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Abstract A Laplace decomposition algorithm is adopted to investigate numerical solutions of a class of nonlinear

partial differential equations with nonlinear term of any order, utt + auxx + bu + cup + du2p−1 = 0, which contains

some important equations of mathematical physics. Three distinct initial conditions are constructed and generalized

numerical solutions are thereby obtained, including numerical hyperbolic function solutions and doubly periodic ones.

Illustrative figures and comparisons between the numerical and exact solutions with different values of p are used to test

the efficiency of the proposed method, which shows good results are achieved.
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1 Introduction

In mathematical physics, it is usually very important

to seek and construct explicit solutions of nonlinear par-

tial differential equations (PDEs). Such solutions can help

us understand the physical phenomena they describe in

nature. There are many powerful methods developed,

such as inverse scattering theory,[1] Bäcklund and Dar-

boux transformation,[2−3] Hirota’s bilinear technique,[4]

variable separation approach,[5−6] Wronskian and Caso-

ratian techniques,[7−8] various tanh methods,[9−10] ratio-

nal expansion method[11] etc. However, it is very dif-

ficult to find explicit solutions of nonlinear partial dif-

ferential equations generally. With the rapid develop-

ment of nonlinear science, the development of numeri-

cal techniques for solving nonlinear equations is a sub-

ject of considerable interest. Recently many scientists

and engineers have done excellent work, such as Laplace

decomposition algorithm,[12−14] homotopy perturbational

method (HPM),[15−17] Adomian decomposition method

(ADM),[18−22] variational iteration method (VIM)[23−24]

etc. It is known that there exist many useful differential

equations wherein the functions are expressed by com-

plex, especially in the fields of engineering and electronic

circuits.[25−26] Usually, it is not very easy to do some cal-

culations via the ADM directly. However, the Laplace

decomposition algorithm (LDA) based on the ADM can

effectively turn the calculations from the complex differ-

ential procedure to a purely algebraic procedure. With

this approach, one can always obtain a kind of more re-

alistic series solutions that generally converge fast to real

physics models. However, no special discretization, lin-

earization techniques or small parameter ansätz are re-

quired. Particularly, the LDA can accelerate the rapid

convergence of series solutions when compared with the

ADM and therefore provide major progress.[26] Recently,

such an algorithm has been extensively applied to inves-

tigate approximate solutions of a class of nonlinear differ-

ential equations and even fractional differential equations

(see e.g. [27–29]).

Here, our main concern will be with investigation on

numerical solutions of a class of nonlinear partial differen-

tial equations with nonlinear term of any order:[30]

utt + auxx + bu + cup + du2p−1 = 0 , (1)

via the Laplace decomposition algorithm. In the above,

a, b, c, d and p 6= 1 are arbitrary constants. It is

noted that distinct equations will be constructed when

setting different values to those parameters. In fact,

the study on Eq. (1) is very necessary and significant

since it contains many important nonlinear equations of

mathematical physics, such as Duffing equation,[1] Klein–

Gordon equation,[31] Landau–Ginburg–Higgs equation,[32]

Sin–Gordon equation,[31−32] φ4 equation[1] as well as the

nonlinear evolution equation considered in [33]. It is

shown in Ref. [30] that via introduction of a particular

transformation and the improved tanh method, Chen et
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al. derived some explicit exact solutions of (1), which in-

cluded the kink-profile, bell-profile solitary-wave solutions

and periodic wave solutions. Subsequently, such solutions

of numerical type were investigated by An and Chen via

the ADM.[22] Therefore, it is natural to inquire whether

an alternative method can be devised to construct the

explicit exact solutions or numerical solutions that can

rapidly converge to the known exact solutions but with-

out of the special transformation? This will be the subject

of our present paper.

The paper is organized as follows. In Sec. 2, we give

some necessary descriptions on the Laplace decomposition

algorithm of (1). In Sec. 3, three distinct initial conditions

are constructed and thereby the generalized numerical se-

ries solutions are derived. Meanwhile, the efficiency and

accuracy of the proposed method are verified by the illus-

trative figures together with the comparisons between the

numerical and exact solutions. Finally, a short conclusion

is attached.

