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a b s t r a c t

Based on the Hirota bilinear method and long wave limit, four kinds of localized waves,
namely, solitons, lumps, breathers, and rogue waves are constructed for the
(3+1)-dimensional generalized KP equation. N-soliton solutions are obtained by employing
bilinear method, then breathers, two breathers and interaction breather solutions are
obtained by selecting appropriate parameters on two-soliton solution and four-soliton
solution. These breathers own different dynamic behaviors in the different planes. Taking a
long wave limit on the two and four soliton solutions under special parameter constraints,
one-order lumps and rogue waves, two-order lumps and rogue waves, and interaction
solutions between lumps and rogue waves are derived. Applying the same method on the
three soliton solution, interaction solutions between kink solitons with periodic solutions,
lumps and rogue waves are constructed, respectively. The influence of parameters on the
solution is analyzed. The propagation directions, phase shifts, energies and shapes for
these solutions can be affected and controlled by the parameters. Moreover, graphics are
presented to demonstrate the properties of the explicit analytical localizedwave solutions.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The research of nonlinear localized waves is one of the important subjects of contemporary nonlinear mathematical
physics. According to the characteristics of the physics and dynamics, nonlinear localized waves are divided into solitons,
lumps, breathers and roguewaves, which are key objects in nonlinear physical systems such as nonlinear optics, bio-physics,
plasmas, cold atoms, and Bose–Einstein condensates. Solitons own the property of stability and being ionic, while breathers
and rogue waves are two kinds of typical localized waves on the background of the plane waves with obvious instability
of special nonlinear structure. Theory of solitons [1–3], as one of the three branches of nonlinear science, has become an
important research field of nonlinear science and has aroused great interests. Lumps [4–12] are rational function solutions
and localized in all directions in the space. Breathers [13–17] are localized breathing waves with a periodic structure in
one certain direction and also can be used to elaborate rogue wave phenomena. In accordance with the distribution and
propagation direction, breathers can be divided into the Akhmediev breathers [18] and Kuznetsov–Ma breathers [19].
Akhmediev breathers are space-periodic breather solutions, while Kuznetsov–Ma breathers are time-periodic breather
solutions. Rogue waves [20–30] are localized in both time and space. The mechanism of rogue waves can be regarded as
the high amplitude waves generated by the collision of solitons and breathers. In 1965, the concept of freak rogue wave in
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the ocean was first proposed by Draper [31]. The ‘new year’s wave’ [32], discovered on Jan. 1, 1995 in the North sea, was
the most complete recorded rogue wave. In 2007, the optical rogue wave [33] was first spotted by experiments in nonlinear
optics. In 2010, the peregrine soliton [34] was observed in nonlinear fiber optics. Up to now, more and more people have
paid attention to the study of rogue wave.

In this paper, we study localized waves and interaction solutions for the following (3 + 1)-dimensional generalized KP
(GKP) equation [35,36]

uxxxy + 3(uxuy)x + utx + uty − uzz = 0. (1)

If setting y = x, Eq. (1) can be reduced to the KP equation [37]; If setting z = y = x, Eq. (1) can be reduced to the potential
KdV equation [38].

For the GKP equation (1), a lot of literature have studied on it. In [39–44], Wronskian and Grammian solutions, multiple
wave solutions, exponential and rational travelingwave solutions,Wronski-type Pfaffian andGramm-type Pfaffian solutions,
lump solutions, the extended system with variable coefficients were studied for the GKP equation, respectively. In [45],
multiple-soliton solutions and multiple singular soliton solutions were presented. In [46], a combinedWronskian condition
was given to construct Wronskian determinant solutions. In [47], exact periodic kink solitary wave solutions were derived.
In [48], breather-type kink soliton, periodic soliton solutions and rogue potential flow for the GKP equation were obtained
by utilizing the homoclinic breather limit approach. In [49], Wronskian and linear superposition solutions were derived for
a (3 + 1)-dimensional GKP equation with arbitrary real constants. In [50], new exact periodic solitary wave solutions were
derived for a new GKP equation with one extra term utz in multi-temperature electron plasmas. In [51], hyperbolic function
solutions, exponential solutions, trigonometric function solutions and rational solutions were obtained. In [52], some exact
solutions were derived based on the homoclinic test approach. To our best knowledge, multi-breathers, multi-lumps, multi-
roguewaves and interaction solutions to the GKP equation have not been reported yet. It is important to study other rational
solutions for the GKP equation (1). Via the method used in [53,54], we will report some new localized wave solutions and
interaction solutions for the GKP equation.

