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a b s t r a c t

Based on Hirota bilinear method, N-solitons, breathers, lumps and rogue waves as exact
solutions of the (3+1)-dimensional nonlinear evolution equation are obtained. The impacts
of the parameters on these solutions are analyzed. The parameters can influence and
control the phase shifts, propagation directions, shapes and energies for these solutions.
The single-kink soliton solution and interactions of two and three-kink soliton overtaking
collisions of the Hirota bilinear equation are investigated in different planes. The breathers
in three dimensions possess different dynamics in different planes. Via a long wave limit of
breathers with indefinitely large periods, rogue waves are obtained and localized in time.
It is shown that the rogue wave possess a growing and decaying line profile that arises
fromanonconstant background and then retreat back to the samenonconstant background
again. The results can be used to illustrate the interactions ofwaterwaves in shallowwater.
Moreover, figures are given out to show the properties of the explicit analytic solutions.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

With the rapid development of science and computer technology, the human cognition and research object gradually
went from linear models to nonlinear models. As one of the three branches of nonlinear science, the theory of solitons has
become an important research field of nonlinear science and has aroused great interests. These nonlinearmodels are applied
to many fields, such as fluid, plasma, nonlinear optics, biologic nerve propagation, atmospheric science, marine science and
so on. To find exact solutions of nonlinear systems is a difficult and tedious but very important and meaningful work. So
far, several effective methods have been established by mathematicians and physicists to obtain exact solutions of soliton
equations, such as the Inverse Scattering transformation (IST) [1], Darboux transformation (DT) [2,3], Painlevé analysis [4,5],
Hirota bilinear method [6,7], Bäcklund transformation (BT) [8], Lie symmetry method [9–11] and so on.

Recently, the study of breathers, lumps and rogue waves has attracted more and more attention in the nonlinear fields.
Solitons, breathers, lumps, and rogue waves are different types of nonlinear localized waves and are key objects in nonlinear
physical systems such as nonlinear optics, bio-physics, plasmas, cold atoms, and Bose–Einstein condensates. Solitons are
the stable waves, while rogue waves and breathers are localized structures on a background with unstable characteristics.
Breathers [12–16] are regarded as the crucial prototypes to explain rogue wave phenomena and are the localized breathing
waves with a periodic profile in a certain direction. As a kind of rational function solutions, lumps [17–22] are localized
in all directions in the space, lump-type [23,24] solutions are localized in almost all directions in the space. Rogue waves
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[25–33] are localized in both space and time, and appear from nowhere and disappear without a trace [34], have taken the
responsibility for numerous marine disasters.

In this paper, we focus on N-solitons, breathers, lumps and rogue wave solutions of the following (3 + 1)-dimensional
nonlinear evolution equation (NLEE) [35–39]

uyt − uxxxy − 3(uxuy)x − 3uxx + 3uzz = 0, (1)

whichwas first proposed in [36] by using amultivariate polynomial. Based on the bilinear form, Lü andMa [37] have obtained
lump solutions by two types of dimensional reductions and given the sufficient and necessary conditions to guarantee
analyticity and rational localization of the solutions. For the (3 + 1)-dimensional NLEE (1), only multiple wave solutions,
lump solutions have been investigated. It is important to study other rational solutions to Eq. (1). Via the method used
in [40], we will report some new localized wave solutions of the (3 + 1)-dimensional NLEE.

The paper is organized as follows. In Section 2, based on Hirota bilinear method, one, two and three-soliton solutions are
obtained, even derived the formofN-soliton solution. In Section 3, upon choosing appropriate parameters on the two-soliton
solution, the line breathers are derived and their dynamical behaviors are shown under different planes and parameters. In
Section 4, via a longwave limit of breathers, localized rational solutions are proposed. Bymodifying the internal parameters,
the line rogue waves and the lumps are derived from the rational solutions. The last section contains a short summary and
discussion.