2 Laplace Decomposition Algorithm of the

Nonlinear Partial Differential Equations

In this section, the Laplace decomposition algorithm

will be extended to the nonlinear partial differential equa-

tions with the following initial conditions:

utt + auxx + bu + cup + du2p−1 = 0 , (2)

u(x, 0) = f(x), ut(x, 0) = g(x) , (3)

where f(x) and g(x) are analytical functions to be deter-

mined later.

In order to construct the numerical solution, it proves

convenient to apply the Laplace transform L to both sides

of (2) firstly and then on use of properties of Laplace trans-

form, yields:

s2L[u] − su(x, 0) − ut(x, 0) + aL[uxx] + bL[u]

+ cL[up] + dL[u2p−1] = 0 . (4)

Insertion of the given initial conditions (3) into it, pro-

duces

s2L[u] = sf(x) + g(x) − aL[uxx] − bL[u] − cL[up]

− dL[u2p−1] , (5)

or

L[u] =
1

s
f(x) +

1

s2
g(x) − 1

s2
{aL[uxx] + bL[u]}

− 1

s2
{cL[up] + dL[u2p−1]} . (6)

Secondly, according to LDA,[12−14] the unknown solution

of (2)–(3) can be expressed in an infinite series form

u =

∞
∑

n=0

un(x, t) , (7)

where the terms un(x, t) may be determined recursively.

While, the nonlinear terms up and u2p−1 are decomposed

as follows:

up =

∞
∑

n=0

An, u2p−1 =

∞
∑

n=0

Bn , (8)

where An and Bn are the so-called Adomian polyno-

mials[18−22,34] defined as

An =
1

n!

dn

dλn

(

∞
∑

k=0

λkuk

)p

λ=0
,

Bn =
1

n!

dn

dλn

(

∞
∑

k=0

λkuk

)2p−1

λ=0
, n = 0, 1, 2, . . . (9)

In general, these tedious Adomian polynomials can be eas-

ily computed with the aid of symbolic computational soft-

ware Maple. For convenience, we list the first few terms

of the polynomials An:

A0 = up
0 ,

A1 = pu1u
p−1
0 ,

A2 = pu2u
p−1
0 + C2

pu2
1u

p−2
0 ,

A3 = pu3u
p−1
0 + 2C2

pu2u1u
p−2
0 + C3

pu3
1u

p−3
0 ,

A4 = pu4u
p−1
0 + 2C2

p

(

u3u1 +
1

2
u2

2

)

up−2
0

+ 3C3
pu2u

2
1u

p−3
0 + C4

pu4
1u

p−4
0 , (10)

· · ·
It is remarked here that the Adomian polynomials An only

depend on ui (i = 0, 1, . . . , n) and the summation of the

subscripts in each term of An is n while the summation

of the superscripts is p. In a similar way, one may readily

write out the first few terms of Bn so the related details

are omitted. More details on the Adomian polynomials

can be seen in Refs. [18–22,34].

Substitution of (7)–(8) into (6) and on use of the linear-

ity of Laplace transformation, one can obtain the following

recursive relations:

L[u0] =
1

s
f(x) +

1

s2
g(x) , (11a)

L[un+1] = − a

s2
L[unxx] − b

s2
L[un] − c

s2
L[An]

− d

s2
L[Bn], n ≥ 0 . (11b)

Implementation the inverse Laplace transform to (11a)

yields

u0 = f(x) + tg(x) . (12)

Therefore, the Adomian polynomial A0 and B0 can be

obtained according to the expression (10). Insertion of

the known u0, A0 and B0 into the iteration (11b) with

n = 1 and then applying the inverse Laplace transform

delivers the value of u1. Repeating the analogous process

described above will enable us to obtain the values of u2,

u3, . . . iteratively. Therefore, the series solution of (7) will

be generated. In general, the series solution obtained can

rapidly converge to an exact solution if such a solution
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exists (otherwise, the series solution can be used for nu-

merical purposes). As for the proof of the convergence,

readers may refer to Refs. [35-37].