Outline of the paper is as follows. In Section 2, N-soliton solutions are constructed based on the Hirota bilinear method.
In Section 3, via choosing appropriate parameters on the two-soliton solution and four-soliton solution, the breathers, two
breathers and interaction between two types of breathers are obtained, their typical dynamical behaviors are shown and
analyzed. In Section 4, based on a long wave limit on the multi-soliton solutions, one-order lumps and rogue waves, two-
order lumps and rogue waves, and interaction solutions between lumps and rogue waves are proposed and demonstrated.
In Section 5, interaction solutions between kink solitons with periodic solutions, lumps and rogue waves are constructed by
applying the long wave limits on the three-soliton solution. The Section 6 contains a short summary and further discussion.

2. The N-soliton solutions

Through applying a dependent variable transformation

u = 2(ln f )x = 2
fx
f
, (2)

sends Eq. (1) to the following bilinear form

(D3
xDy + DtDx + DtDy − D2

z )(f · f ) = 0, (3)

where f = f (x, y, z, t), all the derivatives D3
xDy,DtDx,DtDy, and D2

z are bilinear derivative operators [55] with

Dα
xD

β
yD

γ
z D

δ
t (f · g) = (

∂

∂x
−

∂

∂x′
)α(

∂

∂y
−

∂

∂y′
)β (

∂

∂z
−

∂

∂z ′
)γ (

∂

∂t
−

∂

∂t ′
)δ f (x, y, z, t)g(x′, y′, z ′, t ′)|x′=x,y′=y,z′=z,t ′=t . (4)

It is apparent that if f solves Eq. (3), then u = u(x, y, z, t) is the solution of Eq. (1) by the transformation (2).
Based on the Hirota bilinear method, the GKP equation (1) has the N-order soliton solution (2), with f expressed as the

following form,

f =

∑
µ=0,1

exp
( N∑

i=1

µiηi +

N∑
1≤i<j

µiµj ln(Aij)
)
, (5)

where

ωi = −
k2i pi − q2i
pi + 1

,

ηi = ki(x + piy + qiz + ωit) + η0
i ,

Aij =
(pj + 1)(3p2i + 2pi + pj)k2i − 3(pj + 1)(pi + 1)(pi + pj)kikj + (pi + 1)(3p2j + pi + 2pj)k2j + (piqj − pjqi − qi + qj)2

(pj + 1)(3p2i + 2pi + pj)k2i + 3(pj + 1)(pi + 1)(pi + pj)kikj + (pi + 1)(3p2j + pi + 2pj)k2j + (piqj − pjqi − qi + qj)2

(i, j = 1, 2, . . . ,N).

(6)

with ki, pi, qi and η0
i arbitrary constants and

∑
µ=0,1 the summation total of taking over all possible combinations of

ηi, ηj = 0, 1(i, j = 1, 2, . . . ,N). Then the N-soliton solution can be constructed by substituting (5) with (6) into Eq. (2).
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Fig. 1. The time evolutions of line breathers for Eq. (1) in the (x, y) plane with parameters given in Eq. (8) at z = 0.

3. The breather solutions

On the basis of the methods used in the previous works for obtaining breathers, analytical expressions for the breather
solutions can be derived by virtue of selecting appropriate parameters for the two-soliton solution in Eq. (2).