2. The soliton solutions

By using a dependent variable transformation

u = 2[ln f (x, y, z, t)]x = 2
fx(x, y, z, t)
f (x, y, z, t)

, (2)

Eq. (1) can be mapped into

(DtDy − D3
xDy − 3D2

x + 3D2
z )(f · f ) = 0, (3)

that is

2[ffty − fyft + fxxxfy − ffxxxy + 3fxfxxy − 3fxxfxy − 3(ffxx − f 2x ) + 3(ffzz − f 2z )] = 0, (4)

where f = f (x, y, z, t), and the derivatives DtDy,D3
xDy,D2

x and D2
z are all the bilinear derivative operators [6] defined by

Dα
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β
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γ
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δ
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∂x
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∂x′
)α(

∂

∂y
−

∂

∂y′
)β (
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)γ (

∂
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−

∂

∂t ′
)δ f (x, y, z, t)g(x′, y′, z ′, t ′)|x′=x,y′=y,z′=z,t ′=t . (5)

It is clear that if f solves Eq. (4), then u = u(x, y, z, t) is a solution of Eq. (1) through the transformation (2).

2.1. The 1-soliton solution

To search for one-soliton solution of the (3 + 1)-dimensional NLEE in Eq. (1), assuming f in the following form

f = 1 + eη1 , (6)

where

η1 = k1(x + p1y + q1z + ω1t) + η0
1, (7)

with k1, p1, q1, and η0
1 are arbitrary constants.

Substituting Eq. (6) with Eq. (7) into Eq. (3), andmaking the coefficients of all exponential functions to zero, we can obtain

ω1 = k21 +
3(1 − q21)

p1
. (8)

Then substituting Eqs. (6)–(8) into Eq. (2), the one-soliton solution of Eq. (1) can be obtained.
If setting k1 = 2, p1 = 1, q1 = 1, η0

1 = 0, we can obtain one-kink soliton solution and give the wave shape in different
planes, which is shown in Fig. 1.

2.2. The 2-soliton solution

To search for two-soliton solution of the (3 + 1)-dimensional NLEE in Eq. (1), assuming f in the following form

f = 1 + eη1 + eη2 + A12eη1+η2 , (9)
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Fig. 1. The one-kink soliton solution for Eq. (1) by choosing suitable parameters: k1 = 2, p1 = 1, q1 = 1, η0
1 = 0. (a) y = 0, z = 0; (b) x = 0, z = 0;

(c) z = 0, t = 0.

where

ηi = ki(x + piy + qiz + ωit) + η0
i (i = 1, 2), (10)

with ki, pi, qi and η0
i are arbitrary constants.

Substituting Eq. (9) with Eq. (10) into Eq. (3), and making the coefficients of all exponential functions to zero, we can
obtain

ωi = k2i +
3(1 − q2i )

pi
(i = 1, 2),

A12 =
p1p2(k1 − k2)(k1p1 − k2p2) + (p1q2 − p2q1)2 − (p1 − p2)2

p1p2(k1 + k2)(k1p1 + k2p2) + (p1q2 − p2q1)2 − (p1 − p2)2
.

(11)

Then substituting Eqs. (9)–(11) into Eq. (2), the two-soliton solution of Eq. (1) can be obtained.
If setting k1 = 2, p1 = 1, q1 = 2, k2 = 3, p2 = 2, q2 = 1, and η0

1 = η0
2 = 0, we can obtain a two-kink solution and give

the wave shape in different planes, which is shown in Fig. 2.

2.3. The 3-soliton solution

For three-soliton solution of the (3 + 1)-dimensional NLEE in Eq. (1), assuming f in the following form

f = 1 + eη1 + eη2 + eη3 + A12eη1+η2 + A23eη2+η3 + A13eη1+η3 + A123eη1+η2+η3 , (12)

where

ηi = ki(x + piy + qiz + ωit) + η0
i (i = 1, 2, 3), (13)

with ki, pi, qi and η0
i are arbitrary constants.

Based on above method, substituting Eq. (12) with Eq. (13) into Eq. (3), we can obtain

ωi = k2i +
3(1 − q2i )

pi
,

Aij =
pipj(ki − kj)(kipi − kjpj) + (piqj − pjqi)2 − (pi − pj)2

pipj(ki + kj)(kipi + kjpj) + (piqj − pjqi)2 − (pi − pj)2
(i = 1, 2, 3),

A12A23A13 = A123.