3 Three Distinct Numerical Solutions of the

Nonlinear Partial Differential Equations

In the preceding section, some necessary preparations

were made on sought of approximate solutions of (2). It

may be easily seen there that the class of solutions is in-

timately related to initial conditions chosen. In this sec-

tion, we shall construct three distinct initial values which,

remarkably, lead to three different types of numerical so-

lutions. When appropriate p is chosen, the numerical so-

lutions derived can rapidly converge to the exact solutions

obtained by other authors.

3.1 The Doubly Periodic Numerical Solution

With the construction of doubly periodic solution in

mind, we introduce the initial condition in the form of

u(x, 0) =
[
√

−2m2k2(λ2 + a)/d sn(kx, m)
]2/p

, ut(x, 0) = 0 . (13)

According to LDA analyzed in the above together with the relation (12), we obtain the first component of the series

solution

u0 = u(x, 0) + tut(x, 0) =
[
√

−2m2k2(λ2 + a)/d sn(kx, m)
]2/p

. (14)

Accordingly, the Adomian polynomials A0 and B0 are :

A0 = up
0 =

[
√

−2m2k2(λ2 + a)/d sn(kx, m)
]2

,

B0 = u2p−1
0 =

[
√

−2m2k2(λ2 + a)/d sn(kx, m)
](4p−2)/p

. (15)

Substitution of (14) and (15) into the iterative relation (11b) with n = 0, yields

L[u1] = − a

s2
L[u0xx] − b

s2
L[u0] −

c

s2
L[A0] −

d

s2
L[B0]

=
1

s3p2sn2(kx, m)
[a0 + a1sn

2(kx, m) + a2sn
4(kx, m)] , (16)

whence, on use of the inverse Laplace transform, we obtain

u1 =
t2

2p2sn2(kx, m)
[a0 + a1sn

2(kx, m) + a2sn
4(kx, m)] , (17)

where

A =
[
√

−2m2k2(λ2 + a)/d sn(kx, m)
]2/p

, a0 = 2ak2A(p − 2) ,

a1 = 4ak2A(m2 + 1) − bp2A − cp2Ap − dp2A2p−1, a2 = −2ak2m2A(p + 2) . (18)

By using the relation of (10), one may readily calculate the Adomain polynomials A1 and B1 in the form of

A1 =
t2Ap−1

2psn2(kx, m)
[a0 + a1sn

2(kx, m) + a2sn
4(kx, m)] ,

B1 =
(2p − 1)t2A2p−2

2p2 sn2(kx, m)
[a0 + a1sn

2(kx, m) + a2sn
4(kx, m)] . (19)

Substitution of (17) and (19) into the iterative relation (11b) with n = 1, produces

L[u2] = − a

s2
L[u1,xx] − b

s2
L[u1] −

c

s2
L[A1] −

d

s2
L[B1]

=
1

s5p2

[ a3

sn4(kx, m)
+

a4

sn2(kx, m)
+ a5 + a6sn(kx, m) + a7sn

2(kx, m) + a8sn
4(kx, m)

]

, (20)

therefore, we have

u2 =
t4

4!p2

[ a3

sn4(kx, m)
+

a4

sn2(kx, m)
+ a5 + a6sn(kx, m) + a7sn

2(kx, m) + a8sn
4(kx, m)

]

, (21)

where

a3 = −18k2aa0 ,

a4 = 3a0dA2p−2(1 − 2p) − 12k2aa0(1 + m2) − 3aa0xx − 3a0b − 3a0cpAp−1 ,

a5 = 3a1dA2p−2(1 − 2p) − 3a1b − 3a1cpAp−1 − 3a(a1xx + 2a2k
2 + 2a0m

2k2) ,

a6 = −12kdaa2x cn(kx, m)dn(kx, m) ,

a7 = 12k2aa2(1 + m2) + 3a2d(1 − 2p)A2p−2 − 3a2b − 3aa2xx − 3a2cpAp−1 ,
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a8 = −18k2m2aa2 . (22)

In a similar manner, we can iteratively calculate the other components u3, u4, . . . Therefore, the numerical solution

subject to the initial condition of the Jacobian elliptic function is now generated, namely

u = u0 + u1 + u2 + · · · = A +
t2

2p2

[ a0

sn2(kx, m)
+ a1 + a2sn

2(kx, m)
]

+
t4

4!p2

[ a3

sn4(kx, m)
+

a4

sn2(kx, m)
+ a5 + · · · + a8sn

4(kx, m)
]

+ · · · (23)

It is noted that the arbitrariness of p involved in (2) and (23) enables the numerical solution to be a general one.