Hence, setting N = 2 in Eq. (5), then substituting f into the solution (2) of Eq. (1), line breathers can be derived in the
(x, y) plane with the parameters in Eq. (2) meeting the following requirements

k1 = k∗

2 = aI, p1 = p2 = b, q1 = q∗

2 = c + dI. (7)

Without loss of generality, setting parameters in the following form

a = c = 1, b = d = 2, η0
1 = η0

2 = 0, (8)

the function f in Eq. (2) can be restated as

f = 1 + 2 cosh(2z +
4t
3
) cosh(

t
3

− z − x − 2y) − 2 sinh(2z +
4t
3
) cosh(

t
3

− z − x − 2y)

+
5
2
cosh(4z +

8t
3
) −

5
2
sinh(4z +

8t
3
). (9)

In Fig. 1, global dynamic behaviors with the development of time are demonstrated in the (x, y) plane for the correspond-
ing solution u. Here, these periodic line waves are referred to line breathers, and the fundamental line rogue waves can
be regarded as the limiting cases of these period line waves. Over time, the periodic line breathers apparently begin at a
constant state and achieve the maximum amplitude 1.3926 at t = 0, then gradually start damping and go back to the initial
constant state in the last. While the line breathers remain parallel and independent of each other during the propagation,
their behaviors are changed consisting with the development of time. General breather also can be obtained, which is
shown in Fig. 2. Without loss of generality, these breathers present different behavior characteristics with the above same
parameters in different planes. In the (x, t) plane, the breather is localized in the t direction, and periodic in the x direction. In
the (y, t) plane, it is localized in the t direction, and periodic in the y direction. In the (z, t) plane, it is periodic in the angular
bisector of the z axis and t axis. What is more, it is obvious to see that they own different periods.

Using the same method on the four soliton solution (i.e. N = 4 in Eq. (5)), setting

k1 = k∗

2 = I, k3 = k∗

4 = 2I, q1 = q∗

2 = 1 + I, q3 = q∗

4 = 1 + I, p1 = p2 = 1,
p3 = p4 = 2 η0

i = 0 (i = 1, 2, 3, 4), (10)
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Fig. 2. Breathers of Eq. (1) in the (x, t), (y, t) and (z, t) three different planes with the same parameters given in Eq. (8).

Fig. 3. The two line breathers of Eq. (1) in different planes for parameters given in Eq. (10).

two types of interaction solutions between two breathers are available. The process of their collisions is shown in Figs. 3
and 4. Interestingly, the two line breathers are initially separated. As time changed, they are overlapped at t = 0, whose
amplitude reaches maximum value 1.3743, and eventually spreads separately in Fig. 3. For the general breathers, they are
overlapped completely at t = 0, whose amplitude reaches maximum value 1.6956 in Fig. 4. Comparing the changes of the
amplitude with the two breathes, their values of amplitude fluctuate during the collision, then their values return to initial
constant. It is obvious that the collision between two general breathers is elastic.

Similar with the above parameter conditions, interaction solutions between two types breathers can be obtained in (x, y)
and (x, z) planes by choosing different parameters. Intersecting general breathers are also can be derived in (y, z) plane.
Without loss of generality, setting

k1 = k∗

2 = I, k3 = k∗

4 = 2I, p1 = p∗

2 = 1 + I, q3 = q∗

4 = 2 + 2I, q1 = q2 = 3, p3 = p4 = 2. (11)

It is visually shown that their amplitudes change over time, and finally the line breather returns to the initial constant plane,
whose dynamic characteristics are presented in Figs. 5 and 6. In (y, z) plane, interaction solution of two general breathers
generates a highest amplitude value at the cross point, which is demonstrated in Fig. 7. For t = −4, the highest amplitude is
−2.8127 and the corresponding coordinate is (−5.8, 5.6) in Fig. 7a; for t = 0, it is −2.9417 at (0.7, 0.2) in Fig. 7b; for t = 4,
it is 2.0524 at (8.5,−5) in Fig. 7c.
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Fig. 4. The interaction of two general breathers of Eq. (1) in (x, z) plane for parameters given in Eq. (10).

Fig. 5. The interaction of two types breathers of Eq. (1) in (x, y) plane for parameters given in Eq. (11) at z = 0.