(14)

Then substituting Eqs. (12)–(14) into Eq. (2), the three-soliton solution of Eq. (1) can be obtained.
If setting k1 = 1.6, p1 = 1.2, q1 = 2, k2 = 2.1, p2 = 2.3, q2 = 1, k3 = 1.3, p3 = 3.3, q3 = 2 and η0

1 = η0
2 = η0

3 = 0, we
can obtain a three-kink soliton solution, which is shown in Fig. 3.

It is visually shown that the collisions are elastic and the propagation situations of solitary waves can be seen via the
above four pictures. Figs. 1–3 show the one-kink soliton, two-kink soliton, and three-kink soliton, respectively, by choosing
suitable parameters. The shapes and speeds of the solitons have no change, but the phases may have a change after the
collisions. The small-amplitude solitons overtake the large-amplitude ones, which can be seen in Fig. 4.
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Fig. 2. The two-kink soliton solution for Eq. (1) by choosing suitable parameters: k1 = 2, p1 = 1, q1 = 2, k2 = 3, p2 = 2, q2 = 1, η0
1 = 0, η0

2 = 0. (a) y = 0,
z = 0; (b) x = 0, z = 0; (c) z = 0, t = 0.

Fig. 3. The three-kink soliton solution for Eq. (1) by choosing suitable parameters: k1 = 1.6, p1 = 1.2, q1 = 2, k2 = 2.1, p2 = 2.3, q2 = 1, k3 = 1.3,
p3 = 3.3, q3 = 2, η0

1 = 0, η0
2 = 0, η0

3 = 0. (a) y = 0, z = 0; (b) x = 0, z = 0; (c) z = 0, t = 0.

Fig. 4. Interaction of the soliton overtaking collision of z = 0, t = 0, η0
1 = 0, η0

2 = 0, η0
3 = 0. (a), (b) and (c) Interaction of the two solutions overtaking

collision of k1 = 2, p1 = 1, q1 = 2, k2 = 3, p2 = 2, q2 = 1 at t = 0, y = −6, 0, 6; (d), (e) and (f) Interaction of the three solutions overtaking collision of
k1 = 1.6, p1 = 1.2, q1 = 2, k2 = 2.1, p2 = 2.3, q2 = 1, k3 = 1.3, p3 = 3.3, q3 = 2 at t = 0, y = −7.2, 0.8, 8.8.

2.4. The N-soliton solution

Continuing the above process, the N-soliton solution of Eq. (1) can be deduced by the similar way. The function f meets
the following form:

f =

∑
µ=0,1

exp
( N∑

i=1

µiηi +

N∑
1≤i<j

µiµj ln(Aij)
)
, (15)
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Fig. 5. The time evolution of line breathers of Eq. (1) in the (x, y) plane for parameters of Eq. (18) at z = 0.

where

ωi = k2i +
3(1 − q2i )

pi
, ηi = ki(x + piy + qiz + ωit) + η0

i ,

Aij =
pipj(ki − kj)(kipi − kjpj) + (piqj − pjqi)2 − (pi − pj)2

pipj(ki + kj)(kipi + kjpj) + (piqj − pjqi)2 − (pi − pj)2
(i = 1, 2, . . . ,N)

(16)

with ki, pi, qi and η0
i are arbitrary constants and

∑
µ=0,1 is the summation that takes over all possible combinations of

ηi, ηj = 0, 1(i, j = 1, 2, . . . ,N). Substituting Eq. (15) with (16) into Eq. (2), the N-soliton solution can be obtained.

3. The breather solutions

Based on the conditions of obtaining breathersmentioned in the previousworks, an analytical expression for the breather
solutions can be obtained by choosing suitable parameters on the two-soliton solution in Eq. (2), which has a similar form
with the two-dimensional equations.

Now substituting the function f into the solution (2) of Eq. (1), line breathers can be obtained in the (x, y) plane, where
the parameters in Eq. (2) need to satisfy the following conditions

k1 = Ia1, k2 = −Ia2, p1 = b1, p2 = b1, q1 = a + Ik, q2 = a − Ik. (17)

For instance, setting parameters as follows

k1 = k∗

2 = I, p1 = p2 = 2, q1 = q∗

2 = 1 + 2I, η0
1 = η0

2 = 0, (18)

the function f in Eq. (9) of u can be rewritten as

f = 1 + 2 cosh(6t − 2z) cos(x + 2y + z + 5t) + 2 sinh(6t − 2z) cos(x + 2y + z + 5t)