That is to say, a particular approximate solution will occur when we take p a certain constant. For example, if setting

p = 2 and c = 0, then (2) becomes the famous Klein–Gordon equation:

u + auxx + bu + du3 = 0 , (24)

and (23) stands for the approximate solution of this special equation. It is known that in Ref. [38], Liu et al. showed

when a < 0, such Klein–Gordon equation (24) admitted the doubly periodic exact solution:

u(x, t) =

√

−2m2k2(λ2 + a)

d
sn

(

√

b

(λ2 + a)(1 + m2)
(x − λt), m

)

. (25)

Interestingly, the numerical solution given in (23) not only holds for the special case of p = 2, c = 0, a < 0 but also for

the other cases.

Fig. 1 Numerical figures of the generalized solution (23): (a) is for p = 1/2 and (b) for p = 3. The other parameters
are given by (a, b, c, d) = (−1, 1/3, 1,−2) and (m, λ, k) = (1/2,−

√

2, 1).

Fig. 2 Figures of the solutions of the Klein–Gordon equation (24), namely p = 2: (a) is for approximate solution (23)
and (b) for the exact (25). The parameters are chosen as (a, b, c, d) = (−2, 26/25, 0,−2/25), (k, m,λ) = (1, 1/5,−

√

3).

Here, we present some numerical simulations to show

the efficiency and accuracy of the generalized approximate

solutions obtained by the proposed method. It is known

that for the LDA, low-order approximate solution can lead

to high accuracy if suitable initial conditions are chosen.

Without loss of generality, a three-order numerical solu-

tion of (23) is adopted here. Figure 1 shows the gener-

alized numerical solutions (23) when p = 1/2 and p = 3,
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respectively. Figure 2 depicts the numerical solution (23)

and exact solution (25) for the Klein–Gordon equation,

namely p = 2. The comparison of them at t = 0.05 is

exhibited in Fig. 3.

Fig. 3 The comparison of the exact and numerical so-
lution for the Klein–Gordon equation at t = 0.05. Line
depicts the numerical solution and points the exact.

It is evident from Fig. 3 that for a special value of p, the

numerical solution obtained by us can rapidly converge to

the known exact solution, which shows that good results

are achieved.

3.2 The Kink-Profile Numerical Solution

In order to seek the kink-profile solution, we take the

initial condition in the form of

u(x, 0) = [m − k tanh(αx)]1/(p−1),

ut(x, 0) = 0 . (26)

Therefore, according to the expression (12), we have

u0 = [m − k tanh(αx)]1/(p−1), (27)

whence the Adomian polynomials A0 and B0 are:

A0 = up
0 = [m − k tanh(αx)]p/(p−1),

B0 = u2p−1
0 = [m − k tanh(αx)](2p−1)/(p−1). (28)

Insertion of (27) and (28) into the iterative relation (11b)

with n = 0, produces

L[u1] = − a

s2
L[u0,xx] − b

s2
L[u0] −

c

s2
L[A0] −

d

s2
L[B0]

=
A

s3(p − 1)2
[a0 + a1 tanh(αx) + a2 tanh(αx)2 + a3 tanh(αx)3 + a4 tanh(αx)4] , (29)

which, in turn, yields

u1 =
At2

2(p − 1)2
[a0 + a1 tanh(αx) + a2 tanh(αx)2 + a3 tanh(αx)3 + a4 tanh(αx)4] . (30)

In the above, the parameters are given by

A = [m − k tanh(αx)]1/(p−1),

a0 = ak2α2(p − 2)A2−2p − (p − 1)2(b + cAp−1 + dA2p−2) ,

a1 = 2akα2(1 − p)A1−p, a2 = 2ak2α2(2 − p)A2−2p ,

a3 = 2akα2(p − 1)A1−p, a4 = ak2α2(p − 2)A2−2p . (31)