4. The lump solution and rogue wave solution

Based on the long wave limits [56,57] on the multi-soliton solutions, we obtained the one-order lumps and rogue waves,
two-order lumps and rogue waves, and interaction solutions between lumps and rogue waves, respectively.
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Fig. 6. The interaction of two types breathers of Eq. (1) in (x, z) plane for parameters given in Eq. (11) at y = 0.

Fig. 7. The interaction of two general breathers of Eq. (1) in (y, z) plane for the parameters given in Eq. (11) at x = 0. (d), (e) and (f) are density plots of (a),
(b) and (c), respectively.

Case 1. Lump solution
Applying the long wave limits on the two soliton solutions, the rational solution can be obtained. So setting parameters

N = 2, k1 = l1ϵ, k2 = l2ϵ, η0
1 = η0∗

2 = Iπ, (12)
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Fig. 8. The lump solutions for Eq. (1) in different planes with the parameters a1 = 1, b1 = 3, a2 = 3, and b2 = 1 in Eq. (13).

and taking the limit as ϵ → 0 in Eq. (5). The rational solutions of theGKP equation (1) can be derived,which can bewritten as

u =
2(θ1 + θ2)
θ1θ2 + θ0

, (13)

with

θ0 = −
6(p2 + 1)(p1 + 1)(p1 + p2)
((p1 + 1)q2 − q1(p2 + 1))2

,

θi = x + piy + qiz +
qi2t

pi + 1
(i = 1, 2).

(14)

Setting p2 = p∗

1, q2 = q∗

1, it is apparent that the solution u in Eq. (13) is nonsingular. Moreover, this solution shows two
kinds of dynamic characteristics. Without loss of generality, assuming p1 = a1 + Ib1, q1 = a2 + Ib2, and a1, a2, b1, b2 are all
real constants.

When a1 ̸= 0, the trajectory defined along [x(t), y(t)], with

x + a1y + a2z +
a1a22 − a1b22 + 2a2b1b2 + a22 − b22

a21 + b21 + 2a1 + 1
t −

√
3a1(a21 + b21 + 2a1 + 1)

a1b2 − a2b1 + b2
= 0,

b1y + b2z +
2a1a2b2 − a22b1 + b1b22 + 2a2b2

a21 + b21 + 2a1 + 1
t = 0,

(15)

the solution u in Eq. (13) can be constant. It is not difficult to find that these rational solutions have been moving in the
permanent lumps on the backgrounds of kink states. Lump solutions can be obtained simply by selecting the appropriate
parameters and are localized in all directions in the space, which are visually shown in Fig. 8.

If applying the same method to the four soliton solutions, and setting

k1 = l1ϵ, k2 = l2ϵ, k3 = l3ϵ, k4 = l4ϵ, η0
1 = η0∗

2 = η0
3 = η0∗

4 = Iπ, (16)

then the corresponding function f has the form given below

f = (θ1θ2θ3θ4 + a12θ3θ4 + a13θ2θ4 + a14θ2θ3 + a23θ1θ4 + a24θ1θ3 + a34θ1θ2 + a12a34 + a13a24 + a14a23)
× l1l2l3l4ϵ4

+ O(ϵ5), (17)
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Fig. 9. Interaction of the two lump solutions overtaking collision of Eq. (1) in the (x, y) plane for parameters a1 = 1, b1 = 2, a2 = 1, b2 = 2, c1 =

2, d1 = 3, c2 = 3, d3 = 1. (a), (b) and (c) the three-dimensional plots at t = −8, t = 0, t = 8, respectively; (d) two-dimensional plot at y = 0; (e)
two-dimensional plot at x = 0; (f) the interaction process.

where

θi = x + piy + qiz +
q2i

pi + 1
t,

aij = −
6(pi + 1)(pj + 1)(pi + pj)
((pi + 1)qj − qi(pj + 1))2

(i, j = 1, 2, 3, 4).
(18)

Similarly, assuming p1 = p∗

2 = a1 + b1I, p3 = p∗

4 = a2 + b2I, q1 = q∗

2 = c1 + d1I, q3 = q∗

4 = c2 + d2I , and
ai, bi, ci, di, (i = 1, 2) are all real constants. When choosing different parameters, different interaction solutions can be
obtained. Without loss of generality, setting a1 = 1, b1 = 2, a2 = 1, b2 = 2, c1 = 2, d1 = 3, c2 = 3, d3 = 1, we can
obtain two-order lump solution in the (x, y) plane. Its dynamic characteristics are visually shown in Fig. 9. Obviously, the
collisions are elastic and the propagation situations can be seen via Fig. 9. The amplitude of the interaction solution reaches
1.1140 at t = 0.

