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a b s t r a c t

The rogue wave and a pair of resonance stripe solitons to KP equation are discovered. First,
based on the bilinearmethod, some lump solutions are obtained containing six parameters,
four of which must cater to the non-zero conditions so as to insure the solution analytic
and rationally localized. Second, a one-stripe-soliton-lump solution is presented and the
interaction shows that the lump soliton can be drowned or swallowed by the stripe soliton,
conversely, the lump soliton is spit out from the stripe soliton. Finally, a new ansatz of
combination of positive quadratic functions and hyperbolic functions is introduced, and
thus a novel nonlinear phenomenon is explored. It is interesting that a rogue wave can
be excited. It is observed that the rogue wave, possessing a peak wave profile, arises from
one of the resonance stripe solitons, moves to the other, and then disappears. Therefore,
a rogue wave can be generated by the interaction between the lump soliton and the pair
of resonance stripe solitons. However, compared with classic rouge wave, the dynamics of
above nonlinear waves are quite different, which are graphically demonstrated.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In 1964, Draper wrote ‘‘Stories abound of monstrous waves; every sailor has his tale of how a great wave arose from
nowhere and hit his ship leaving a trail of damaged lifeboats and shattered crockery’’ in his paper titled ‘‘Freakocean
waves’’ [1]. Thereafter, a great number of marine disasters aroused by rouge waves are reported in the following decades
[2–4]. Rogue waves are large and spontaneous ocean surface waves that occur in the sea and are a threat even to large ships
and ocean liners [5]. Recently, rogue wave phenomena have become one of the most active and important research areas on
both experimental observations and theoretical analysis, since they exist not only in ocean but also in various other fields,
such as optics [6], atmosphere [7], Bose–Einstein condensates [8], superfluid [9], capillary flow [10] and even finance [11].
However, due to the complexity of the geographical environment and the limitations of observation instruments, it is difficult
to lucubrate the rogue wave in the ocean. Mathematically, scientists focus on investigating the dynamical properties and
mechanisms of the mysterious rogue wave via nonlinear partial differential equations. From the view point of mathematics,
rougewave solutions appear in the class of nonlinear Schrodinger (NLS) equation,while in Physics, they describe steepwaves
local both in time and space with their amplitudes more than triple times of the height of the background field. In 1983,
Peregrine first presented a simplest wave solution of the NLS equation by the famous inverse scattering method [12]. This
solution consists of secondorder rational polynomials and exponential functions, approaches a nonzero constant background
as time goes to positive and negative infinity, but develops a localized hump with its peak amplitude three times of the
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constant background during its lifetime. As can be easily seen, the evolution of the solution fits two basic characteristics of
a rogue wave: momentariness and steepness. With the successive appearance of rouge waves in different fields in recent
years, Peregrine soliton came into our sight again, acting as a rogue wave solution. Now, to investigate every kind of rouge
wave solution of nonlinear equations has become a focus issue for scientists working in different fields. For instance, inspired
by the work of Peregrine, people have great interests in the rogue wave solutions of the NLS equation and their dynamical
properties, in particular, whether the characteristic properties of the theoretical rogue wave solutions coincide with those
in the real physics experiments, the existence of high order rogue waves, and how to classify rogue waves. Akhmediev et al.
observed rogue waves in the wave tank in 2011 [13], and one year later, they obtained high order (up to the fifth order)
rogue waves experimentally. The results indicate that the characteristics of the rogue waves observed in the experiment
are in good agreement with the rational wave solutions. Consequently, it is not only experimentally proved the existence of
rogue waves and even high order rogue waves, but also illustrated that rogue waves in the real world can be well described
by analytic solutions. In 2013, Akhmediev gave a complete classification of the high order (up to the sixth order) roguewaves
of the NLS equation [14].