Substitution of (30) into the iterative representation (11b) with n = 1, we obtain

L[u2] = − a

s2
L[u1,xx] − b

s2
L[u1] −

c

s2
L[A1] −

d

s2
L[B1]

=
1

s5(p − 1)2
[a5 + a6 tanh(αx) + a7 tanh(αx)2 + · · · + a11 tanh(αx)6] , (32)

whence

u2 =
t4

4!(p − 1)2
[a5 + a6 tanh(αx) + a7 tanh(αx)2 + · · · + a11 tanh(αx)6] , (33)

with

a5 = a0d(1 − 2p)A2p−1 − aA(a0xx + 2αa1x + 2α2a2) − aa0Axx ,

a6 = a1d(1 − 2p)A2p−1 − aA(a1xx + 4αa2x − 2α2a1 + 6α2a3)

− 2aAx(a1x + 2αa2) − a1cpAp − a1bA − aa1Axx ,

a7 = a2d(1 − 2p)A2p−1 − aA(a2xx − 2αa1x − 8α2a2 + 6αa3x + 12α2a4)

− 2aAx(a2x − αa1 + 3αa3) − a2cpAp − a2bA − aa2Axx ,

a8 = a3d(1 − 2p)A2p−1 − aA(a3xx + 2α2a1 − 4αa2x − 18α2a3 + 8αa4x)

− 2aAx(a3x − 2αa2 + 4αa4) − a3cpAp − a3bA − aa3Axx ,

a9 = a4d(1 − 2p)A2p−1 − aA(a4xx + 6α2a2 − 6αa3x − 32α2a4)

− 2aAx(a4x − 3αa3) − a4cpAp − a4bA − aa4Axx ,
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a10 = 4aαA(2a4x − 3αa3), a11 = −2aa4α
2A . (34)

Likewise, the other components of u3, u4, u5, . . . can be obtained iteratively. Therefore, the numerical solution

associated with the initial condition (26) is derived:

u = u0 + u1 + u2 + · · · = A +
At2

2(p − 1)2
[a0 + a1 tanh(αx) + · · · + a4 tanh(αx)4]

+
t4

4!(p − 1)2
[a5 + a6 tanh(αx) + a7 tanh(αx)2 + · · · + a11 tanh(αx)6] + · · · (35)

Fig. 4 Figures of the generalized numerical kink-profile solution (35): (a) is for p = −6 and (b) for p = 2.

Fig. 5 Figures of the numerical and exact solution when p = 5/2: (a) depicts the approximate solution (35) and (b)
shows the exact solution (36) derived by Chen et al. The parameters are taken as (a, b, c, d) = (−29/80, 1/5, 7/20, 1/8)
and (k, m, α, λ, R) = (1, 1, 1, 1,−1).

Fig. 6 The comparison of numerical and exact solution described in Fig. 5 with p = 5/2 and t = 0.05. Line stands for
numerical solution and points the exact.

The arbitrariness of p allows one to take p = 5/2, in which case the original system (1) has the exact solution

u =
[

− 5c

14d
∓

√

5b

8d
tanh

(√
−R

(

x ∓ t

√

−a +
9b

16R
+ ξ0

))]2/3

, (36)

that was derived by Chen et al. via the improved method.[30]
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Below, we perform some numerical simulations to show the efficiency of this type approximate solution. Figure

4 exhibits the generalized numerical solutions (35) when p = −6 and p = 2, respectively. When p = 5/2, the

corresponding numerical solution (35) and exact solution (36) derived by Chen et al. are illustrated in Fig. 5. While,

the comparison of them at t = 0.05 are presented in Fig. 6. The comparison result enables us to believe that another

hight accuracy solution is achieved.