Case 2. Rogue wave solution
For N = 2, when b1 = 0, namely p1 and p2 are all real constants, then line rogue wave can be obtained. This solution is

a rational growing and decaying mode. For instance, when a1 = 1, b1 = 0, a2 = 2, b2 = 2, the amplitude changes along
the time in the (x, y) plane, and reaches a highest amplitude 2.3077 at t = 0, then disappears in the infinity, whose dynamic
behaviors are demonstrated in Fig. 10.

For N = 4, when a1 = 1, b1 = 2, a2 = 1, b2 = 2, c1 = 3, c2 = −2, d1 = d2 = 0, appears the interaction
solution between two line rogue waves, whose dynamic features are demonstrated in Fig. 11. Similar with single line rogue
waves, two line rogue waves arise from the constant background and disappear into the constant background again, whose
amplitude reaches a maximum value 3.7635 at t = 0 in Fig. 11c. Depending on the special values of the time coordinate t ,
the line rogue wave can be either bright wave or dark one. It should be pointed out that the two interaction line rogue waves
are bright rogue wave and dark rogue wave in Fig. 11.

Case 3. Interaction solutions between lumps and rogue waves
Based on the parameter selection method of case 1 and case 2, the interaction solutions between lumps and line rogue

waves can be presented. Without loss of generality, setting a1 = 0.5, b1 = 1, a2 = 0.5, b2 = 1, c1 = −1, d1 = 1, c2 =

3, d2 = 0, their collision process is shown in the (x, z) plane, which is displayed in Fig. 12. Firstly, a lump moves on the
constant background. At the intermediate time, a line rogue wave arises and then interacts with the lump. It is pointed out
that the amplitude of lump is significantly increased, when there is complete collision at t = 0. Interestingly, the interaction
of these two types of localized waves implies a downward deformation of the line rogue wave at t = 0. Finally, the line
rogue waves disappear into the constant background, and the moving lump is preserved eventually.
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Fig. 10. The time evolution of line rogue waves (13) of Eq. (1) in the (x, y) plane for parameters a1 = 1, a2 = 2, b1 = 0, b2 = 2 at z = 0.

Fig. 11. The time evolution of two line rogue waves of Eq. (1) in the (x, z) plane for parameters a1 = 1, b1 = 2, a2 = 1, b2 = 2, c1 = 3, c2 = −2 d1 =

d2 = 0 at y = 0.

5. The kink soliton interacts with periodic solution, lump and rogue wave

In this section we will construct the interaction solutions of kink soliton with periodic waves, lumps and rogue waves
respectively, according to the parameters selection method mentioned above. Next, applying different methods on three
soliton, which is at N = 3 in Eq. (5), we can derive three types of interaction solutions.
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Fig. 12. The interaction solution between line roguewave and lump solution of Eq. (1) in the (x, z) plane for parameters a1 = 0.5, b1 = 1, a2 = 0.5, b2 =

1, c1 = −1, d1 = 1 c2 = 3 d2 = 0 at y = 0.

Case 1. Interaction between kink soliton and periodic solution
According to the abovemethodmentioned in Section 3, taking the following parameters N = 3, k1 = k∗

3 = I, p1 = p∗

3 =

1 + 3I, q1 = q2 = 2, k2 = 1, p2 = 2, q2 = 1 , η0
1 = η0

2 = η0
3 = 0. The interaction solution between periodic solution and

soliton can be obtained, which is shown in Fig. 13. Obviously, they have different dynamic behaviors. In the (x, z) plane, the
kink soliton interacts with the line breather, while in the other five planes, the kink solitons interact with general breathers.