It is a natural thinking that apart from NLS type equations, whether other important mathematics physical equations,
especially integrable systems [15,16], for example the KP equation, have rogue wave solutions. Moreover, rogue waves have
been so far studied mostly in one dimensional, but in reality, ocean surface waves are in two dimensions. Therefore, one
has to investigate rogue waves in two dimensional nonlinear models [17], and even in more spatiotemporal dimensions.
Another thinking is that as for the methods to find a rogue wave solution, apart from the classic Darboux transformation,
can other methods famous for integrable systems be used to construct rogue wave solutions. The Hirota direct method was
successfully applied to describe the MRW solutions by Ohta and Yang [18,19]. In 2010, Dubard and Matveev discovered the
multi-roguewave (MRW) solutions,which can describe the famous Three Sisterwaves observed in ocean by higher Peregrine
breather and the new comprehension of (2+1)-dimensional rogue wave through the NLS-KP equation.

Based on the generalized DT, Wang and Chen derived a unified Nth-order rogue wave solution for the AB system
and discovered the ‘four-peak’ shaped rogue wave [20]. The AB system serves as model equations to describe marginally
unstable baroclinicwave packets in geophysical fluids [21] and ultra-short optical pulse propagation in nonlinear optics [22].
Meanwhile, two-dimensional dark, intermediate counterparts of rogue waves and even their interaction and superposition
were found for the two-dimensional coupled Yajima–Oikawa system by using the bilinear and KP hierarchy reduction
methods [23]. Apart from, the rogue wave in reduced Jimbo–Miwa equation and (2+1)-dimensional KdV equation are also
derived with the Hirota bilinear method [24–26].

In contrast, lump solution is a special kind of rational solution [27,28], rationally localized in all directions, while
rogue wave solution is a particularly interesting class of lump-like solutions. In 2002, Lou et al. studied the lump solution
with the variable separation method [29]. Recently, Ma proposed the positive quadratic function to obtain lump solution.
Special examples of lump solutions have been found, for the KPI equation [30–32], BKP equation [33], p-gKP and p-gBKP
equations [34] and Boussinesq equation [35]. In addition, collisions may happen among different solitons. There are two
kinds of collisions, either elastic or inelastic [36]. It is reported that lump solutions will keep their shapes, amplitudes,
velocities after the collision with other soliton solutions, which means that the collision is completely elastic [37]. However,
many collisions are completely inelastic [38]. For instance, Becker et al. studied the inelastic collision of solitary waves in
an isotropic Bose–Einstein condensates [39]; Tan discussed the rational breather wave swallowed by kink wave [40]; Tang
showed the lump solution drowned by a stripe solution [41]. Collisions will change essentially under different conditions.

In this paper, we construct the rogue wave to the KP equation [42]

(ut + h1uux + h2uxxx + h3ux)x + h4uyy + h5uzz = 0, (1)

It has a wide range of applications in plasma [43,44]. Based on the bilinear method, some lump solutions are presented in
Section 2, containing six parameters, which are analytical and rationally localized. In Section 3, the lump soliton and one
stripe soliton are presented and their interaction shows that the lump soliton can be drowned or swallowed by the stripe
soliton. We then extend the method proposed in [30] to a new combination of positive quadratic functions and hyperbolic
functions. It is very interesting that a novel nonlinear phenomenon: a rogue wave and a pair of resonance stripe solitons
is excited. It is observed that the rogue wave, possessing a peak wave profile, appears on one line of the resonance stripe
solitons, moves to the other, and then disappears. Therefore, a rogue wave is originated from the interaction between the
lump soliton and the pair of resonance stripe solitons. It should be pointed out that, besides some common characters, the
rogue waves presented in this paper have some different properties from the traditional rogue waves. Our results show that
a two-dimensional rogue wave, excited from two resonance stripe solitons, has a zero background, and as time flows, it
reaches its maximum amplitude, decays gradually and finally disappears, which can describe the ocean rogue wave more
essentially from the realistic and physical point of view. It is remarkable that the previously obtained two dimensional rogue
waves are actually line rogue waves, but rogue waves obtained here are localized in two dimensions.