+
3
2
cosh(12t − 4z) +

3
2
sinh(12t − 4z). (19)

Dynamical behaviors of corresponding solutions u can be obtained in the (x, y) along with the time evolution, which are
shown in Fig. 5. Along with the time, these periodic line waves obviously start from the constant state and reach maximum
amplitudes at t = 0, then gradually start to damp and finally return to the initial constant state. These periodic line waves
remain parallel and independent of each other, but the changes of their behaviors are consistent along with the time. As
the fundamental line rogue waves can be treated as a limited case of these period line waves, hereafter we refer to these
periodic line waves as line breathers. If setting the same parameters in different planes, these breather solutions will display
different behavior characteristics. By comparing Fig. 5 with Fig. 6, the above conclusions can be obtained. Just looking from
Fig. 6, the breathers spread in the same direction, but have different number of waves in different planes. When choosing
the (x, z) plane, switching the value of p1 and q1 in Eq. (18) and setting k1 = 2I , it is worth pointing out that these periodic
solutions also describe line breathers, which are shown in Fig. 7. From Figs. 5 and 7, it is not difficult to find that these periodic
solutions have different periodic.
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Fig. 6. Breathers of Eq. (1) in the (x, z) plane and the (y, z) plane for parameters of Eq. (18).

Fig. 7. The time evolution of line breathers of Eq. (1) in the (x, z) plane for parameters k1 = 2I, k2 = −2I, p1 = 1 − 2I, p2 = 1 + 2I, q1 = 2, q2 = 2
and y = 0.

4. The lump solution and rogue wave solution

In order to obtain the rogue waves, a long wave limit of function f in Eq. (9) must be taken. Setting parameters

k1 = l1ϵ, k2 = l2ϵ, η0
1 = η0∗

2 = Iπ, (20)

in Eq. (9) and taking the limit as ϵ → 0, the function f can be rewritten as

f = (θ1θ2 + θ0)l1l2ϵ2
+ O(ϵ3), (21)

where

θ0 =
2p1p2(p1 + p2)

(p1 − p2)2 − (p1q2 − p2q1)2
,

θi =
p2i y + piqiz − 3q2i t + pix + 3t

pi
(i = 1, 2).

(22)

Substituting Eq. (21) with Eq. (22) into Eq. (2), the solution u can be expressed as

u =
2(θ1 + θ2)
θ1θ2 + θ0

. (23)

Setting

p2 = p∗

1, q2 = q∗

1, (24)
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Fig. 8. Lump solutions (23) of Eq. (1) in different planes for parameters p1 = 1 + 2I, p2 = 1 − 2I, q1 = 2 + I, q2 = 2 − I .

the following conditions θ2 = θ∗

1 and θ0 > 0 can be obtained. So the solution u in Eq. (23) is nonsingular. Moreover, this
solution has two different dynamical behaviors in each plane. Next, these two different dynamical behaviors are given in the
(x, y) plane as an example.

Setting p1 = a1 + Ib1, q1 = a2 + Ib2, and a1, a2, b1, b2 are all real constants.

Case 1. Lump solution
When a1 ̸= 0, along a trajectory defined by [x(t), y(t)], where

x +
(3 − 3a22 + 3b22)t

a1
+

(a21 − b21)y
a1

+
(a1a2 − b1b2)z

a1
−

√
a1(a21 + b21)

(a1b2 − a2b1 + b1)(a1b2 − a2b1 − b1)
= 0,

b1y + b2z −
3(2a1a2b2 − a22b1 + b1b22 + b1)t

a21 + b21
= 0,

(25)

the solution u in Eq. (23) is a constant. Moreover, u → 0 when (x, y) goes to infinity at any given (t, z). So it can be found
that these rational solutions keepmoving in permanent lumps status on the kink backgrounds. These solutions are rationally
localized in all directions in the space.

If choosing parameters as above in Eq. (24), lumps (i.e., one global maximum point and two global minimum points)
in Eq. (1) can arise. The dynamic behaviors of lump solutions in different planes are visually shown in Fig. 8. It should be
pointed out that choosing any surface to be projected, the obtained solutions are lump solutions inR3 in above figures, while
these solutions are lump-type solutions in R4.