Case 2. Interaction between kink soliton and lump
As the methodmentioned in Section 4, applying the long wave limits on the three soliton solutions. And the parameters

are set similar to Eq. (12), except for N = 3 in Eq. (5), then the corresponding function f is rewritten as

f = (θ1θ2 + a12)l1l2 + (θ1θ2 + a12 + a13θ2 + a23θ1 + a13a23)l1l2eη3 , (19)

where

θi = x + piy + qiz +
q2i

pi + 1
t,

aij = −
6(pi + 1)(pj + 1)(pi + pj)
((pi + 1)qj − qi(pj + 1))2

(i < j ≤ 2),

ai3 = −
6(pi + 1)(p3 + 1)(pi + p3)k3

(pi + 1)(3p23 + pi + 2p3)k23 + ((pi + 1)q3 − qi(p3 + 1))2
(i = 1, 2).

(20)

Without loss of generality, setting

p1 = p∗

2 = 1 + I, q1 = q∗

2 = 1 + 3I, p3 = 2, q3 = 0.5, η03 = 0, k3 = 1, (21)

lump solution can be obtained. whose dynamic behaviors are demonstrated in Fig. 14. It is clear that they have different
amplitudes in different planes, but the peaks and valleys of lump solutions are all divided by kink solitons, the peak is located
in the high amplitude part of the soliton surface, the valley is located in the low amplitude part of the soliton surface.

Case 3. Interaction between kink soliton and rogue wave
In this case, we take the limitation on the three soliton and set p1 = p2∗, all the remaining parameters are real (i.e.,

q1, q2, q3, p3, η03, k3 are all real), the interaction solution between kink soliton and roguewaves can be obtained. So, without
loss of generality, assuming

p1 = p∗

2 = 1 + I, q1 = q2 = 2, p3 = q3 = −0.5, η03 = 0, k3 = 1. (22)
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Fig. 13. The interaction solution between kink soliton and periodic solution of Eq. (1) in different planes.

Fig. 14. The interaction solution between kink soliton and lump solution of Eq. (1) in the different planes for the same parameters given in Eq. (21).

The dynamic behavior of interaction solution is displayed in Fig. 15. As time goes on, the line rogue wave arises from the
constant background and disappears into the constant background again, at the same time, the soliton propagates from left
to right. The amplitude of interaction solution reaches a highest value 2.8086 at t = 0 in the (x, z) plane.
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Fig. 15. The interaction solution between line rogue waves and kink soliton of Eq. (1) in the (x, z) plane for parameters given in Eq. (22) at y = 0.

6. Summary and discussions

In summary, localized wave solutions and interaction solutions of the GKP equation have been investigated. According
to the bilinear method, N soliton solution of GKP equation is deduced. By virtue of appropriate selections of parameters, line
breathers, general breathers and two-order breathers are constructed, respectively. The graphs of their evolution processes
over time are presented and their dynamic characteristics are analyzed. Applying the long wave limit method of the soliton
solutions, different orders of lumps, rogue waves are constructed, the interaction solutions of these two types solutions are
also presented under special parameter constraints. By the same method, interaction solutions between kink solitons and
periodic solutions, lump solutions, line rogue waves, are obtained, respectively. They have a variety of different dynamic
characteristics. The impacts of the parameters on these solutions are analyzed. The propagation directions, phase shifts,
energies and shapes for these solutions can be affected and controlled by the parameters. By taking complex conjugate of
the parameters and longwave limit on the soliton solutions, we can obtain different types of localizedwaves and interaction
solutions. The main results can be summarized in the following table:

N-soliton Method

Complex conjugate Long wave limit

2-soliton LB GB L LRW
3-soliton S + LB S + GB S + L S + LRW
4-soliton Two-LB Two-GB LB + GB Two-LRW Two-L L + LRW

Note: S = Soliton, L = Lump, LB = Line breather, GB = General breather, LRW = Line rogues wave.

Moreover, the methods applied in this paper may provide an effective and direct tool to investigate localized waves and
interaction solutions of the nonlinear integrable systems. It is worthy of further exploration to apply numerical simulation
method to the above theoretical solutions in the future.
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