2. Lump solution to KP equation

When h1 = −1, h2 = −
1
3 , h3 = 1, h4 = 1, h5 = −

2
3 , Eq. (1) becomes

(ut − uux −
1
3
uxxx + ux)x + uyy −

2
3
uzz = 0. (2)
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Fig. 1. (Color online) Plots of lump solution(8) with the parameters a1 = 1.5, a2 = 2.1, a4 = 0, a5 = −0.2, a6 = 0.8, a8 = 0, and (a) y = 0, (b) t = 0.

which can be converted into a bilinear with the transformation u = 4(ln f )xx,

(DxDt −
1
3
D4
x + D2

x + D2
y −

2
3
D2
z )f · f = 0, (3)

When z = x, Eq. (3) can be expanded as

(DxDt −
1
3
D4
x +

1
3
D2
x + D2

y)f · f

= 2fxt f − 2fxft −
2
3
fxxxxf +

8
3
fxxxfx − 2f 2xx +

2
3
fxxf −

2
3
f 2x + 2fyyf − 2f 2y .

(4)

Assume

f = g2
+ h2

+ a9, g = a1x + a2y + a3t + a4, h = a5x + a6y + a7t + a8, (5)

where ai, (i = 1, 2, . . . , 9) are parameters to be determined. By substituting f into Eq. (4), with a direct calculation, these
parameters can be expressed:⎧⎪⎪⎪⎨⎪⎪⎪⎩

a3 =
−a31 + (3a26 − a25 − 3a22)a1 − 6a5a6a2

3a25 + 3a21
, a9 =

(a21 + a25)
3

(a1a6 − a2a5)2
,

a7 =
−a35 + (3a22 − a21 − 3a26)a5 − 6a1a6a2

3a25 + 3a21
,

(6)

with the conditions

a1a5 ̸= 0 and a1a6 − a2a5 ̸= 0 (7)

in order to insure f analytical and positive.
Consequently, the solution of u can be written, through the transformation u = 4(ln f )xx as

u =
8(a21 + a25)

(a1x + a2y + a3t + a4)2 + (a5x + a6y + a7t + a8)2 + a9

−
16((a1x + a2y + a3t + a4)a1 + (a5x + a6y + a7t + a8)a5)2

((a1x + a2y + a3t + a4)2 + (a5x + a6y + a7t + a8)2 + a9)2
.

(8)

Which describes lump waves, as shown in Figs. 1 and 2 with a particular parameter value.

3. The interaction between lump soliton and one stripe soliton

In this section, assume f as a combination of two positive quadratic functions and one exponential function, that is,

f1 = m2
1 + n2

1 + l1 + a9, (9)

where

m1 = a1x + a2y + a3t + a4, n1 = a5x + a6y + a7t + a8, l1 = kek1x+k2y+k3t .
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Fig. 2. (Color online) Corresponding density plots of the lump solutions in Fig. 1.

Substitute Eq. (9) into Eq. (4), the parameters in (9) are calculated as follows:

a2 =
a1k2 ∓ a5k21

k1
, a3 =

3a1k41 ± 6a5k21k2 − a1k21 − 3a1k22
k21

, a6 =
a5k2 ± a1k21

k1
,

a7 =
3a5k41 ∓ 6a1k21k2 − a5k21 − 3a5k22

3k21
, a9 =

a21 + a25
k21

, k3 =
k41 − k21 − 3k22

3k1
.

(10)

With the lower sign is needed in the following analysis.
Based on the transformation u = 4(ln f1)xx, the solution of Eq. (4) in this case reads

u =
4(2a21 + 2a25 + k21l)

f1
−

4(2a1m + 2a5n + k1l)2

f 21
, (11)

where

f1 = (a1x +
a1k2 + a5k21

k1
y +

3a1k41 − 6a5k21k2 − a1k21 − 3a1k22
k21

t + a4)2 + kek1x+k2y+
k41−k21−3k22

3k1
t

+ (a5x +
a5k2 − a1k21

k1
y +

3a5k41 + 6a1k21k2 − a5k21 − 3a5k22
3k21

t + a8)2 +
a21 + a25

k21
,

m1 = a1x +
a1k2 + a5k21

k1
y +

3a1k41 − 6a5k21k2 − a1k21 − 3a1k22
k21

t + a4,

n1 = a5x +
a5k2 − a1k21

k1
y +

3a5k41 + 6a1k21k2 − a5k21 − 3a5k22
3k21

t + a8,

l1 = kek1x+k2y+
k41−k21−3k22

3k1
t
.