Case 2. Rogue wave solution
When b1 = 0 (i.e., p1 is real), the solution u in Eq. (23) is line rogue wave in the (x, y) plane, whose amplitude changes

along the time, see Fig. 9. There are obvious differences between line solitons and line roguewaves during their propagation.
When t = 0, the solution u in Eq. (23) can reach a higher amplitude in the (x, y) plane, but when |t| ≫ 0, it returns to the
initial kink state. This solution is a rational growing and decaying mode. Obviously, these solutions are located in time and
are called line rogue waves in previous works.

At the same time, line rogue wave solutions can be also obtained by choosing suitable parameters in the (x, z) and (y, z)
planes. When b2 = 0, the solution u in Eq. (23) is line rogue wave in the (x, z) plane. Setting p1 = 1 − 2I, q1 = 2,
the corresponding line rogue wave solution can be obtained in the (x, z) plane, which is illustrated in Fig. 10. When
a2 = 0, b2 = 0, line rogue wave solution can be obtained in the (y, z) plane. Setting p1 = −1 + I, p2 = −1 − I , the
corresponding line rogue wave solution can be obtained in the (y, z) plane, which is plotted in Fig. 11.

It should be point out that lump solutions can be also obtained in the (x, z) and (y, z) planes under the above same
parameters, whose amplitudes unchange, but positions change along the time. Their dynamic phenomena are illustrated in
Fig. 12 and Fig. 13 respectively.

Through the above analysis, it seems impossible that rogue wave phenomena appear in different planes under the same
parameters, but rogue wave phenomena can appear in different planes by choosing appropriate parameters. Based on the
method used in this paper, it is not possible to obtain the general rogue wave solution of Eq. (23), while the line rogue wave
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Fig. 9. The time evolution of line rogue waves (23) of Eq. (1) in the (x, y) plane for parameters p1 = 3, p2 = 3, q1 = 2 + 2I, q2 = 2 − 2I at z = 0.

Fig. 10. The time evolution of line rogue waves (23) of Eq. (1) in the (x, z) plane for parameters p1 = 1 − 2I, p2 = 1 + 2I, q1 = 2, q2 = 2 at y = 0.

solution can be derived. In the next study, we expect to obtain the general rogue wave solutions by modifying the above
method.

5. Summary and discussions

In summary, the kink soliton solutions of the (3+1)-dimensional NLEE are obtained based on the Hirota bilinearmethod.
In this paper, one to three soliton solutions are given. The form of N-soliton solution is even deduced in accordance with the
above soliton solutions. They all show the kink soliton form. Their collisions are elastic, that is, the shapes, amplitudes,widths,
and velocities keep invariable during the propagation, just the phases have a change. On the basis of two-soliton solution, line
breathers are obtained by setting specific parameters. The line breather starts from the constant background and reaches
maximum amplitude at t = 0, then gradually starts to damp and finally returns to the initial constant state. These line
breathers remain parallel and independent of each other. By taking limitation, two different dynamical behavioral solutions
can be obtained, which are lump solution and rogue wave solution. It is worthy to point out that they are lump-type [23,24]
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Fig. 11. The time evolution of line rogue waves (23) of Eq. (1) in the (y, z) plane for parameters p1 = −1 + I, p2 = −1 − I at x = 0.

Fig. 12. The time evolution of lump solutions (23) of Eq. (1) in the (x, z) plane for parameters p1 = 3, p2 = 3, q1 = 2 + 2I, q2 = 2 − 2I at y = 0.

solutions inR4. They attract recent attention in describing nonlinearwave phenomena in oceanography andnonlinear optics.
Dynamical behaviors of lump solutions are visually shown in different planes. Line rogue waves are rational growing and
decayingmodes and located in time. These effectivemethods used in this paper provide a direct and powerful mathematical
tool to derive exact localized wave solutions of other nonlinear models, which can be helpful to study nonlinear evolution
equations inmathematical physics and engineering. It isworthy of further exploration to apply numerical simulationmethod
to the above theoretical solutions in the future. Based on the above similar method, the interaction solutions can be also
obtained, whose relevant results will be reported in a separate work.
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Fig. 13. The time evolution of lump solutions (23) of Eq. (1) in the (y, z) plane for parameters p1 = 1 − 2I, p2 = 1 + 2I, q1 = 2, q2 = 2 at x = 0.

