—Rcoth(v/—RE) +1)2 ’

where £ = k(z + At), R <0, u1, k and A are arbitrary constants.

2
v3g = igx/gkRm = (32a)

2
w3y = —g(;ﬁ{R +1)k*R —

(32b)

Family 4.
vt — %k 2i\/3u2 R + 3kv/—Rsech(v/—R¢)
" 3(—p1vV/—Rtanh(v/—RE) +1)
4R(u3IR + 1)k? 1/~ R tanh(v/—RE)
3(—p1v/—Rtanh(yv/—RE) + 1)
(2k2ui R? + 4k*Rp? + 2k?) R tanh®(v/—RE)
3(—p1v/—Rtanh(v/—RE) +1)2 ’

(33a)

1
wyy = —ng2(2u§R+ 1) —

(33b)

2/3u3R + 3k\/— R csch(v/—R¢)
3(—pmV—Rcoth(V—RE) +1)

AR(p3R + 1)k? 11 v/ = R coth(v—R¢)
3(—p1vV/—Rcoth(v/—RE) + 1)

(2K?pi R? + 4k° Ry? + 2k%) R coth® (v~ R¢)
3(—p1v—Rcoth(v/—RE) + 1)? ’

where £ = k(z + At), R <0, u1, k and \ are arbitrary constants.

42 = —A =L

(34a)

1
Way = —ng2(2/ﬁR+ 1) —

(34b)

Family 5.

V3(p2R + 1)kv/—Rtanh(v—RE) +i\/3u3R + k\/—Rsech(\/—g)
3(—p1v/—Rtanh(v/—RE) + 1)

VUs1 = Qo +

(35a)

2(k2u3 R? + k2 Rpp )/ — R tanh(v/— RE)
ws1 = Ao —  +ik?\/p?R + 1py Rv/—Rsech(v/—RE)
3(—p1v/—Rtanh(v/—RE) + 1)

E?(uiR? + 2Ru? + 1) Rtanh?(v/—R¢)
+ +ik?(p2R + 1)3/2 R tanh(v/—RE) sech(v/—RE) (35b)
(—p1vV/—Rtanh(y/—RE) + 1)2 ’
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V3(u2R + 1)kv/—Rcoth(v/—RE) + /3uR + k\/—Rcsch(\/—g)
3(—p1v/—Rcoth(v/—RE) + 1)

Vs = Qg +

(36a)

2(k2u3 R? + k2 Ry )v/— R coth(v/— RE)
wsz = Ag — +k2\/u?R + 1y RvV/—Rcsch(v/—RE)
3(—p1v/—Rcoth(v/—RE¢) + 1)

E?(uiR? + 2Ru? + 1) R coth?(vV—R¢)
+ +k%(u32 R + 1)%/2R coth(v/—R¢) csch(\/_ﬁ) (36Db)
(—p1v/=Rcoth(v/=RE) +1)?

where £ = k(z + At), ap and Ay are determined by Eq. (23), R < 0, u1, k and A
are arbitrary constants.

Family 6.

2iv/3ky/— R sech(v/—R¢)
3(+v/—Rtanh(v/—R¢) + iv/—Rsech(v—R¢) + 1)

1
Vg1 = i§\/§kR = (37a)

k2R(1 + R?) N 4Rk?y/—Rtanh(v/—R¢) £ 2ik?R(1 + R)v/— Rsech(v/—R¢)
3(R—1) 3(R — 1)(£v—Rtanh(v/—R¢) +iy/—Rsech(v/—R¢) + 1)

_ 2K°R(1+R) tanh?(vV—R¢) + 4ik?R? tanh(yv/—RE) sech(v/—RE)

We1 =

3(R — 1)(+v—Rtanh(v/—RE) £ iv/—Rsech(v—R¢) +1)2 (37b)
4l _ 2v/3kv/— R csch(v/—R¢) .
Ver = £ VBER — A+ 3(+£v—Rcoth(v—RE) + iv/—Resch(vV—RE) + 1) (38a)

kE’R(1 + R?) N 4Rk?\/—Rcoth(v/—R¢) £ 2k2R(1 4+ R)v/— R csch(y/—R¢)
3(R—1) 3(R — 1)(£v/—Rcoth(v/—R¢) £ vV/—Rcesch(v/—RE) + 1)

_ 2K°R(1+R) coth?(vV=R¢) + 4k?R? coth(y/—RE) csch(yv/—R¢)
3(R — 1)(v/—Rcoth(v—R¢) + V—Resch(v—RE) +1)2

where € = k(z + At), R <0, k and X are arbitrary constants.