By choosing appropriate values of these parameters, collisions between the lump soliton and one stripe soliton are shown
in Figs. 3 and 4:

It is observed from Fig. 4(a) that, lump soliton is separated with the stripe soliton, when t goes to 0, the lump soliton
begins to be swallowed by the stripe solitonwith its energy transferring into the stripe soliton gradually, until it is completely
swallowed by the stripe soliton, when two kinds of solitons roll into one.

Next we give the detailed description about the collision. When choosing a1 =
4
5 , a4 = 0, a5 =

6
5 , a8 = 0, k = 2, k1 =

−3, k2 = 0, then the solution of Eq. (11) is changed into

u =
4
( 104

25 + 18e−3x−8t
)( 4

5x −
18
5 y +

104
15 t

)2
+

( 6
5x +

12
5 y +

52
15 t

)2
+ 2e−3x−8t +

52
225

−
4
( 104

25 x +
2704
75 t − 6e−3x−8t

)2(( 4
5x −

18
5 y +

104
15 t

)2
+

( 6
5x +

12
5 y +

52
15 t

)2
+ 2e−3x−8t +

52
225

)2 , (12)
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Fig. 3. (Color online) Evolutional plots of Eq. (11) by choosing a1 =
4
5 , a4 = 0, a5 =

6
5 , a8 = 0, k = 2, k1 = −3, k2 = 0, at times (a) t = −

2
5 , (one stripe

soliton and lump soliton), (b) t = 0, (lump soliton and stripe soliton begin to collide) and (c) t =
3
2 , (lump soliton is swallowed by the stripe soliton).

Fig. 4. (Color online) Corresponding density plots of the collision between lump and stripe soliton as shown in Fig. 3.

the speed of the stripe soliton is vs =
−8
3 and the speed of the lump soliton is vl = −

26
3 , the speed of vl is faster than the vs

and their directions are all along the negative x axis and the speed along the y axis is zero. So we can discuss the collision
under y = 0. Before the collision, such as t = −

2
5 , then Eq. (12) is changed into

u =

70200
(
16875e−3x+ 16

5 x2 − 94500xe−3x+ 16
5 − 3900x2 + 130425e−3x+ 16

5 + 27040x − 46436
)

(
5850x2 + 5625e−3x+ 16

5 − 40560x + 70954
)2

then the amplitude to stripe soliton is u = 5.3555 at x = 0.18579 and the amplitude to lump soliton is u = 71.7690
atx = 3.46756. After the collision, such as t =

3
2 , then Eq. (12) is changed into

u = 936

(
2025e−3x−12x2 + 55350xe−3x−12

− 468x2 + 378000e−3x−12
− 12168x − 79040

)(
234x2 + 225e−3x−12 + 6084x + 39572

)2
then the amplitude of this solution is u = 10.5705 at x = −5.374, so it is obvious that the amplitude of lump soliton is much
larger than the stripe soliton before the collision but its amplitude decreases rapidly after the collision until it is swallowed
by the stripe soliton completely. Then the common speed is the speed of the stripe soliton vc =

8
3 . The evolution dynamics

behavior is shown in Fig. 5.
In return, choosing an opposite propagation speed of the stripe soliton, then one can see that the lump soliton is not

visible, and as times goes on, lump soliton appears and then separates from the stripe soliton finally (see Fig. 6 and Fig. 7).
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Fig. 5. The evolutional plots of Eq. (11) by choosing y = 0.