References

[1] M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, 1991.
[2] V.B. Matveev, M.A. Salle, Darboux Transformations and Solitons, Springer, 1991.
[3] C.H. Gu, H.S. Hu, Z.X. Zhou, Darboux Transformation in Soliton Theory and its Geometric Applications, Shanghai Scientific and Technical Publishers,

Shanghai, 1999.
[4] J. Weiss, M. Tabor, G. Carnevale, The painleve property for partial differential equation, J. Math. Phys. 24 (1983) 522–526.
[5] G.Q. Xu, Painlevé classification of a generalized coupled Hirota system, Phys. Rev. E 74 (2006) 027602.
[6] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, 2004.
[7] W.X. Ma, E.G. Fan, Linear superposition principle applying to Hirota bilinear equations, Comput. Math. Appl. 61 (2011) 950–959.
[8] C. Rogers, W.K. Schief, Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Cambridge University Press,

2002.
[9] P.J. Olver, P. Rosenau, The construction of special solutions to partial differential equations, Phys. Lett. A 114 (1986) 107–112.

[10] G.W. Bluman, A.F. Cheviakov, S.C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Springer, New York, 2010.
[11] L.L. Huang, Y. Chen, Nonlocal symmetry and similarity reductions for the Drinfeld-Sokolov-Satsuma-Hirota system, Appl. Math. Lett. 64 (2017) 177–

184.
[12] M. Tajiri, T. Arai, Growing-and-decaying mode solution to the Davey–Stewartson equation, Phys. Rev. E 60 (1999) 2297.
[13] N. Akhmediev, J.M. Soto-Crespo, A. Ankiewicz, How to excite a rogue wave, Phys. Rev. A 80 (2009) 043818.
[14] D.J. Kedziora, A. Ankiewicz, N. Akhmediev, Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits,

Phys. Rev. E 85 (2012) 066601.
[15] J.S. He, H.R. Zhang, L.H. Wang, A.S. Fokas, Generating mechanism for higher-order rogue waves, Phys. Rev. E 87 (2013) 052914.
[16] C. Liu, Z.Y. Yang, L.C. Zhao, W.L. Yang, Vector breathers and the inelastic interaction in a three-mode nonlinear optical fiber, Phys. Rev. A 89 (2014)

055803.
[17] J. Satsuma, M.J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys. 20 (1979) 1496–1503.
[18] D.J. Kaup, The lump solutions and the Bäcklund transformation for the three-dimensional three-wave resonant interaction, J. Math. Phys. 22 (1981)

1176–1181.
[19] K. Imai, Dromion and lump solutions of the Ishimori-I equation, Progr. Theoret. Phys. 98 (1997) 1013–1023.
[20] W.X. Ma, Lump solutions to the Kadomtsev–Petviashvili equation, Phys. Lett. A 379 (2015) 1975–1978.
[21] J.Y. Yang, W.X. Ma, Z.Y. Qin, Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation, Anal. Math. Phys. (2017). http://dx.doi.org/10.

1007/s13324-017-0181-9.
[22] H.Q. Zhao, W.X. Ma, Mixed lump-kink solutions to the KP equation, Comput. Math. Appl. 74 (2017) 1399–1405.
[23] W.X. Ma, Lump-type solutions to the (3+1)-dimensional Jimbo–Miwa equation, Int. J. Nonlinear Sci. Numer. Simul. 17 (2016) 355–359.
[24] J.Y. Yang, W.X. Ma, Abundant lump-type solutions of the Jimbo–Miwa equation in (3+1)-dimensions, Comput. Math. Appl. 73 (2017) 220–225.
[25] D.H. Peregrine, Water waves, nonlinear Schrödinger equation and their solutions, J. Aust. Math. Soc. Ser. B 25 (1983) 16–43.
[26] N. Akhmediev, A. Ankiewicz, J.M. Sotocrespo, Roguewaves and rational solutions of the nonlinear Schrödinger equation, Phys. Rev. E 80 (2009) 026601.
[27] Y.V. Bludov, V.V. Konotop, N. Akhmediev, Vector rogue waves in binary mixtures of Bose–Einstein condensates, Eur. Phys. J. Spec. Top. 185 (2010)