We2 =

(38b)

Family 7.

(v/3k + V/3kR)v/—Rtanh(v/—R¢) £ i(1 + R)kv/3v/—Rsech(v/—R¢)
3(£v/—Rtanh(v/—R¢) + i/~ Rsech(v/—RE¢) + 1)

V71 = Qo +

(39a)
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2k2R(1 + R)v/—Rtanh(v—RE) + 2ik2R(1 + R)v/—Rsech(v/—Rf)
3(R — 1)(+v/—Rtanh(v/—RE) + iv/—Rsech(v/—RE) + 1)

k?(1 + R)?Rtanh®(v/—RE¢) £ ik?(1 + R)?Rtanh(yv/—RE) sech(v/—RE)
a 3(R — 1)(£v/—Rtanh(v—RE) £ iv/—Rsech(v—RE) + 1)2

wr = Ao

(39h)

(vV/3k 4+ V/3kR)v/—R coth(v/—RE) £ (1 + R)kv/3v/—R csch(v/—R¢)
3(£v—Rcoth(v/—R¢) + vV/—Rcsch(v—RE) + 1)

V7o = Qo +

(40a)

2k2R(1 4+ R)v/—Rcoth(v/—R¢) + 2k?R(1 + R)y/—Rcsch(v/—R¢)
3(R — 1)(£v/—Rcoth(v—R¢) £ v—Rcesch(v/—RE) + 1)

k(14 R)*Rcoth?(V=R{) + k(1 + R)?Rcoth(v/=R{) csch(v—=R{)

3(R — 1)(£v—Rcoth(v/—R¢) £ v/—Rcsch(v/—RE) +1)2 ’

wrz = Ag

(40b)
where £ = k(x + At), ap and Ay are determined by Eq. (25), R < 0, k and A are
arbitrary constants.

Family 8.

(1+ R)kv/3yv/—Rtanh(v/—R¢) +iv3(—1 4+ R)ky/—Rsech(y/—R¢)
3(+£v/—Rtanh(v/—R¢) + i/~ Rsech(v/—RE¢) + 1)

Vg1 = Qg +
(41a)
T —leR B 2k%2Rv/— R tanh(v/— R¢)
o1 3 3(£v—Rtanh(v/—RE¢) 4 iy/— Rsech(v/—R¢) + 1)

+(k2R+k2)Rtanh2(\/_§)ﬁ:z(k2R k2)Rtanh(\/—§)sech(\/—§)
3(£v—Rtanh(yv/—R¢) 4 i/~ Rsech(yv/—RE) + 1)2

(41b)
. (14 R)kv3vV—Rcoth(v—R¢) + v3(—1 + R)kv/—Rcsch(v/—R¢)
fe2 =0 3(tv/— R coth(v—T¢) £ v—Rosch(v—F¢) + 1)
(42a)
- _lkgR 2k2Rv/— R coth(y/—R¢)

3  3(tv—Rcoth(v—R¢) + vV—Resch(vV—RE) + 1)

N (kR + k?)R coth®(vV—R¢) + (k*R — k?) R coth(v/—R¢€) csch(v/—R¢)
3(£v—Rcoth(v/—R¢) + v/—Resch(v/—RE) +1)2 ’

(42D)
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where & = k(z + At), ao is determined by Eq. (26), R < 0, k and A are arbitrary
constants.

4. Summary and Conclusions

Based on the RERE method and symbolic computation, we obtain many types of
solutions including rational form solitary wave solutions, triangular periodic wave
solutions and rational wave solutions for (1 + 1)-DLWE. The success of the RERE
method lies in the fact one circumvents integration to get explicit solutions based
on the fact that soliton solutions are essentially of a localized nature. Writing the
soliton solutions of a nonlinear equation as the polynomials of auxiliary variables of
the Riccati equation, the equation can changed into a nonlinear system of algebraic
equations. The system can be solved with help of symbolic computation.
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