Fig. 6. (Color online) Evolution plots of Eq. (11) by choosing a1 = 0.8, a4 = 0, a5 = 1.2, a8 = 0, k = 2, k1 = 3, k2 = 0, at times (a) t = −1.5, (only one
stripe), (b) t = 0, (a lump soliton appears) and (c) t = 0.4, (the lump soliton gets away the stripe soliton).

Fig. 7. (Color online) Corresponding density plots of Fig. 6.
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4. Rogue wave and a pair of resonance solitons

Now, take f as the combination of the positive quadratic functions and two exponential functions inspired from the
N-soliton solutions of bilinear form, that is,

f2 = m2
2 + n2

2 + kg2 + k4h2 + k8g2h2, (13)

where

m2 = a1x + a2y + a3t + a4, n2 = a5x + a6y + a7t + a8, g2 = ek1x+k2y+k3t , h2 = ek5x+k6y+k7t .

Substituting Eq. (13) into Eq. (5), we can get 7 classes of solutions of the parameters:

(1) a1 =
a6
k1

, a3 = −
3a22k

2
1 − 3a26k

2
1 + a26

3k1a6
, a7 = −2a2k1, a9 =

a26
k41

, k2 =
a2k21
a6

,

k6 =
a2k21
a6

, k8 = 0

(2) a1 = −
a6
k1

, a3 =
3a22k

2
1 − 3a26k

2
1 + a26

3k1a6
, a7 = 2a2k1, a9 =

a26
k41

, k2 = −
a2k21
a6

,

k6 = −
a2k21
a6

, k8 = 0

(3) a21 + 3a22 − 3a26 = 0, a3 = 0, a7 = −
2a6a2
a1

, a9 =
9(a42 − 2a22a

2
6 + a46)

a26
, k5 = −k1,

k21a
2
1 − 1 = 0, k2 =

a2k1a6
a1

, k =
9k8(a22 − a26)

2

a26k4
, k6 = −k2

(4) a3 =
3a21k

2
5 − a21 − 3a22

3a1
, a6 = −k21, a7 = −2a2k5, a9 =

a21
k25

, k =
a21k8
k25k4

, k1 = −k5,

k2 = −
a2k5
a1

, k6 =
a2k5
a1

,

(5) a3 =
3a21k

2
5 − a21 − 3a22

3a1
, a6 = −k5k1, a7 = 2a2k5, a9 =

a21
k25

, k =
a21k8
k25k4

, k1 = −k5,

k2 = −
a2k5
a1

, k2 = −k6,

(6) a1 = −
a6
k1

, a3 =
3a22k

2
1 − 3a26k

2
1 + a26

3k1a6
, a4 =

2a6
k21

, a7 = 2a2k1, a9 =
a26
k41

, k2 = −
a2k21
a6

,

k1 = −k5, k6 = −k2, k =
a26k8
k41k4

,

(7) a1 =
a6
k1

, a3 = −
3a22k

2
1 − 3a26k

2
1 + a26

3k1a6
, a4 = −

2a6
k21

, a7 = −2a2k1, a9 =
a26
k41

, k2 =
a2k21
a6

,

k1 = −k5, k6 = −k2, k =
a26k8
k41k4

.

It is found that the above 7 classes of solutions can change the exponential functions into a hyperbolic cosine function. So
we reinstall f as follows:

f3 = m2
3 + n2

3 + k cosh(k1x + k2y + k3t) + a9, (14)

where

m3 = a1x + a2y + a3t + a4, n3 = a5x + a6y + a7t + a8,
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and, substituting Eq. (14) into Eq. (4) leads to the following relation:

a6 =
a2a5 ± a21k1 ± a25k1

a1
, a9 =

k2k41 + 4a41 + 8a21a
2
5 + 4a45

4k21(a
2
1 + a25)

, k2 =
k1(a2 ± a5k1)

a1
,

k3 =
k1(a21k

2
1 − 3a25k

2
1 ∓ 6a2a5k1 − a21 − 3a22)