169–180.
[28] B.L. Guo, L.M. Ling, Q.P. Liu, Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions, Phys. Rev. E 85 (2012)

026607.
[29] X. Wang, Y.Q. Li, Y. Chen, Generalized Darboux transformation and localized waves in coupled Hirota equations, Wave Motion 51 (2014) 1149–1160.
[30] J.C. Chen, Y. Chen, B.F. Feng, K.-i. Maruno, Rational solutions to two- and one-dimensional multicomponent Yajima-Oikawa systems, Phys. Lett. A 379

(2015) 1510–1519.
[31] X. Wang, Y.Q. Li, F. Huang, Y. Chen, Rogue wave solutions of AB system, Commun. Nonlinear Sci. Numer. Simul. 20 (2015) 434–442.
[32] X. Wang, J.L. Cao, Y. Chen, Higher-order rogue wave solutions of the three-wave resonant interaction equation via the generalized Darboux

transformation, Phys. Scr. 90 (2015) 105201.

http://refhub.elsevier.com/S0898-1221(17)30785-X/sb1
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb2
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb3
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb3
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb3
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb4
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb5
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb6
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb7
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb8
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb8
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb8
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb9
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb10
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb11
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb11
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb11
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb12
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb13
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb14
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb14
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb14
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb15
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb16
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb16
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb16
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb17
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb18
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb18
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb18
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb19
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb20
http://dx.doi.org/10.1007/s13324-017-0181-9
http://dx.doi.org/10.1007/s13324-017-0181-9
http://dx.doi.org/10.1007/s13324-017-0181-9
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb22
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb23
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb24
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb25
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb26
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb27
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb27
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb27
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb28
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb28
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb28
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb29
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb30
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb30
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb30
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb31
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb32
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb32
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb32


2548 Y. Yue et al. / Computers and Mathematics with Applications 75 (2018) 2538–2548

[33] X.E. Zhang, Y. Chen, Rogue wave and a pair of resonance stripe solitons to a reduced (3+1)-dimensional Jimbo–Miwa equation, Commun. Nonlinear
Sci. Numer. Simul. 52 (2017) 24–31.

[34] N. Akhmediev, A. Ankiewicz, M. Taki, Waves that appear from nowhere and disappear without a trace, Phys. Lett. A 373 (2009) 675–678.
[35] W.X. Ma, Y. Zhang, Y.N. Tang, J.Y. Tu, Hirota bilinear equations with linear subspaces of solutions, Appl. Math. Comput. 218 (2012) 7174–7183.
[36] L.N. Gao, X.Y. Zhao, Y.Y. Zi, J. Yu, X. Lü, Resonant behavior of multiple wave solutions to a Hirota bilinear equation, Comput. Math. Appl. 72 (2016)

1225–1229.
[37] X. Lü, W.X. Ma, Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation, Nonlinear Dynam. 85 (2016) 1217–1222.
[38] L.N. Gao, Y.Y. Zi, Y.H. Yin, W.X. Ma, X. Lü, Bäcklund transformation, multiple wave solutions and lump solutions to a (3+ 1)-dimensional nonlinear

evolution equation, Nonlinear Dynam. 89 (2017) 2233–2240.
[39] C.J. Wang, Lump solution and integrability for the associated Hirota bilinear equation, Nonlinear Dynam. 87 (2017) 2635–2642.
[40] C. Qian, J.G. Rao, Y.B. Liu, J.S. He, Rogue waves in the three-dimensional Kadomtsev–Petviashvili equation, Chin. Phys. Lett. 33 (2016) 110201.

http://refhub.elsevier.com/S0898-1221(17)30785-X/sb33
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb33
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb33
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb34
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb35
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb36
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb36
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb36
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb37
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb38
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb38
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb38
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb39
http://refhub.elsevier.com/S0898-1221(17)30785-X/sb40

	N-solitons, breathers, lumps and rogue wave solutions to a (3+1)-dimensional nonlinear evolution equation 
	Introduction
	The soliton solutions
	The 1-soliton solution
	The 2-soliton solution
	The 3-soliton solution
	The N-soliton solution

	The breather solutions
	The lump solution and rogue wave solution
	Summary and discussions
	Acknowledgments
	References