3.3 The Bell-Profile Numerical Solution

For construction of the bell-profile numerical solution, we shall proceed with the following type of initial values

u(x, 0) = sech(kx)1/(p−1), ut(x, 0) = 0 . (37)

As the steps are analogous to the above, we omit the tedious calculations and just give the final result, namely

u = u0 + u1 + u2 + · · · = A +
t2

2(p − 1)2
[a0A + a1A

p + a2A
2p−1]

+
t4

4!(p − 1)4
[a3A + a4A

p + a5A
2p−1 + a6A

3p−2 + a7A
4p−3] + · · · , (38)

with

A = sech(kx)1/(p−1), a0 = −ak2 − b(p − 1)2, a1 = −c(p − 1)2, a2 = apk2 − d(p − 1)2 ,

a3 = 2aa0xk(1 − p) tanh(kx) − (p − 1)2(aa0xx + a0b) − aa0k
2,

a4 = 2aa1xk(p − 1) tanh(kx) − (p − 1)2(aa1xx + a1b + a0cp) − aa1p
2k2,

a5 = aa0pk2 − aa2k
2(p − 2)2 + 2kaa2x(p − 1)(2p− 1) tanh(kx)

− (p − 1)2(aa2xx + a2b + a1cp) − a0d(2p − 1)(p − 1)2,

a6 = aa1pk2(2p − 1) − a3cp(p − 1)2 − a1d(2p − 1)(p − 1)2,

a7 = aa2k
2(2p − 1)(3p − 2) − a2d(2p − 1)(p − 1)2. (39)

It is known that when c = 0, Chen et al. obtained the bell-profile exact solution of the original equation (1):

u =
[

±
√

bp

d
sech

(

−
√

R
(

x ∓ t

√

b(p − 1)2 − aR

R
+ ξ0

))]1/(p−1)

, (40)

which can be seen in the case 4 of Ref. [30]. However, it is remarkable that the bell-profile numerical solution (38)

derived here not only holds for c = 0 but also for c 6= 0. Therefore, we conclude that this type of approximate solutions

is also a generalized one.

Fig. 7 The figures of the generalized numerical solution (38): (a) is for p = 5 and (b) for p = 1.

In Fig. 7, we show the time evolutions of the generalized numerical solutions (38) with p = 5 and p = 1, respectively.

It is seen that such solution is indeed of bell-profile type for the arbitrary p. In Fig. 8, we exhibit the particular numerical

solution (38) and exact solution (40) with p = 3/2. The comparison of these two kinds of solutions described in Fig. 8

at t = 0.05 is depicted in Fig. 9.
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Fig. 8 Figures of the numerical solution (38) and the exact solution (40) with p = 3/2. The parameters are given by
(a, b, c, d) = (−3/4, 2, 0, 3) and (k, R) = (1,−1).

Fig. 9 The comparison of numerical and exact solution
described in Fig. 8 at t = 0.05. Line is for the numerical
solution and points the exact.

Remark Here, we want to point out that except the

three types of approximate solutions given above, other

classes of numerical solutions such as soliton, rational,

antikink-profile solution etc. can also be constructed if

suitable forms of initial conditions are chosen.

4 Conclusion

A class of partial differential equations with nonlinear

term of any order has been revisited by the LDA. It is

very interesting and surprising that only by constructing

special forms of initial values and using the LDA, three

distinct generalized numerical solutions are obtained suc-

cessfully, namely the doubly periodic numerical solution,

kink-profile and bell-profile solution. Numerical results

show that such approximate solutions are very realistic

series solutions, which generally converge rapidly. In par-

ticular, when p is chosen by the same values as that given

in [30] and [38], the numerical solutions obtained by us can

converge to the exact ones derived by Liu and Chen et al.

Therefore, we predict that the LDA is an effective tech-

nique to investigate numerical solutions of nonlinear prob-

lems, especially for the partial differential equations with

nonlinear term of any order. However, to our knowledge,

it is a very difficult problem to investigate multi-soliton

solutions of integrable nonlinear equations by the known

numerical methods and few papers are reported. Whether

the LDA or other new algorithms can be effectively used

to solve multi-soliton solution of nonlinear partial differ-

ential equations? It is worthy of deep study in our future

work.

Acknowledgments

The authors would like to thank the referees for their

helpful comments and valuable suggestions.

References

[1] M.J. Ablowitz and P.A. Clarkson, Soliton, Nonlinear Evo-

lution Equations and Inverse Scatting, Cambridge Univer-
sity Press, New York (1991).

[2] C. Rogers and W. Schief, Bäcklund and Darboux Trans-
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