3a21
, a3 =

3a21k
2
1 + 3a25k

2
1 − a21 − 3a22

3a1
,

a7 = −
3a21a5k

2
1 + 3a35k

2
1 ± 6a21a2k1 ± 6a2a25k1 + a21a5 + 3a22a5

3a21

(15)

Since these two classes of solutions are similar, we only choose one of it, then the final solution of u can be written as

u =
4(2a21 + 2a25 + k cosh(k1x + k2y + k3t)k21)

f3

− 4
(2a1m3 + 2a5n3 + kk1 sinh(k1x + k2y + k3t))2

f 23
,

(16)

where

f3 = (a1x + a2y +
3a21k

2
1 + 3a25k

2
1 − a21 − 3a22

3a1
t + a4)2 +

k2k41 + 4a41 + 8a21a
2
5 + 4a45

4k21(a
2
1 + a25)

+ (a5x +
a21k1 + a25k1 + a2a5

a1
y −

3a21a5k
2
1 + 3a35k

2
1 + 6a21a2k1 + 6a2a25k1 + a21a5 + 3a22a5

3a21
t + a8)2

+ k cosh(k1x +
k1(a5k1 + a2)

a1
y +

k1(a21k
2
1 − 3a25k

2
1 − 6a2a5k1 − a21 − 3a22)

3a21
t),

n3 = a5x +
a21k1 + a25k1 + a2a5

a1
y −

3a21a5k
2
1 + 3a35k

2
1 + 6a21a2k1 + 6a2a25k1 + a21a5 + 3a22a5

3a21
t + a8,

m3 = a1x + a2y +
3a21k

2
1 + 3a25k

2
1 − a21 − 3a22

3a1
t + a4.

According to the expressions of f3, n3,m3, the asymptotic property of the lump solution and a pair of resonance solitons are
analyzed. Taking

ξ1 = m3, ξ2 = n3, ξ3 = k1x +
k1(a5k1 + a2)

a1
y +

k1(a21k
2
1 − 3a25k

2
1 − 6a2a5k1 − a21 − 3a22)

3a21
t,

it is proved that

lim
t=±∞

ξ 2
1

ξ 2
2

=
(3a21k

2
1 + 3a25k

2
1 − a21 − 3a22)

2a21
(3a21a5k

2
1 + 3a35k

2
1 + 6a21a2k1 + 6a2a25k1 + a21a5 + 3a22a5)2

.

Because as t → ±∞, ξ1, ξ2 are of the same order, we only need to compare ξ 2
2 and cosh ξ3. If ξ3 is supposed as a constant,

then ξ2 = ξ3
a5
k1

+ a1k1y −
4
3a5k

2
1t − 2a2k1t , one has

lim
t=±∞

ξ 2
2

cosh(ξ3)
= 0,

so we can come to a conclusion that when t → ±∞, there are only a pair of resonance solitons; when t is little, the lump
soliton is more clear, which can be seen in Fig. 8.

Fig. 8(a) depicts a pair of resonance solitons and the lump soliton is in a invisible place, similar to a ghoston, when
t = −0.8, the lump soliton appears gradually, which is born from one of the resonance stripe soliton. Because of the energy
conservation, the shapes of these two resonance solitons change at the same time. In the same location on one position
appears a lump soliton and on the other a sunk envelope. When t = 0, there exists a rogue wave, derived from the lump
soliton, located in themiddle of these two resonance solitons and linked themwith each other. Then the lump soliton begins
to transfer, until it attaches to the other stripe soliton successfully. Finally it goes out of our vision (see Fig. 9).

To show this whole progress more delicately, the sectional drawing and vertical views are exhibited in Figs. 10 and 11,
respectively. Obviously, the wave amplitude at t = 0 is about five times than that at t = ±3, and its appearing time is quite
short. In this sense, the lump solution can also be called rogue wave, which is aroused by the interaction between the lump
soliton and a pair of resonance solitons.
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Fig. 8. (Color online) Evolution plots of Eq. (16) by choosing a1 = 5, a2 = 2, a4 = 0, a5 = 2, a8 = 0, k = 1.8, k1 = 2.5, at times (a) t = −3, (b) t = −0.8,
(c) t = 0, (d) t = 0.8, (e) t = 3.

5. Conclusion

Based on the Hirota direct method and a new ansatz, the lump solution, the lump and one stripe soliton, and the
rogue wave and a pair of resonance stripe solitons are discovered for KP equation. The new ansatz is a combination of
positive quadratic functions and hyperbolic functions. However not every Eq. (1) has a lump soliton, for instance, when
h1 = h2 = h3 = h4 = h5 = 1, the bilinear form

(DxDt + D4
x + D2

x + D2
y + D2

z )f · f = 0. (17)

Then setting z = x and assuming f as (4), the quadratic function of f is determined to be

f = (a1x + a2y +
−a31 + (−2a25 − a22 + a26)a1 − 2a5a6a2

a21 + a25
+ a4)2 −

3(a21 + a25)
3

(a1a6 − a2a5)2

+ (a5x + a6y +
−a35 + (−2a21 − a26 + a22)a5 − 2a1a6a2

a21 + a25
)2.

It is evident that singularity cannot be avoided due to the second part of f is always negative, so lump soliton does not exist,
let alone its collision with other solitons.

Second, the collision between the lump soliton and one stripe soliton is presented in Figs. 3(c) and 6(c), respectively.With
the opposite of the stripe soliton, showing two different physics phenomena, fusion and fission. As for the fusion interaction,
at the beginning, the lump soliton keeps its shapes, energy, spreadingwith a steady rate, butwhen itmeets the stripe soliton,
it begins to be swallowed gradually until out of our horizon. But fission is an opposite interaction. At first, there is only one
stripe soliton, when t approximates zero, the lump soliton is born from the stripe soliton gradually until it separated from
the stripe soliton completely. Both progress will lose much more energy than the usual collision.

Third, it is observed that the rogue wave, possessing a peak wave profile, arises from one of the resonance stripe solitons,
moves to the other, and then disappears. Therefore, a roguewave is originated from the interaction between the lump soliton
and the pair of resonance stripe solitons. It should be pointed out that, besides some common characters, the rogue wave
presented in this paper has some different properties from the traditional rogue waves, which are stated as follows:

(1) Our results show that a two-dimensional rogue wave can be generated from two stripe solitons, as shown in Fig. 8.
Thewhole progress completely satisfies the character that ‘‘appear from nowhere and disappear without a trace’’. Moreover,
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Fig. 9. (Color online) Corresponding density plots of Fig. 8.

Fig. 10. Sectional views of Eq. (16), at times (a) t = −3 (green), (b) t = 3 (blue), (c) t = 0 (red), (d) is the whole profile at (a), (b) and (c). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

it demonstrates that two dimensional rogue wave, different from the one dimensional case, cannot appear independently,
as it can only be generated via solitary waves.

(2) It should be emphasized that the rogue wave studied in most references at present, for instance, the one dimensional
rogue wave, although localized in space and time, it has a nonzero (usually a constant) background. Consequently, it is hard
to be applied in real physics, such as in ocean. However, the rogue wave depicted in Fig. 8 has a zero background. That is
to say, a localized wave package appears as two resonance solitons with a zero background before interaction, reaches the
maximum amplitude (almost several times of the amplitude of the resonance soliton) during the interaction, then decays
gradually and disappears after the interaction.
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Fig. 11. (Color online) Vertical views of the Eq. (16), at times (a) t = −3, (b) t = 0 and (c) t = 3.

(3) It is remarkable that previously obtained solutions of two dimensional rogue waves are actually linear as they are
only local in one dimension along the characteristic line. However, the rogue wave expressed by Eq. (16) is localized in two
dimensions independently.

In addition, since the KP equation can describe the evolution of two dimensional water wave packets, these rogue-wave
solutions could have interesting implications for dynamics two dimensional water waves.
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